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Abstract 
Epilepsy is a transient neurological disorder associated with changes in the 
functional connections of the brain. Abnormal electrical discharges can be 
observed during an epileptic seizure. However, in the absence of an epileptic 
seizure, the anatomical structure of the brain and the electrical waves of the 
brain are not observed, making it difficult to explain the cause. This paper 
deals with together weighted imaging (DWI) sequence data in functional 
magnetic resonance imaging (FMRI) of epileptic patients before seizure, us-
ing Anatomical Automatic Labeling (AAL) template extracted 116 brain re-
gions and the introduction of time series, a matrix of 116 × 116. Pearson cor-
relation coefficient was calculated to investigate the pathological condition of 
brain function in epilepsy patients, using of neural network visualization sys-
tem of innovative visual display and compared with the normal epileptic 
brain function to connect the image, with 38 cases of epilepsy by 187 cases of 
normal DWI experiment data, and can confirm the existence of brain func-
tion in patients with epilepsy connections. Cerebral neural network visualiza-
tion system showed partial functional connection loss between frontal lobe 
and temporal lobe in epileptic group compared with normal control group. 
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1. Corresponding Work 

The complex causes of epilepsy and the lack of sufficient data support make it 
difficult for medical experts to make a scientific and complete medical diagnosis. 
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The occurrence of epilepsy is not only closely related to epileptogenic foci [1] 
[2], but also to the abnormal functional connection between normal brain areas 
and epileptogenic foci as well as the abnormal functional connection between 
each normal brain interval. Thus, the study of functional connectivity of brain 
neural network provides an extensive theoretical basis for the diagnosis and 
treatment of epilepsy. Resting state function MRI (rs-fMRI) has been a strong 
tool to study brain functional connection. So far, the diffusion tensor imaging 
principle is widely used in clinic, and the scan DTI sequence is added to the im-
age post-processing to show that the tensors of different shapes of the fiber bun-
dle satisfy the rich data dimension [3], but do not reflect the intrinsic connection 
of the neural network. in resting states, when the brain is not involved in any 
cognitive task or is not stimulated by any external output, it retains important 
activities that follow a clear pattern of spatial distribution [4] [5]. By processing 
fMRI time series images, the functional connections between different brain re-
gions in resting state were obtained, and the functional connections of brain 
neural networks between patients with primary epilepsy and normal controls 
were compared and analyzed. 

Given the maturation of noninvasive neuroimaging techniques [6], brain 
network analysis has become a compelling topic in data mining research, for 
example, the original neuroimaging data is modeled as high-order tensor [7] by 
introducing a time dimension to 3d images. On these tensor data, some basic 
problems are defined [8]. Both tensor and brain networks can be trained by 
learning methods (tensor decomposition, feature selection) to infer relationships 
with specific results. Shi Lei along with other persons [9], used NodeTrix to vi-
sualize the functional network connections of the human brain, focusing on the 
network with clustering properties that the brain network has, following the in-
herent partition of the cerebral cortex, combining the traditional node link dia-
gram with the relational matrix diagram, and showing the functional connec-
tions of the brain in blocks. Because of the complexity of brain network connec-
tivity, visualization of brain network connectivity is unable to highlight the 
(ROI) characteristics of interest. Yang X. and others studied the problem of vis-
ual comparison of ROI brain networks based on block information on brain 
networks of interest and proposed an integrated visual analysis framework [10]. 
Furthermore, Cui W. and others [11] proposed a new method to construct a 
bundled layout of general graphs. As a layout clue of the bundle, an inner axis or 
skeleton of a similar edge in terms of location information is used. Combining 
edge clustering, distance domain and two-dimensional skeletonization, the 
binding layout of the general graph is gradually constructed by iteratively at-
tracting edges to the center line of the horizontal set of its distance domain. 

