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Abstract 
We show how to generalize the Weyl equation to include the Standard Model 
fermions and a dark matter fermion. The 2 × 2 complex matrices are a matrix 
ring R. A finite group G can be used to define a group algebra [ ]G R  which 
is a generalization of the ring. For a group of size N, this defines N Weyl equ-
ations coupled by the group operation. We use the group character table to 
uncouple the equations by diagonalizing the group algebra. Using the full oc-
tahedral point symmetry group for G, our uncoupled Weyl equations have 
the symmetry of the Standard Model fermions plus a dark matter particle. We 
describe the symmetry properties of dark matter.  
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1. Introduction 

We will write the Weyl equation [1] for a single massless fermion as  

2 0,x y zI
t x y z

µ
µ

ψ ψ ψ ψσ ψ σ σ σ∂ ∂ ∂ ∂
∂ = ± ± ± =

∂ ∂ ∂ ∂
             (1) 

where 2I  is the 2 × 2 unit matrix, the jσ  is the Pauli spin matrices. The plus 
signs are for the left handed Standard Model fermions and the minus signs are 
for the right handed fermions. In the above, the Pauli algebra has a basis of four 
2 × 2 complex matrices { } { } { }2, , , , , ,t x y z x y zIµσ σ σ σ σ σ σ σ= =  where each of 
the four µσ  has two nonzero complex elements. The wave function ψ  is a 1 
× 2 vector so the Weyl equation consists of two coupled differential equations 
with four terms in each. We will generalize the µσ  to gµσ  so that they 
depend on a group element g. There will now be 4N different gµσ  where N is 
the number of elements in the finite group G. These matrices are still linearly 
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independent in the sense that  

, 0g
g ga µ

µ µ σΣ =                         (2) 

implies that the 4N complex constants gaµ  are all zero. 
Changing the signs of the Pauli spin matrices, as seen above in the left and 

right handed Weyl equations, can be thought of as a symmetry operation. The 
symmetry group has two elements, it is the point group symmetry that Hestenes 
and Holt [2] call 22 . We will label the point group symmetries we use with 
their notation and to avoid confusion with numerals will prepend them with 
“Geo” as in Geo22 . The groups explored in this paper are the full octahedral 
group Geo43, some of its subgroups and a tripled Geo43 with 48 3 144× =  
elements we will call 3Geo43. An element of Geo43 or its subgroups can be 
described by its effect on the Pauli spin matrices. In general, the three matrices 
can be permuted and can be independently negated. Together, these give the 

33! 2 48× =  elements of Geo43. 
The finite point group Geo22  is a good example to make clear how we are 

generalizing the Weyl equation. First, to make our notation concise and 
descriptive, let’s define the two elements of the group as ( ) ( ){ }Geo22 ,= + −  so 
that the multiplication rules are ( )( ) ( )+ + = + , ( )( ) ( )+ − = − , ( )( ) ( )− + = −  
and ( )( ) ( )− − = + . Then the eight generalizations of the four Pauli spin matrices 
are µσ ± . And the wave function ψ  is generalized to a wave function with 
twice as many degrees of freedom ψ ± . 

An obvious way to use the µσ ±  to generalize the Weyl equation is to write  

0.µ
µσ ψ± ±∂ =  [Not what we will use!]           (3) 

This would give two independent Weyl equations, one for each sign. In total 
there will be four differential equations with four terms in each. But in this 
generalization the group G has no effect on the equations other than to increase 
the particle content by a factor N. Instead, we will couple the group designation 
g for the Pauli spin matrix gµσ  with the designation, say h for the wave 
function hψ . Then the positive and negative Weyl equations are:  

[ ]
[ ]

0, equation

0. equation

µ µ
µ µ

µ µ
µ µ

σ ψ σ ψ

σ ψ σ ψ

+ + − −

− + + −

∂ + ∂ = +

∂ + ∂ = −
            (4) 

The top, +, equation corresponds to the two ways of obtaining (+) in the 
group, that is, ( ) ( )( ) ( )( )+ = + + = − − , while the bottom equation gives the two 
ways of obtaining ( ) ( )( ) ( )( )− = − + = + − . There are now two cross coupled 
Weyl equations. In total these are four differential equations with eight terms 
each. Our task will be to manipulate these equations so as to decouple them into 
uncoupled Weyl equations. 

To model the Standard Model fermions, we will use a group of size 144N = . 
This will give 2 × 144 differential equations with 4 × 144 terms in each for a total 
of 28 144 165888× =  terms. It would be difficult to decouple such a 
complicated problem by hand. We will use methods developed in the 19th 
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century known now as “harmonic analysis”. [3] This was a method of solving 
wave equation problems based on symmetry. Originally this required a model of 
the medium on which the waves acted but this was abstracted away to give the 
irreducible representations of symmetry now popular in elementary particle 
theory. A readable introduction to the development is given in [4]. For linear 
symmetry, harmonic analysis prescribed using the Fourier transform to convert 
the waves into sines and cosines. For situations with spherical symmetry the 
same type of transform converts to spherical harmonics which can be abstracted 
to give the irreducible representations of SO(3). Harmonic analysis also applies 
to situations with discrete symmetry. For Abelian finite symmetry groups the 
Fourier transform becomes the “discrete Fourier Transform”. In this paper we 
will expand the discrete Fourier transform to situations with non Abelian 
symmetry groups [5] and use this to solve the decoupling problem. 

