
Open Access Library Journal 
2020, Volume 7, e6675 
ISSN Online: 2333-9721 

ISSN Print: 2333-9705 

 

DOI: 10.4236/oalib.1106675  Aug. 21, 2020 1 Open Access Library Journal 
 

 
 
 

Development of Sparse Reconstruction 
Algorithm of Cone-Beam CT 

Xianghe Liu, Yao Huang, Rui Luo 

The College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, China 

  
 
 

Abstract 
CT technology has been widely used in various fields such as medical treat-
ment, industry, and materials. Recently years, cone-beam CT (CBCT) used in 
the medical field is replacing the traditional spiral CT slowly due to its unique 
advantages. Improving the performance of CBCT and the image reconstruc-
tion algorithms could obtain higher quality of images, meanwhile, these also 
reduce the exposure time of X-ray irradiation. And image reconstruction tech-
niques based on sparse angles have benefits for both. This article briefly in-
troduces the advantages of CBCT and the shortcomings of spiral CT, then the 
traditional filtered projection algorithm Feldkamp is explained. The devel-
opment of the CBCT reconstruction algorithms based on incomplete data is 
analyzed from three aspects: TV model, dictionary learning and compressed 
sensing sampling. The advantages and disadvantages of these algorithms are 
analyzed for the development of new algorithms. 
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1. Introduction 

With the discovery of Roentgen rays in 1895, CT technology began to develop. 
Subsequently, the Austrian mathematician Radon confirmed the capacity that 
the internal information could be reconstructed from its projection data through 
the derivation formula of mathematical theory, which is the theoretical founda-
tion for CT imaging [1]. In clinical, the commonly used CT scanning methods 
mainly include spiral CT and cone-beam CT (CBCT). Spiral CT scans the hu-

How to cite this paper: Liu, X.H., Huang, 
Y. and Luo, R. (2020) Development of Sparse 
Reconstruction Algorithm of Cone-Beam 
CT. Open Access Library Journal, 7: e6675. 
https://doi.org/10.4236/oalib.1106675 
 
Received: July 28, 2020 
Accepted: August 18, 2020 
Published: August 21, 2020 
 
Copyright © 2020 by author(s) and Open 
Access Library Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/ 

  
Open Access

https://doi.org/10.4236/oalib.1106675
http://www.oalib.com/journal
https://doi.org/10.4236/oalib.1106675
http://creativecommons.org/licenses/by/4.0/


X. H. Liu et al. 
 

 

DOI: 10.4236/oalib.1106675 2 Open Access Library Journal 
 

man body in a continuous rotation through the X-ray tube, while the scanning 
bed automatically enters at an even speed. Therefore, the scan line is spiral on 
the body surface of patient. CBCT means that the X-ray emitter performs a cir-
cular scan around the object to be inspected. The scan line trajectory in each 
projection angle is a cone-beam shape, which has the advantages of high spatial 
resolution, short data acquisition time and high utilization efficiency of X-ray. 
Compared with a two-dimensional parallel beam and fan-beam CT, a three- 
dimensional CBCT system could achieve higher resolution and better use of 
photons [2], so it is widely used in radiotherapy positioning, stomatology, and 
small animal pre-clinical aspects. 

At present, three-dimensional (3D) reconstruction algorithms of CBCT are 
divided into analytical algorithms and iterative algorithms. The analytical algo-
rithms could be divided into two types: precise reconstruction algorithms and 
approximate reconstruction algorithms [3]. According to the central slice theo-
rem, the Fourier transform of each projection is equivalent to the segment that 
passes through the origin in the direction parallel to the detector in the two- 
dimensional (2D) Fourier transform of the original image. Therefore, the cover-
ing of the entire Fourier space of the reconstructed image is essential to achieve 
high-precision reconstruction, it requires that the projection space contains all 
the projection data within the 180-angle range, and all the data in the projection 
space is also called a complete projection data set [4]. 

According to the different conditions of data, incomplete data problems could 
be divided into the following three categories: interior problem, exterior prob-
lem, incomplete view problem [5]. Among them, the incomplete angle problem 
could be divided into sparse-view problem and the limited-angle problem [6]. 
The sparse angle problem refers to the problem of a certain interval between ad-
jacent scanning angles. Normally, the scanning angles are equally spaced, mean-
while the total range of scanning angles covers the 180-degree. 