In the literature on functional connectivity of the brain, there are generally 
two research directions. One is to focus on comparing brain network differences 
between individuals [12]. Finn and others described how functional connectivity 
is unique to individuals and can be used to distinguish individuals from others 
[13]. Compared the similarity of subjects’ correlation matrices and claimed that 
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age may be a factor bringing about differences in functional connectivity be-
tween individual populations [14]. Arian and others, by analyzing the similarity 
between the correlation matrices of each subject [15], the effect of MRI analysis 
methods on individual differences was evaluated. Another direction is to analyze 
time-varying aspects of brain functional connectivity. Allen and others, dis-
cussed how to reveal the flexibility of functional coordination between different 
nervous systems [16]. Chalhoun and others, use the term “time-honney group” 
to represent the time-varying connectivity of the brain and review the effects of 
several multivariate methods on characteristic brain function. Based on complex 
network theory, some important topologies report the characteristics of anatomy 
and functional brain networks, such as small worlds, scale-free, modular, and 
hub regions; some new discovery has been showed up [17]. 

2. Study Methods of This Paper 

In order to explore the pathology of functional connectivity of brain networks in 
patients with primary epilepsy, based on fMRI, this paper collected 187 normal 
human data and 38 images of patients with primary epilepsy, extracted areas of 
interest (region of interest, ROI) and calculated their Pearson product-moment 
correlation coefficient (also called PPMCC). The functional connectivity of 
brain neural networks in the experimental group was demonstrated through a 
visual system. Considering that the connection between functional differentia-
tion and functional integration of brain regions is linear, PPMCC of time se-
ries is introduced. The edge binding algorithm is introduced in the visualiza-
tion system to enhance the visual focus and improve the visual resolution. For 
the sake of highlighting the connection of neural network in brain interval, the 
left and right hemispheres were divided into 10 modular matrices according to 
the anatomical structure of the brain. The functional connections of brain net-
work between normal control group and epilepsy group were compared by visu-
al analysis. 

2.1. Contributions 

Joint modeling of labeled targets in data and interpretable brain networks in vi-
sualization by means of fMRI. Brain network presented in this paper is a com-
prehensive framework based on functional connectivity of brain neural net-
works. This framework achieves effectiveness from both data analysis and clini-
cal application. Our contributions can be summarized as an empirical study of 
the real-world features of brain neural networks. In the absence of abnormal 
images fMRI patients with epilepsy, the pathological conditions of functional 
connectivity of brain neural networks in resting states are excavated and abnor-
mal brain regions are displayed through a visual system. To meet the design ob-
jectives, multiple target brain regions are integrated into a selection formula, 
time series are introduced and Pearson correlation coefficients are calculated. In 
addition, it was found that the PPMCC of brain neural network connection can 
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be controlled below 0.8 due to individual differences. Hence, this paper selected 
the threshold value at 0.8, which mainly revealed the pathological phenomenon 
of functional connection of brain network in epilepsy. 

Figure 1 shows the index of specific nodes of the subjects’ brain network. See 
Appendix 1 for the specific table. Figure 2 shows the distribution of nodes and 
fiber connections. Figure 3 has depicted that one Example of comparison of 
block brain networks using NodeTrix combined with overlay design, in this 
brain networks, each matrix corresponds to the brain lobe in the human brain. 
For instance, in Figure 3, the matrix of the left half brain from top to bottom 
represents the left frontal lobe, left marginal lobe, left temporal lobe, left parietal 
lobe, left occipital lobe, respectively. Each row/column in the matrix represents a 
single ROI, e.g. the top two matrices are left and right frontal lobes, and each  
 

 
Figure 1. Anatomical Automatic Labeling, (AAL, see Appendix 1 for the specific table).  
 