To write the equivalent of Equation (4) for more general groups, we need a 
way to describe all the possible group products that give a product g. We then 
sum over all these, assigning the first group product to the σ  and the second 
to the ψ . Since ( ) ( )1g h h gh h g−= = , we can sum over h and use:  

0g h h
h

µ
µσ ψΣ ∂ =                         (5) 

for each of the g G∈ . This gives the g part of the wave equation and 
considering the N elements of the group we have N coupled Weyl equations. 
The primary work of this paper is to uncouple equations like these. 

In the Weyl representation [1] the 4 × 4 gamma matrices are:  

20

2

00
, .

00
kk

k

I
I

σ
γ γ

σ
  

= =    −   
                 (6) 

Dirac’s wave equation is:  

,i mµ
µγ ψ ψ∂ =                           (7) 

but if we multiply both sides by 0γ  and rewrite it using the 2 × 2 Pauli matrices, 
and split the 4-vector ψ  into two 2-vectors Lψ  and Rψ  we have  

0
.

0
k L R

t k
k R L

im
σ ψ ψ

σ ψ ψ
 −     
∂ + ∂ = −      

     
               (8) 

The above are two Weyl equations with Lψ  using negative Pauli spin 
matrices and Rψ  using the positive, but with the equations coupled on the 
right by the mass term. Using the gµσ  notation these two coupled Weyl 
equations are:  

,

.
L R

R L

im

im

µ
µ

µ
µ

σ ψ ψ

σ ψ ψ

−

+

∂ = −

∂ = −
                       (9) 

Considering the above as arising from the Dirac equation, the µσ ±  are 4 × 4 
matrices with nonzero entries only in the top left 2 × 2 block (for the case) or the 
bottom right 2 × 2 block (for the + case). Setting the mass to zero gives two 
uncoupled Weyl equations. Physically, these two Weyl equations define two 
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massless particles that travel at the speed of light, a limit that cannot be achieved 
in the physical world. An alternative method of decoupling Lψ  and Rψ  is to 
require that one of them be zero. Then the equation satisfied by the other is the 
massless Weyl equation. 

In quantum information theory, a spin-1/2 state is represented by a complex 
2-vector so there is no momentum and the energy is directly proportional to 
the mass and is therefore an uninteresting constant. We can get the quantum 
information version of the Dirac equation by defining ψ+  and ψ−  by 

( ) 2R Lψ ψ ψ± = ± . As in the alternative derivation of the massless Weyl 
equations, we set one of the ψ±  to be zero and see what equations the other 
satisfies. Putting 0ψ− =  and multiplying the equations by 2, we obtain the 
equations for ψ+  when 0ψ− = :  

,

.

im

im

µ
µ

µ
µ

σ ψ ψ

σ ψ ψ

−
+ +

+
+ +

∂ = −

∂ = −
                    (10) 

Expanding t j j
µ

µσ σ±∂ = ∂ ± ∂  into time and spatial parts, taking the sum 
and difference between the two equations, and dividing by 2 we get:  

,
0.

t

j j

imψ ψ
σ ψ

+ +

+

∂ = −

∂ =
                      (11) 

The first equation defines the energy as constant while the second defines the 
momentum as zero. These are the wave equations for a stationary spin-1/2 
particle of mass m. We get the same result for ψ−  but since this is a difference 
between Lψ  and Rψ  we can identify this as the antiparticle. Thus the 
quantum information limit of the Dirac equation includes a particle and an 
antiparticle. 

In this paper we will be further extending this quantum information limit to 
include all the fermions of the Standard Model [6] [7]. We will be using 
irreducible representations of symmetry and these will naturally mix Lψ  and 

Rψ  as either R Lψ ψ+  or R Lψ ψ−  and we will treat these respectively as the 
particle and antiparticle. [8] 

Unlike Lψ  and Rψ , the ψ±  states have definite electric charge (that is, in a 
physical measurement of electric charge they are eigenstates of the physical 
electric charge operator). This is in contrast to the quantum field theory 
assumption of the Standard Model where antiparticles are treated as having the 
same charge as particles, but travelling backwards in time so the measured 
charge is negated. Another way of describing this difference is that in this paper, 
we will be treating all Standard Model fermions as travelling forwards in time, 
and we will be treating mass as a slightly messy interaction between particle and 
antiparticle rather than a simpler interaction between left and right handed 
states. 

We will illustrate the uncoupling of the generalized Weyl equation in three 
steps. The first step will use the “ Geo22 ” point group with two elements, the 
identity (+) and the inversion (−), and is the subject of Section 1.0. We write the 
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generalized Weyl equations which are four coupled partial differential equations, 
and decouple them into two Weyl equations corresponding to two particles. The 
decoupling is equivalent to putting the group algebra 22 µσ    into block 
diagonal form. A short cut to diagonalizing a group algebra is to use the finite 
group’s character table. In general, an Abelian group of size N has a character 
table of size N N× , and an Abelian group generated by a single element has a 
character table whose entries are the same as the discrete Fourier transform. 
Later we generalize the character tables of non Abelian symmetries to also be of 
size N N×  so they can be used as a non Abelian generalization of the discrete 
Fourier transform. 