The application of sparse angle projection for image reconstruction could sig-
nificantly reduce the times of X-ray projections sampled by the imaging system, 
which is an effective way to reduce radiation dose. It could also effectively shorten 
the exposure time of each X-ray scanning at the same time. So the motion arti-
facts caused by the shaking, heartbeat and breathing motion of patients are re-
duced. Finally, the imaging quality is improved. 

2. Cone-Beam CT 

2.1. Limitations of Spiral CT 

Multi-slice spiral CT (MSCT) is a common method of image examination be-
cause it could provide sufficient diagnostic information for general anatomical 
images. However, the imaging performance of MSCT still has several limitations 
[7]:  

1) The continuous projection data of any cross-section of the scanned object 
cannot be obtained during MSCT scanning, so the longitudinal interpolation 
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method is required to approximate reconstruction of the cross-sectional image, 
which lead to longitudinal artifacts in the reconstructed image.  

2) Although multi-slice spiral CT ccould obtain a 3D image by overlapping a 
series of 2D axial images, the spatial resolution of the three axes is not isotropic, 
the Z-axis resolution is worse than the axial resolution usually. 

3) The patient receives overlapping X-rays during adjacent rotations, high-dose 
radiation is also a problem with MSCT. 

2.2. Advantages of CBCT 

The emergence of cone-beam CT (CBCT) fundamentally makes up for the short-
comings of MSCT, especially when using flat panel detector (FPD) [8]. The FPD 
could provide CBCT imaging with advantage of high spatial resolution, high 
dynamic range, good linearity, and geometric distortion is avoided. The FPD 
bring great development for CBCT in many medical applications. Due to the 
large detection area of FPD, FPD-CBCT brings a breakthrough in large-scale 3D 
CT imaging and isotropic resolution. One rotation is performed during CBCT 
scanning, there is no overlapping radiation to the patient, so the box radiation 
dose is reduced compared with MSCT. The above-mentioned characteristics of 
FDP-CBCT make it the most promising imaging method in many medical fields 
such as small animal imaging, breast imaging and bone imaging. In recent years, 
the application of CBCT in medicine has mainly focused on radiotherapy and 
diagnosis [9]. 

With the rapid development of CBCT, the 3D reconstruction algorithm of 
CBCT has gradually become the most popular frontier topic in the medical field. 
On account of CBCT is widely used in modern medicine and industry, the re-
quirement for reconstruction speed is more stringent. 

3. The Feldkamp Reconstruction Algorithm 

At present, the mainstream of CT reconstruction algorithms is still the filtered 
back-projection reconstruction algorithm. The more famous one is the Feld-
kamp algorithm. The cone-beam image reconstruction algorithm of Feldkamp is 
specially designed for the circular focus orbit of the cone beam. It is developed 
by Feldkamp, Davis, and Kress. The advantages of the Feldkamp algorithm are 
practical and stable. When the cone opening angle of the cone beam is relatively 
small (for example, less than 10˚), the Feldkamp algorithm can reconstruct a bet-
ter image. The Feldkamp algorithm can be divided into the following steps:  

1) Preprocessing the projection data, that is, multiplying by a cosine function 
cosα; 

2) One-dimensional ramp filtering is performed on the processed data line by 
line; 

3) Make the filtered data into the weighted back-projection of the conical 
beam, and the weight function in the back projection depends on the distance 
from the reconstruction point to the focus. 
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The slope filtering in the Feldkamp algorithm is performed line by line, with-
out filtering in the direction of the axis of rotation. Assuming that the direction of 
the rotation axis is the z-direction, the Feldkamp algorithm can be expressed as: 
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2 2 2ˆD z+ +  are the cosine functions of the angle of incidence of the cone- 
beam ray. 