 
Figure 2. The nodes of a subject’s brain network are located in the center of each brain 
region. The edges represent fiber-connected nodes, which are indexed by the label. The 
complete list is shown in Figure 1.  
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Figure 3. Subjects were tagged and the nodes of the summary brain network were 
grouped by regional index. 

 
frontal lobe contains 12 of ROI. In the above tables, the 90 of ROI division ref-
erence on the templet of Anatomical Automatic Labeling (AAL) which is exten-
sively used in Biology. Plus, the numbers and names of ROI are in accordance 
with templets. 

In order to alleviating the visual confusion caused by the close relationship 
between ROI and the large number of connections, we add force-oriented edge 
binding algorithm to the visualization to bind these lines together. The algo-
rithm refers to the concept of gravity and repulsion in mechanics, selects the ap-
propriate control points for each edge, moves all the connected control points in 
the direction of more concentrated control points, and visually binds the edges 
together, thus reducing visual confusion. The force guidance algorithm of Hol-
ten and Wijk and other persons [9] are used in this paper, which is derived from 
the following formula. 

( )0OptDist Dist where
min

k
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e
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In particular, 0Dist  represents Initial distance between two control points. 
, ,a s pC C C  Represents angular compatibility, length compatibility and distance 

compatibility based on the two control points accordingly.  

2.2. Data Pre-Disposal  

1) Data format conversion: The raw data collected in this article are from all 
DICOM files, which need to be converted into NIFTI files first. 2) Removal of 
the first 10 point-in-time data: the images of the first 10 time nodes need to be 
removed before processing the image data, as there may be instability when the 
machine starts. 3) Time-layer correction: eliminating the time-phase difference 
that occurs in the interval scan so that the acquisition time for each layer in the 
TR is consistent. 4) Head movement correction: To prevent interference with the 
overall data analysis due to the writhing or sloshing of the subjects’ heads, the 
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images need to be corrected to approximately resting state by head movement 
correction. 5) Spatial standardization: To erase interference with the size of the 
heads of all subjects, their location in the images, and to facilitate the localization 
of each brain region, the brain images of all subjects need to be standardized into 
a standard space. 6) Nonlinear Drift: removal of the effects of linear trends (or 
low-frequency drift). 7) Filtering: removal of interference such as heartbeats and 
breathing on the images tested. Each voxel is then resampled. 8) Spatial smoothing: 
smoothing with a full width half-high value (FWHM) of a Gaussian kernel of 8 
mm × 8 mm. Obtain the ROI time series of the AAL template and obtain the 
volume × 116 time series matrix. Each column of the matrix represents the time 
series of each brain region. The time series of brain regions extracted from AAL 
template were processed by PPMCC. PPMCC between brain regions was calcu-
lated for the processed time series so that a 116 × 116 correlation matrix was ob-
tained for each subject. The elements in the matrix were ijr , representing 
PPMCC of node i and j directly. Part of the processed PPMCC data table of 
normal people is shown in Figure 4, and the complete data is shown in Appen-
dix 2. 

2.3. PPMCC Calculation 

PPMCC between brain regions was calculated for 225 groups of test data in 
resting state. Each subject gets a 116 × 116 correlation matrix in which the ele-
ments are representing the node i and j direct PPMCC. Each set of data has 116 
channels, each consisting of 65 time series points. The signal data of each chan-
nel as an independent signal variable, a total of 116 variables, and each channel  
 

 
Figure 4. Part of the processed PPMCC data table of normal people. 
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contains time series points as a set of all the data contained in each variable. Re-
garding these 116 signal variables, pairwise calculations result in a PPMCC ma-
trix of scale 116 × 116. in this PPMCC matrix, the greater the absolute value of 
PPMCC, the stronger the correlation: the closer the PPMCC is to 1 or −1, the 
stronger the correlation is, the closer the PPMMCC is to 0, and the weaker the 
correlation is. 