The second step will use the point group Geo3 that corresponds to the six 
permutations on the three Pauli spin matrices and is discussed in Section 2.0. 
The group’s generalized Weyl equation has twelve coupled differential equations 
with 24 terms each. We will use the character table for Geo3 to assist in 
decoupling the equations. The group is small enough that writing down the 
decoupled Weyl equations is manageable. Since Geo3 is not Abelian, block 
diagonalizing 3 µσ    leaves a 2 × 2 block on the diagonal. While the group size 
of Geo3 is 6, the character table has only 3 columns and 3 rows but we show how 
to expand it to a 6 × 6 table that can be interpreted as a generalization of the 
discrete Fourier transform to the non Abelian Geo3 symmetry group. The 
expanded character table defines an internal symmetry that is an SU(2) analog of 
the color SU(3) internal symmetry of quarks. Note that the matrices of the Weyl 
and Dirac wave equations transform the way that density matrices transform 
rather than state vectors. This is significant because our generalized discrete 
Fourier transform is in the manner of a state vector transform, but it is on an 
object that transforms as a density matrix. We discuss the thermodynamics of 
internal symmetries. 

In Section 3.0 we discuss the full octahedral group Geo43. We use the 
character table methods shown in the previous section to read off the result of 
uncoupling. We find four Standard Model first generation leptons, i.e. electron, 
positron, neutrino and anti-neutrino, four Standard model first generation 
quarks and a set of Weyl equations with internal SU(2) symmetry left over for 
dark matter and anti-dark matter. Thinking of our transformation as a discrete 
Fourier transform, we can reverse the process and act on the electric charge, 
weak hypercharge and weak isospin to find what elements of 43 µσ    
transform to these operators. The result is compatible with the observation that 
Fourier transforms are useful for simplifying complicated structures in physics. 

Section 4.0 briefly discusses how we can triple the Geo43 point group to give 
the three generations of the Standard Model. 

In Section 5.0 we discuss the dark matter doublet found in the previous 
sections and the implications for dark matter. The internal SU(2) symmetry is 
assumed to act similarly to the internal SU(3) color symmetry so we call them 
“dark quarks” or “duarks”. Corresponding to the quark color force boson the 
gluon, dark quarks are bound by a dark color force boson called the “duon”. We 
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assume duarks combine similarly to the usual quarks so we have dark matter 
composed of “daryons” and “desons”. Instead of colors that sum to white, the 
dark quarks do not interact with photons so their colors must sum to black. 
Since they are SU(2) instead of SU(3), we need only two dark colors to form a 
basis set for their state vectors and we call the two dark colors “doom” and 
“gloom”. 

We finish the paper with a brief acknowledgement. 

2.   22 µσ , Generalized Weyl Equations and Decoupling  

The group Geo22  is equivalent to 2S , the group of permutations of two 
elements. A common notation for the two elements of the group is the 
permutation notation but instead we will use ±:  

( ) ( )
( ) ( )

,

12 ,

= +

= −
                          (12) 

and leave off the parentheses when the meaning remains clear. The (−) elements 
changes the signs of the Pauli spin matrices and the identity (+) leaves the signs 
unchanged. The multiplication table is:  

( ) ( )
( ) ( ) ( )
( ) ( ) ( )

22 + −
+ + −
− − +

                        (13) 

The four basis elements of the Pauli algebra are { }2 , , ,x y zI σ σ σ ; The Geo22  
group has two elements so the group algebra 22 µσ    will have two basis 
elements for each of these, corresponding to the two group elements (+) and (−): 

{ }2 2, , , , , ,x y z x y zI Iσ σ σ σ σ σ+ + + + − − − − . These eight elements are a basis for the 22 µσ    
algebra so that an arbitrary element α  of the algebra can be written as  

2 2I x x y y z z I x x y y z zI Iα α α σ α σ α σ α α σ α σ α σ+ + + + − − − −
+ + + + − − − −= + + + + + + +   (14) 

where the χα ±  are eight complex numbers. 
Addition is the usual for a complex vector space with 8 components, as is 

multiplication by a complex number. We will discuss statistical mechanics of 
group algebra quantum states in the next section; that will be our only use of 
multiplication of two group algebra elements so we define it here. Multiplication 
is term by term with products of basis elements given by the Geo22  group 
product and the usual Pauli algebra rules. The multiplicative identity for the 
group algebra is 2I + . So for example:  

( ) ( ) ( ) ( )

( )( )
2 2

2

1 2 2 3 2 4 3 6 1 8 ,

,

,

x y z z

x x y z

i i i i i i

I I

I i

σ σ σ σ

α α α

σ σ σ σ

+ − +− −

+ +

− − + + −

+ − = + − + = − +

= =

+ = +

        (15) 

where we’ve used the usual Pauli algebra multiplication x y ziσ σ σ= , 2x x Iσ σ =  
and the Geo22  group multiplication rules ( )( ) ( )( ) ( )+ + = − − = + ,  
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( )( ) ( )( ) ( )+ − = − + = − . These rules reduce any product to the 22 µσ    basis. 
The Weyl equation for 22 µσ    is  

0,g h hµ
µσ ∂ Ψ =                         (16) 

where h is summed over ( ) ( ){ }Geo22 ,= + − . There are two equations, one for 
( )g = + , the other for ( )g = − . Using 1 h h=  for Geo22  so that g h gh=  

and writing out the sums over h gives two equations, the first for ( )g = +  and 
the second for ( )g = −  as follows:  

( )( ) ( )( )

( )( ) ( )( )

0,

0.