4. Sparse Reconstruction Algorithm 
4.1. TV Minimization Reconstruction Model 

Candes et al. [10] first proposed the TV regularization model and achieved high 
MRI image reconstruction accuracy under very small sampling conditions in 
2006. Based on the research results of Candes, Sidky et al. [11] designed a CT 
image reconstruction model based on constrained TV minimization and achieved 
good reconstruction result under sparse angle sampling. According to the dif-
ferent calculation methods of the gradient operator, it could be divided into iso-
tropic TV and anisotropic TV. The research of Chen et al. [12] in 2011 and Li et 
al. [13] in 2014 showed that anisotropic TV adapts to the difference of images in 
different directions, so the model will further improve the solution performance. 
In 2012, Liu et al. [14] proposed an adaptive weighted TV minimization algo-
rithm, which considers the anisotropic edge characteristics between adjacent 
image voxels, it could be adaptively adjusted by local image gradients to preserve 
edge details. In 2013, Bian et al. [15] proposed an adaptive steepest descent 
weighted convex set projection algorithm. In the same year, Zhang et al. [16] 
proposed an alternate direction TV minimization algorithm, which reformulated 
the TV problem as a problem in which the objective function of linear equality 
constraints is separable, then through ADM, the augmented Lagrangian function 
is minimized and divided into sub-problems to solve. 

The TV model is mainly based on the sparsity mining of the first-level domain 
of the image. It is difficult to accurately restore the features of the sliced conti-
nuous image that is sparse in the high-level domain, and it produces the block 
artifacts and the texture blur. To better protect image edges and texture details, 
some sparse models based on high-gradient domains have been studied in recent 
years. In 2014, Hu et al. [17] proposed a generalized HDTV (Higher Degree TV) 
regularization, model. The sparsity model of the high-gradient domain could 
better fit the polynomial function and avoid the staircase effect, however, it is 
easy to cause the sharpness of the edge to be reduced. Therefore, some mixed- 
order models that integrate a degree of gradient and a high degree of the gra-
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dient are studied. Among them, the classic mixed-order models are the LOT 
model and the TV-Stokes model. In 2014, Liu et al. [18] applied the TV-Stokes 
model to sparse angle reconstruction and achieved good results in overcoming 
the ladder effect of TV. In 2010, Birdies et al. [19] proposed a new first-order 
and high-gradient fusion model the total generalized variation (TGV) model. In 
2016, Zhang et al. [20] proposed a Generalized model of TGpV (Total Genera-
lized P-variation) to optimize the sparsity of TGV, a good effect was achieved. 
However, the second-order TGV model can better maintain the balance between 
the first-order degree and the second-order degree by introducing intermediate 
variables and is currently considered to be the most excellent model among 
many mixed-order models [21]. Yan et al. [22] focused on the study of the uni-
queness of the TV minimization model and proposed a method of sampling 
quantification for precise reconstruction of a fixed phantom and fixed geometric 
parameters with a limited viewpoint. In sparse optimization models such as the 
TV minimization reconstruction model, the reconstruction model has and only 
one solution means that theoretically accurate reconstruction results can be ob-
tained in the reconstruction model. 

In generally, the current mainstream CT image reconstruction model is the 
TV regularization model and its improved form. The research of this model has 
attracted more attention and has achieved good application results. However, 
different models have certain limitations and could not be applied to all prob-
lems. In the field of sparse angle reconstruction, designing a suitable reconstruc-
tion model and reducing the number of projection samples while ensuring the 
quality of the reconstructed image is the focus of research. 