The calculation formulation as followed: 

( ) ( )2 22 2

i i i i

i i i i

N x y x y
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3. Virtualized System Design and Mutual Design 
3.1. Summary  

Brain network visualization system mainly has three pages, three-dimensional 
brain node display, left and right juxtaposition NodeTrix contrast, superposition 
merge NodeTrix contrast. Set up a suspension tool box in the upper right corner 
of the overall page, you can choose to expand or indent. The suspension tool box 
is mainly used to switch three visual pages, in addition to providing setting con-
nection strength threshold and contrast settings, normal control group and pa-
tient data are also imported through this tool box data import option. 

On the 3D brain node display interface, the user can see the connection of 
normal people and patients as a whole for the division of AAL template brain 
regions. The connection strength between brain regions greater than the set 
threshold will show the connection lines, as showed in Figure 5(a). On the left 
and right side NodeTrix the contrast interface, the user can see the normal per-
son and the patient detailed two-dimensional brain interval connection situa-
tion, as showed in Figure 5(b). The user can see the differential connections and 
specific numerical information between the normal and patient brain regions 
NodeTrix the superimposed merging contrast interface, as showed in Figure 
5(c). The suspension tool box details are shown in Figure 5(d). 

3.2. Virtualized Design 

Brain network visualization system design includes two goals: one is to combine 
the superposition representation into the NodeTrix for visualization; the other is 
to combine the block hierarchy to highlight the difference contrast. Beyer and 
others’ research has shown that node link representation and relation matrix re-
presentation are not the best choice for visual comparison. NodeTrix [18] repre-
sentation using mixed representation is more suitable for visualizing block brain 
network connections and is more convenient for comparison between groups. 
Alper and others’ showed that in contrast to brain functional networks, supe-
rimposed views highlight differences between groups’ more than juxtaposed 
views. Thus, some rules have been added up into this, combining the superposi-
tion view notation on the NodeTrix, and add some interaction design. 
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(a) 

   
(b)                                        (c) 

 
(d) 

Figure 5. (a) Patient (left), normal (right), 3d brain junction display interface (upper 
right); (b) epilepsy group (left), normal controls (right) NodeTrix contrast figure; (c) 
overlay merger NodeTrix contrast interface 0; (d) suspension tool box. 
 

The partitioning of 116 numbers of ROI in the figure refers to the wider ap-
plication of Anatomical Automatic Labeling (AAL) templates in biology, with 
ROI numbers and names consistent with the templates. Large cells are mapped 
by patient data, and a smaller cell is nested within each relational cell, and 
smaller cells are mapped by data from the normal control group. Each large cell 
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and his internal small cell represent the same data on the connection strength 
relationship between the patient and normal ROI. Inside of each matrix, the in-
ternal ROI connection is encoded with color. The saturation of color is used to 
represent the strength of each functional connection. The more saturated the 
color is and the higher the connection strength is. Besides, the meaning of dif-
ferent representation of small cell filling mode is also various. The specific ex-
planation is shown in Figure 6. 

3.3. Mutual Design 

In order to reinforce the visual display effect of the system to the brain network, 
this paper adds some mutual design to enhance the user experience. We set up a 
suspension tool box through which users can switch between views. Meanwhile, 
the connection strength threshold and the contrast adjustment option are added, 
both of which range [0, 1]. By adjusting the connection strength threshold, the 
connection below this set value can be shielded for easy observation and analy-
sis. The concept of contrast refers to the normal control group connection inten-
sity data minus the corresponding brain area patient connection intensity data. 
By contrast from high to low-key sections, one or more brain regions of the two 
groups of data can be directly displayed. 

Add drag function and drop function into 3D node view, so that user can ad-
just the position of node view in 3D space. The user hovers over any cell or line 
of the brain region matrix to see the prompt box that pops up at the mouse posi-
tion containing the brain region name, source ROI, target ROI and the corres-
ponding connection strength value information, as showed in Figure 7. 

4. Case Study 

The fMRI DTI sequence of Mianyang City Central Hospital in the past three 
years was reviewed and analyzed. Data have collected from 74 subjects and 38 
 

 
Figure 6. Matrix internal weight coding details. 
 