µ µ
µ µ

µ µ
µ µ

σ σ

σ σ

+ + + −+ −

− − − +− +

∂ Ψ + ∂ Ψ =

∂ Ψ + ∂ Ψ =
                  (17) 

Using the Geo22  group multiplication, we reduce the gh products such as 
(+)(+) to give  

0,

0,

µ µ
µ µ

µ µ
µ µ

σ σ

σ σ

+ + − −

+ − − +

∂ Ψ + ∂ Ψ =

∂ Ψ + ∂ Ψ =
                     (18) 

and we see we have two coupled Weyl equations. 
To uncouple these two equations, consider the character table for the Geo22  

group:  

( ){ } ( ){ }:

: 1 1
1 1
1 1

Class

Size
A
B

+ −

+
−

                        (19) 

The group is Abelian so the two classes have only a single element in each. 
There are two irreducible representations consisting of the sum and difference of 
the (+) part and (−) part. Taking this as a hint for how to decouple the two Weyl 
equations, we compute the sum and differences of Equation (18) and indeed 
obtain two decoupled Weyl equations:  

( ) ( )
( ) ( )

2 0,

2 0.

µ µ
µ

µ µ
µ

σ σ ψ ψ

σ σ ψ ψ

+ − + −

−+ − +

+ ∂ + =

− ∂ − =
                   (20) 

The normalization factor of 1/2 is included so that the decoupled Pauli basis 
elements ( ) 2µ µ µτ σ σ± + −= ±  satisfy the equation ( )2

2Iµτ ± += , which 
corresponds to the usual Pauli algebra equation ( )2

1µσ = . 
We can also illustrate the method using a matrix representation of the finite 

group Geo22 . Using  

( ) ( )
1 0 0 1

, ,
0 1 1 0
   

+ = − =   
   

                    (21) 

as a representation, note that the representation satisfies the group 
multiplication and that they are linearly independent matrices. That is, if 

( ) ( ) 0α α+ −+ + − =  for complex numbers α± , then 0α± = . The four basis 
elements of the Pauli algebra µσ  are four 2 × 2 complex matrices that are 
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linearly independent. Similarly, the eight basis elements of the Geo22 µσ    are 
also linearly independent. 

In an abuse of notation, we can write the four Pauli algebra matrices as a 
single 2 × 2 complex matrix:  

2

2
,z x y

x y z

I i
i I

µ σ σ σ
σ

σ σ σ
+ − 

=  + − 
                   (22) 

that defines the four 2 × 2 complex matrices. The same abuse of notation allows 
us to write the eight basis elements of 22 µσ    in a single 4 × 4 matrix: 

2 2

2 2

2 2

2 2

.

z x y z x y

x y z x y z

z x y z x y

x y z x y z

I i I i
i I i I

I i I i
i I i I

µ

σ σ σ σ σ σ
σ σ σ σ σ σ

σ
σ σ σ σ σ σ

σ σ σ σ σ σ

+ + + + − − − −

+ + + + − − − −
±

− − − − + + + +

− − − − + + + +

 + − + −
 

+ − + − =  + − + −
  + − + − 

        (23) 

Note that in the above, the (+) and (−) supercripts follow the Geo22  group 
representation of Equation (21) while the Pauli algebra basis of Equation (22) 
appears in the subscripts of each of the four 2 × 2 blocks. As an example, the 
above indicates that the identity 2I +  is the 4 4×  identity matrix, and that  

0 0 0 1
0 0 1 0

,
0 1 0 0
1 0 0 0

xσ −

 
 
 =
 
 
 

                    (24) 

etc. Note that our 8 basis elements only describe half the degrees of freedom in a 
4 × 4 complex matrix. We will now transform this representation to 2 × 2 block 
diagonal. 

Given a matrix U and its inverse 1U −  we can transform an algebra by 
1U Uα α α −′→ = . Choosing  

2 21

2 2

1
2

I I
U U

I I
−  

= =  − 
                  (25) 

conveniently puts the 22 µσ    group algebra into block diagonal form. This 
corresponds to a transformation on our representation of Geo22 . Using the 
usual abuse of notation, in an even more confusing way, that is, to give one 
equation that shows the transformation of both the (+) and (−) elements of 
Geo22 , we have: 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 01 .
02

U U − + −   + + − 
=   − + + − −   

         (26) 

This transformation puts the 22 µσ    basis elements into block diagonal 
form. This is similar to the Weyl choice of representation for the gamma 
matrices which puts the 0 µγ γ  matrices into block diagonal form. Then putting 
the mass zero uncouples the Dirac equation into two Weyl equations. 