4.2. Dictionary Learning 

With the development and deepening of research, a new branch has emerged on 
the way of searching for sparse transformation and sparse expression of images, 
namely dictionary learning. It is different from the classic sparse transformation 
in the above algorithm, the dictionary learning method solves a set of over-com- 
plete bases (a dictionary) through a sparse optimization algorithm. The idea of a 
complete dictionary was proposed by Mallat et al. [23] in 1993. The idea pointed 
out that the number of atoms in the dictionary is much larger than the dimen-
sion of the signal feature, and a matching pursuit algorithm was proposed to 
solve the sparse optimization problem of a complete dictionary. The earliest dic-
tionary learning method is the optimal directions algorithm (MOD), which was 
proposed by Engan et al. [24]. Dictionary learning has always played an impor-
tant role in computer vision and other aspects. Mairal et al. [25] deeply studied 
the application of dictionary learning in image processing and proved that dic-
tionary learning could solve image processing problems such as image restora-
tion, image desiccation and image classification. It is different from the TV re-
construction model, the reconstruction algorithm based on dictionary learning 
focuses more on capturing the local structural information of the image to be 
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reconstructed. Literature [26] applied the dictionary learning method to low-dose 
CT reconstruction and achieved good reconstruction results. In 2012, the dual 
dictionary reconstruction algorithm was used in incomplete angle reconstruc-
tion [27]. In 2013, Zhao K. et al. [28] proposed a reconstruction algorithm based 
on K-singular value decomposition (KSVD) and orthogonal pursuit (OMP). 
With the widespread application of deep learning in the field of image classifica-
tion, in 2016, Snigdha et al. [29] proposed the greedy deep dictionary learning 
(DDL) method, which aims to obtain effective information of more complex 
images. The reconstruction algorithm based on dictionary learning not only 
opens up a new direction in the sparse representation of the model, but its mod-
el solving algorithm is also different from the first-order type sparse optimiza-
tion method mentioned above but uses the mainstream algorithm for solving the 
l0-norm optimization problem.  

4.3. Compressed Sensing Sampling Reconstruction 

Reconstruction algorithms based on sparse optimization have achieved good ap-
plication results in incomplete angle reconstruction. However, there is a lack of a 
perfect theoretical basis for the sampling conditions used in the actual imaging 
process. In 2009, Pan et al. [5] tried to explain the meaning of compressed sens-
ing (CS) for image reconstruction, they wanted to establish the connection be-
tween CS and CT reconstruction, and a preliminary RIP analysis of the discre-
tized system matrix is conducted. In 2011, Jørgensen et al. [30] proposed the 
concept of hadamard full sampling and proposed the simulation experiment es-
timation method for the amount of data required in CT reconstruction by using 
CS theory, which provides a certain basis for the estimation of the range of data 
required by the sparse reconstruction algorithm. In 2012, Jørgensen et al. [31] 
further discussed the sufficient sampling conditions (SSCs) of the amount of da-
ta required by iterative reconstruction and CS theory, which provides a further 
reference for the estimation of the amount of data required in actual reconstruc-
tion. In 2014, Wang et al. [32] provided the necessary conditions for sampling 
angle estimation, which, combined with sufficient sampling estimation, made 
some progress in the research on the quantitative relationship between image 
sparseness and the minimum number of projection angles. However, due to the 
limitation of system matrix size and computational complexity, this method 
cannot be directly applied to the system matrix of 3d imaging. In 2016, Kulkarni 
et al. [33] proposed an invisible net based on Convolutional Neural Network 
(CNN) to realize the non-iterative compressed perception image reconstruction. 
Compared with the traditional algorithm, the biggest advantage of the method is 
that it reduces the computational complexity. In 2017, Yao et al. [34] modified 
ReconNet architecture by adding residual connections to improve reconstruc-
tion performance. Dai et al. [35] enforced the previously captured long-term 
spatially dependent images, and the improved method can obtain better image 
quality reconstruction. 
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5. Discussion 

CBCT applied in the medical field is replacing the original spiral CT due to its 
unique advantages. To obtain high-quality images and reduce exposure time of 
X-ray, in addition to improving the performance of CBCT, it could also start 
with image reconstruction algorithms. Image reconstruction technology based 
on sparse angles has great benefits for both. Both analytical algorithms and tra-
ditional iterative algorithms are difficult to obtain high-quality reconstruction 
results for the sparse angle reconstruction. The reconstruction technology based 
on sparse optimization mines the inherent sparse characteristics of the image, 
then a sparse optimization model is established. The corresponding reconstruc-
tion algorithm is designed to reduce the amount of sampled data. The algorithm 
has been successfully applied in sparse angle reconstruction. In this reconstruc-
tion algorithm, research on to relax the number of system samples is the main 
research direction. To reduce the system samples, the main research point is 
studying the relationship between imaging systems and image sparse characte-
ristics to mine sparse prior characteristics furtherly. However, the core of this 
problem is to design better reconstruction models and develop more efficient 
solving algorithms. 
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