 
Figure 7. Block diagram of information prompt. 
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patients with primary epilepsy. 74 healthy young people (average age = 26.5 
years) had no history of mental illness, neuropathy or other diseases that im-
paired cognitive ability, and family history. In addition, 113 normal fMRI data of 
Open connectome item were collected [19]. By screening the data of 187 cases in 
the normal control group, the PPMCC was calculated, and the functional con-
nection map of brain neural network was obtained. The neural network connec-
tion map was extracted to show the functional connection of brain neural net-
work in normal control group. 

Experiment Group: Male, 25 years old, clinical manifestations of convulsions, 
disturbance of consciousness, have a history of primary epilepsy. The fMRI im-
age is not abnormal.  

Contrast group: there are 113 examples of normal people, average age is 26.5 
years old, exclusive mental disease, neuropathy or other History and family his-
tory of that impair cognitive ability. The functional connections between the 
normal control group and the patients with primary epilepsy were compared by 
visualization. 

As it showed in Figures 8(a)-(c) at present, Threshold strength is 0.8. 
In order to enhance visual contrast, the data of the experimental group and 

the control group were overlapped and processed, and the same part of the brain 
network was filtered out, which mainly showed the abnormal area. The red line 
junction section, representing the missing area of functional connectivity of the 
brain neural network in epileptic patients compared with the normal control 
group. The blue line junction part, representing the area of abnormal brain 
neural network connectivity in epileptic patients compared with the normal 
control group. The collected data of primary epilepsy group were processed by 
the same experimental means and the experimental results were counted. The 
results showed that the difference of brain neural network functional connection 
between frontal lobe and temporal lobe was mainly related to the loss of partial 
brain functional connection. 

5. Discussion 

We have used 187 normal human data to create a normal model in this paper,  
 

 
(a)                       (b)                            (c) 

Figure 8. (a) Normal group; (b) Epilepsy patients; (c) Normal group and epileptic patients. 
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because of the insufficient amount of data cannot use the deep learning method 
to establish a more standard normal control model. In order to avoid the influ-
ence of individual differences on the experimental results, this paper selects the 
experimental objects to ensure that the attributes are controllable as far as possi-
ble. In addition, in order to ensure the accuracy of the experimental results, the 
experimental group was divided into groups by sorting out the collected data of 
patients with primary epilepsy, taking into account the attributes of sex, age, 
education level and so on. In the course of the experiment, we were surprised to 
find that the effect of individual differences on functional connections of brain 
neural networks was minimal. In order to highlight the main pathological condi-
tions of functional connectivity in the brain of epilepsy, we selected the thre-
shold at 0.8, which can ensure the filtering of the effect on the experimental re-
sults due to individual differences. 

Future Tendency 

We have explored the main pathological situation of functional connectivity in 
the brain neural network of epilepsy. The future work is to augment the amount 
of data, create a more accurate normal control group model, and consider vari-
ous attributes within [20] to calculate the influential factors of individual differ-
ences. The pathological situation of functional connections should be more pre-
cisely highlighted in the brain neural network of epilepsy, for the interest of pro-
viding a theoretical basis for targeted treatment in clinical neurology [21]. 

6. Conclusions 

In this paper, we have explored the application of the weight-connected neural 
network visualization method to the auxiliary diagnosis of clinical epilepsy. The 
visual display and analysis show the difference of brain neural network func-
tional connectivity between epileptic patients and normal control group. The 
experimental results demonstrated that the difference of brain neural network 
functional connectivity between frontal lobe and temporal lobe was mainly rele-
vant to the loss of partial brain functional connectivity. 