In the next two sections we will be decoupling Weyl equations for more 
complicated finite groups; we will approach those problems as a matter of block 
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diagonalization of the finite group just as here we have block diagonalized 
Geo22 . 

The two coupled Weyl equations of Equation (20) differ in the wave function: 
ψ ψ+ −± . This fact can be extracted from the block diagonal form of 22 µσ    
given in Equation (26) by considering it as the symmetry of a density matrix. 
The 1U Uα −  transformation of the algebra is also how density matrices are 
traditionally transformed. This follows from the fact that the Weyl equations are 
matrix equations and so transform as matrices.  

3.   3 µσ , Nonabelian Group Algebras and Internal  

Symmetry 

The Geo3 point group has six elements. The group is equivalent to the 
permutation group on three elements, 3S . Previously we had considered 
Geo22  as a transformation on the Pauli spin matrices that negated all of 
their signs. Similarly, we can consider Geo3 as a transformation on the Pauli 
spin matrices that is a permutation on the three spatial components xσ , yσ  
and zσ . Representing the spin matrices by X, Y, and Z and defining their 
permutations by how these are ordered, the conversion from the usual 
permutation notation is:  

( ) ( ) ( )
( ) ( ) ( )

, 123 , 132 ,

12 , 13 , 23 .

XYZ YZX ZXY

YXZ ZYX XZY

≡ ≡ ≡

≡ ≡ ≡
            (27) 

Later we will consider the Geo43 point group which can be considered as all 
the six permutations of the Pauli spin matrices along with any individual 
negations where there are 32 8=  possibilities. The Geo43 group therefore has 

36 2 48× =  elements. 
Since the Pauli algebra has a basis of four elements, the basis for the 3 µσ    

algebra has 4 6 24× =  elements and we will designate them as  
( ) ( ) ( ){ }123 23
2 2, , , zI I σ . 
In the previous section we were able to completely diagonalize the Geo22  

part of the 22 µσ    algebra. This was possible only because Geo22  is Abelian. 
Since Geo3 is non Abelian we will be unable to completely diagonalize the Geo3 
part of the 3 µσ    algebra. 

A group algebra is a generalization of a field or ring. Here we’ve been using 
the Pauli algebra or 2 × 2 complex matrices as the ring and we’ve been 
designating this ring as “ µσ “. The mathematics literature on group algebras 
frequently does not specify the field or ring and instead consider the general 
subject of a group algebra over an unspecified field that satisfies a few easy 
requirements (that are met by the Pauli algebra). Given the arbitrariness of the 
choice of ring or field, a more convenient choice is the field of complex numbers. 
The group algebra over the field of complex numbers is discussed at length in 
Hammermesh’s classic book “Group Theory and its Applications to Physical 
Problems” Section 3-17 [9] where he uses the group algebra as a way of defining 
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all the irreducible representations of a finite symmetry. Here we will be doing 
the same diagonalization as Hammermesh but with the purpose of uncoupling 
the generalized Weyl equations. 

Each line of the character table of the finite group corresponds to a diagonal 
block. The size of the block is defined by the character of the identity, here called 
( ). Our Geo22  example of the previous section was Abelian so all the 
representations have character 1 for the identity and the block diagonalized 
group algebra had only 1 × 1 blocks. 

The character table for Geo3 has three irreducible representations, two, A and 
B, with character 1 for the identity, and the third C with character 2 for the 
identity as shown in the column labeled “{( )}”:  

( ){ } ( ){ } ( ){ }Class : 123 12

Size : 1 2 3
1 1 1
1 1 1
2 1 0

A
B
C

+ +
+ −
−

               (28) 

This corresponds to two 1 × 1 diagonal blocks for the A and B irreps, and one 
2 × 2 diagonal block for the C irrep. 

As elements of the algebra, irreducible representations commute with 
everything in the algebra. As Hammermesh discusses [9], the A and B irreps are 
zero outside of their own 1 × 1 blocks, and similarly the C irrep is a multiple of 
the 2×2 identity for its block. With our usual abuse of notation:  

0
0

K

A
B

C
C

µσ

 
 
 =
 
 
 

                   (29) 

where K stands for A, B and C and we’ve left blank the region off of the three 
diagonal blocks. The elements of the above matrix are themselves 2 × 2 matrices 
so A is proportional to the 2 × 2 unit matrix. 

The size of the Geo3 group is 6, so that the sizes of the three classes, given in 
the second line of the character table, sum to give the group size: 1 2 3 6+ + = . 
Diagonalizing preserves the degrees of freedom so our diagonalization amounts 
to writing 6 as a sum of the squares of the sizes of the diagonal blocks:  

2 2 26 1 1 2 .= + +                        (30) 

This shows how the 6 dimensions of 3 µσ    as a vector space over the Pauli 
algebra appear in block diagonalized form. 

Since the size of Geo3 is six, the 3 µσ    algebra has enough degrees of 
freedom for six Weyl equations. Two equations are given by the A and B irreps. 
We can read them off of the A and B horizontal lines of the character table. The 
A irrep has character 1 for all the classes so all 6 group elements contribute 
equally and its Pauli spin algebra basis is given by summing over them:  
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( ) ( ) ( ) ( ) ( ) ( )( )123 132 12 13 23 6.A µ µ µ µ µ µµσ σ σ σ σ σ σ= + + + + +        (31) 

The division by 6 is a normalization so that they square to their 2 × 2 identity 

2
At AIσ = . 
The B irrep differs from the A irrep by having −1 for the {(12)} class (which 

are the three odd permutations), so it takes “−” signs for those elements:  
( ) ( ) ( ) ( ) ( ) ( )( )123 132 12 13 23= 6.B µ µ µ µ µ µµσ σ σ σ σ σ σ+ + − − −        (32) 

Since the A and B Pauli spin algebra bases are in different diagonal blocks, 
they must annihilate each other as a matter of matrix multiplication. For 
example 0 3

2 0A B A B
zIσ σ σ= = . This is in contrast to the original basis where all 

the basis products are nonzero. 
The 2 × 2 diagonal block will give four Weyl equations. It would be natural to 

label them according to their position in the 2 × 2 block. With this method, the 
four uncoupled Weyl equations would carry superscripts of 11,12,21,22  and 
their corresponding Pauli spin algebras would fit into the 2 × 2 block as follows:  

11 12

21 22 .
C C

C
C C

µ µ
µ

µ µ

σ σ
σ

σ σ
 

=  
 

                     (33) 

However, we’ll be considering SU(2) transformations on these Equations 
(which correspond to SU(2) transformations on the internal symmetries of 
the corresponding particles) and our transformations will be simpler if we 
algebraically convert these four uncoupled Weyl equations labeled by 
{ }11,12,21,22  into four new uncoupled Weyl equations with Pauli { }, , ,t x y z  
labels. With our usual notation abuse:  

11 12

21 22 .
C C Ct Cz Cx Cy

C C Cx Cy Ct Cz

i
i

µ µ µ µ µ µ

µ µ µ µ µ µ

σ σ σ σ σ σ
σ σ σ σ σ σ
   + +

=   
− −   

           (34) 

So that, for example, ( )11 22 2Ct C Cµ µ µσ σ σ= +  and ( )11 22 2Cz C Cµ µ µσ σ σ= − . 
In the new notation, the basis element Cxyσ  is xσ  in the internal SU(2) and 

yσ  in the external or spin-1/2 SU(2) for the C irrep. The four equations 

{ }, , ,Ct Cx Cy Czµ µ µ µσ σ σ σ  can be manipulated by a transformation, for example,  
1Cx C x CxU Uµ µ µσ σ σ′ −→ =                     (35) 

where U is in SU(2). Transforming the generalized Pauli spin matrices using 
their internal SU(2) this way transforms the decoupled Weyl equations, that 
they define, to an equivalent set. We propose that this is a type of gauge 
transformation. 

As an example of this internal SU(2) symmetry of the uncoupled Weyl 
equations, given an angle 2θ , note that ( )2 xθ σ  is in su(2) so that 

( )( )exp 2 xU i θ σ=  is in SU(2). This U leaves Ctµσ  and Cxµσ  unchanged but 
rotates the other two according to  

( ) ( )
( ) ( )

cos sin ,

cos sin ,

C y Cy Cz

C z Cz Cy

µ µ µ

µ µ µ

σ θ σ θ σ

σ θ σ θ σ

′

′

= +

= −
                (36) 
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so that, as expected, U rotates the y and z components of Cµσ  by an angle θ . 
This simplifies our understanding of these four Weyl equations as an internal 
SU(2) symmetry so rather than using the natural matrix description of the four 
equations shown in Equation (33), we will use the Pauli algebra description of 
these four degrees of freedom which we can abbreviate as:  

,
,

Ct Cz Cx Cy
C

Cx Cy Ct Cz

i
i

µ µ µ µ
νµ

µ µ µ µ

σ σ σ σ
σ

σ σ σ σ
 + +

=  
− − 

               (37) 

where { }, , ,t x y zν ∈  is the index for the Pauli algebra of the internal SU(2) 
symmetry, while µ  is the usual index for the Pauli spin-1/2. 

Our next task is to write out Cνµσ  in terms of the algebra. The first, Ctµσ , is 
easiest; similar to Aµσ  and Bµσ  defined in Equations (31) and (32), it’s given 
by the third line of the character table “ | 2 1 0C − “ and is:  

( ) ( ) ( )( )123 1322 2 6.Ct µ µ µµσ σ σ σ= − −              (38) 

The overall multiplication by 2 is needed to make it a projection operator and 
comes from the fact that the C irrep has a character of 2 for the identity. 