The visualization system designed in this paper gives doctors a more intuitive 
understanding of the pathological conditions of functional connections of epi-
leptic neural networks, and provides a valuable theoretical basis for the diagnosis 
and treatment of epilepsy by displaying and locating abnormal brain regions. 
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1 Precentral_L 28 Rectus_R 55 Fusiform_L 82 Temporal_Sup_R 109 Vermis_1_2 

2 Precentral_R 29 Insula_L 56 Fusiform_R 83 Temporal_Pole_Sup_L 110 Vermis_3 

3 Frontal_Sup_L 30 Insula_R 57 Postcentral_L 84 Temporal_Pole_Sup_R 111 Vermis_4_5 

4 Frontal_Sup_R 31 Cingulum_Ant_L 58 Postcentral_R 85 Temporal_Mid_L 112 Vermis_6 

5 Frontal_Sup_Orb_L 32 Cingulum_Ant_R 59 Parietal_Sup_L 86 Temporal_Mid_R 113 Vermis_7 

6 Frontal_Sup_Orb_R 33 Cingulum_Mid_L 60 Parietal_Sup_R 87 Temporal_Pole_Mid_L 114 Vermis_8 

7 Frontal_Mid_L 34 Cingulum_Mid_R 61 Parietal_Inf_L 88 Temporal_Pole_Mid_R 115 Vermis_9 

8 Frontal_Mid_R 35 Cingulum_Post_L 62 Parietal_Inf_R 89 Temporal_Inf_L 116 Vermis_10 

9 Frontal_Mid_Orb_L 36 Cingulum_Post_R 63 SupraMarginal_L 90 Temporal_Inf_R 
  

10 Frontal_Mid_Orb_R 37 Hippocampus_L 64 SupraMarginal_R 91 Cerebelum_Crus1_L 
  

11 Frontal_Inf_Oper_L 38 Hippocampus_R 65 Angular_L 92 Cerebelum_Crus1_R 
  

12 Frontal_Inf_Oper_R 39 ParaHippocampal_L 66 Angular_R 93 Cerebelum_Crus2_L 
  

13 Frontal_Inf_Tri_L 40 ParaHippocampal_R 67 Precuneus_L 94 Cerebelum_Crus2_R 
  

14 Frontal_Inf_Tri_R 41 Amygdala_L 68 Precuneus_R 95 Cerebelum_3_L 
  

15 Frontal_Inf_Orb_L 42 Amygdala_R 69 Paracentral_Lobule_L 96 Cerebelum_3_R 
  

16 Frontal_Inf_Orb_R 43 Calcarine_L 70 Paracentral_Lobule_R 97 Cerebelum_4_5_L 
  

17 Rolandic_Oper_L 44 Calcarine_R 71 Caudate_L 98 Cerebelum_4_5_R 
  

18 Rolandic_Oper_R 45 Cuneus_L 72 Caudate_R 99 Cerebelum_6_L 
  

19 Supp_Motor_Area_L 46 Cuneus_R 73 Putamen_L 100 Cerebelum_6_R 
  

20 Supp_Motor_Area_R 47 Lingual_L 74 Putamen_R 101 Cerebelum_7b_L 
  

21 Olfactory_L 48 Lingual_R 75 Pallidum_L 102 Cerebelum_7b_R 
  

22 Olfactory_R 49 Occipital_Sup_L 76 Pallidum_R 103 Cerebelum_8_L 
  

23 Frontal_Sup_Medial_L 50 Occipital_Sup_R 77 Thalamus_L 104 Cerebelum_8_R 
  

24 Frontal_Sup_Medial_R 51 Occipital_Mid_L 78 Thalamus_R 105 Cerebelum_9_L 
  

25 Frontal_Mid_Orb_L 52 Occipital_Mid_R 79 Heschl_L 106 Cerebelum_9_R 
  

26 Frontal_Mid_Orb_R 53 Occipital_Inf_L 80 Heschl_R 107 Cerebelum_10_L 
  

27 Rectus_L 54 Occipital_Inf_R 81 Temporal_Sup_L 108 Cerebelum_10_R 
  

Appendix 2: PPMCC Results for a Normal Person 
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