To find the remaining three degrees of freedom, i.e. { }, ,Cx Cy Czµ µ µσ σ σ , let us 
first reexamine the character table Equation (28). The three columns correspond 
to the three classes. These three degrees of freedom are rewritten as the three 
irreducible representations { }, ,A B C . The three classes include all six of the 
group elements so we can rewrite this table from 3 × 3 to 6 × 3 if we replace the 
classes with their elements. For example, the second class {(123)} has two 
elements (123) and (132) so we expand the second column of the character table 
to two identical columns, the second and third of the expanded 6×3 character 
table:  

( ) ( ) ( ) ( ) ( ) ( )Elements : 123 132 12 13 23
1 1 1 1 1 1
1 1 1 1 1 1
2 1 1 0 0 0

A
B
C

+ + + + +
+ + − − −
− −

        (39) 

To fill the table to 6 × 6 we need three more lines. 
The three missing lines in the generalized character table correspond to the 

three internal SU(2) spin matrices Cxµσ , Cyµσ  and Czµσ . These lines have to 
be orthogonal to the three irreps we already have and they need to be orthogonal 
to each other. From the table we see that the three degrees of freedom left can be 
taken as ( ) ( )123 132− , ( ) ( )12 13−  and ( ) ( )12 23− . We could simply put 
these three lines into the table but they wouldn’t quite act like Pauli spin 
matrices. They do span the internal Pauli spin matrices so we can write, for 
example:  

( ) ( )123 132 ,x y zασ βσ γσ− = + +               (40) 

where α , β  and γ  are three complex numbers. Squaring both sides, and 
using the fact that the Pauli spin matrices anticommute we find  
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( ) ( )
( ) ( ) ( ) ( ) ( )

22

2 2 2 2 2 2
1

123 132 ,

132 123 2 .

x y z

Ctµ

ασ βσ γσ

α β γ σ α β γ σ

 − = + +    

+ − = + + = + +
    (41) 

The left hand side is the negative of the C irrep line. And since 2 2 2α β γ+ +  
is just a complex number, we can take its square root and use it as a 
normalization factor on ( ) ( )123 132−  to give us Cxµσ . We have freedom in 
our choice of α , β  and γ  and of course this freedom is precisely the 
internal SU(2) gauge freedom. We will choose 0β γ= =  so that Cxµσ  is a 
multiple of ( ) ( )123 132− . The multiple is determined by requiring that Cxµσ  
squares to Ctµσ  given above as Equation (38). 

Our choice of Cxµσ  has used up the ( ) ( )123 132−  degree of freedom so the 
remaining two Pauli spin matrices, Cyµσ  and Czµσ  will depend only on 
( ) ( )12 13−  and ( ) ( )12 23− . Again the choice is arbitrary and corresponds to 
the su(2) gauge freedom that remains after defining xσ . We will define Cyµσ  
as a multiple of ( ) ( )12 13−  and determine the multiplication coefficient by 
again requiring that it square to give Ctµσ . Then we can find Czµσ  by 

x y ziσ σ σ= . Including these new irreps in the expanded character table gives:  

( ) ( ) ( ) ( ) ( ) ( )Elements : 123 132 12 13 23
1 6 1 6 1 6 1 6 1 6 1 6
1 6 1 6 1 6 1 6 1 6 1 6
2 / 3 1 3 1 3 0 0 0

0 1 3 1 3 0 0 0

0 0 0 1 3 1 3 0
0 0 0 1 3 1 3 2 3

A

B

Ct

Cx

Cy

Cz

i i

µ

µ

µ

µ

µ

µ

σ
σ
σ

σ

σ
σ

+ + + + +
+ + − − −
− −

−

−
−

       (42) 

This is a general result that does not depend on the choice of field or ring, so 
the µ  was never used or needed. The squared magnitude of each line is the 
same as the coefficient for the identity, i.e. 1/6 for A and B and 2/3 for the four 
components of C. Each line of this table defines four transformation equations 
depending on the choice of µ . For example, the fourth equation of the last line 
is ( ) ( ) ( )12 13 233 3 2 3z z zCzzσ σ σ σ= + − . Note that the internal SU(2) degrees of 
freedom do not use the identity ( ) as we expect for traceless su(2) generators. 
The reader is invited to verify that they do form a representation of su(2). 

Our new table upgrades the character table to a transformation on all the basis 
elements of the group algebra, and therefore, it is also a transformation on the 
group algebra itself. For Abelian groups of the form { }| 0kG a k N= ≤ <  for 
some a G∈ , the character table is of size N N×  and is a discrete Fourier 
transform. Thus our new table is a generalization of the discrete Fourier 
transform to a non Abelian symmetry group. 

In 2010 this author published a paper that rewrote the Koide equation for the 
masses of the charged leptons as the result of Feynman paths taken over spin in 
the x, y and z directions. [10] Given a path of n steps, the 1n +  step will either 
be in the same direction, clockwise or counterclockwise around the ( )1,1,1  
direction. Three of the elements of Geo3 correspond to these choices: ( ) XYZ= , 
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( )123 YZX=  and ( )132 ZXY= . They form the point group Geo3  which is 
an Abelian subgroup of Geo3 of size three so they imply a discrete Fourier 
transform on three objects as was pointed out by Marni Sheppeard in 2009. She 
asked “Is there a noncommutative transform that extends this analysis to 
nonclassical underlying spaces?” [11] This paper suggests that there is and that it 
will help understand the masses and symmetries of the Standard Model fermions. 
Rewriting the Koide equation allowed it to be extended to the neutrinos and, for 
the charged leptons, revealed another mass coincidence, a phase factor of 2/9. In 
2012 Zenczykowski extended the 2/9 coincidence to the up and down quarks 
which take 1/3 and 2/3 of the charged lepton value [12]. This paper is another 
step in fully understanding the Standard Model fermions both symmetry and 
generation structure. 

A Weyl equation is a matrix equation, so when we transform it according to 
its spin-1/2 SU(2) symmetry, we transform it the way we would a density matrix. 
That is, its Pauli matrices transform as 1

j jU Uσ σ −′ =  like density matrices ρ  
do rather than by the way that state vectors transform Uψ ψ′ = . Our treatment 
of the internal SU(2) symmetry of the C irreps as shown in Equation (35), uses 
the density matrix type transformation. Density matrices are convenient for 
calculations in quantum statistical mechanics so we briefly discuss them here. 

The Gibbs form for the density matrix of an ensemble is  

( ) e ,
H
TTρ

−
∝                        (43) 

where the Hamiltonian H specifies the energy of the possible states, T is the 
temperature, the Boltzmann constant is unity, and we’ve left off the normalization 
factor that gives ( )Tρ  a trace of 1. Squaring both sides gives  

( )
2

2 2e e ,
HH

TTTρ
−−

∝ =                    (44) 

so squaring such a density matrix gives a density matrix that is proportional to 
one with half the temperature. Repeating the procedure of squaring and dividing 
by the trace allows one to find a density matrix for a temperature close to zero. If 
the Hamiltonian depends on the particle states, this low temperature limit will 
be the pure density matrix corresponding to the state with the lowest energy. 

The high temperature limit for a density matrix is given by letting T →∞  
and is proportional to the unit matrix. The proportionality constant is the trace 
so the high temperature limit for 3 µσ    is  

( ) ( ) 6,Tρ = ∞ =                    (45) 

as the trace of the identity of a group algebra is the size of the group (and the 
other basis elements of the group algebra have zero trace). Density matrices have to 
be Hermitian and the same principle applies to a group algebra. The generalization 
of “Hermiticity” from a matrix to a group algebra is covered in introductory 
graduate math texts or the reader can work backwards from the Hermiticity 
requirement for the matrix form of the algebra. 

If we choose a small random Hermitian element of the group algebra we can 
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add it to the high temperature limit to get a Hermitian element that is a valid 
state near the high temperature limit. Cooling this state down to a nearly pure 
state gives us a random pure state. For 3 µσ    there are three possible pure 
states, A, B and C. Figure 1 shows the result of this cooling for a few thousand 
random high temperature states. The A and B irreps appear as two dots on the 
right side of the images while the internal SU(2) C state appears as a Bloch 
sphere on the left. The algebra has six group degrees of freedom and the images 
are two dimensional so four degrees of freedom are not graphed. The degrees of 
freedom that are graphed have been selected to separate the A, B and C states 
and to spread the C states with Cxµσ  in the x-direction and Cyµσ  in the 
y-direction so the Bloch sphere appears as an x-ray of a sphere. If you assign a 
graduate student to read and understand this paper, a suitable task is to 
reproduce this graph for this or other point group symmetries. 

In this paper the ring we use the Pauli algebra but the figure does not depend 
on the field so when writing a computer program to plot the cooling process it is 
more convenient to use the complex numbers as the field. Then an element of 
the group algebra [ ]3   consists of six complex numbers. Addition is simply 
vector addition. To multiply algebra elements the computer program uses the 
Geo3 group multiplication rules. Repeatedly squaring and dividing by the trace 
creates a path that is then graphed. 
 

 
Figure 1. Beginning with 3000 random density matrices near the high temperature limit 

0T T= , we square the density matrix six times to show the states beginning to converge to 
the two singletons A and B, and the internal SU(2) doublet C. Of the six degrees of 
freedom in the 3 µσ    algebra, we choose the x and y axes so as to spread A, B and C 

apart, and to show the Bloch sphere for C. Continuing the cooling process, the final 
image 0T   shows the cold temperature limit (pure states). 
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4.   43 µσ  and the Standard Model 

In this section we will be discussing a single generation of the Standard Model, 
i.e. the electron, neutrino, up quark and down quark. In the usual quantum 
mechanical description of these particles, each is modeled using bispinors and 
the Dirac equation. Bispinors have four complex components. For example the 
electron bispinor basis can be chosen to be the four states “spin-up electron”, 
“spin-down electron”, “spin-up positron” and “spin-down positron”. An 
alternative natural to the Weyl basis would be “spin-up left”, “spin-down left”, 
“spin-up right” and “spin-down right”. We cannot define a basis of elements 
that mix handedness with charge, i.e. “spin-up left positron” in the sense of a 
particle whose measured electric charge is +1 because charge and handedness do 
not commute. However, if we treated the positron as an electron travelling 
backwards in time, then the “unphysical” electric charge, that assigns −1 to both 
the electron and the positron, does commute with handedness. 

We will avoid the mass interaction in this section. In the massless limit 
(relativistic or high energy) the Dirac equation splits into two uncoupled Weyl 
equations, left handed and right handed. Each of these equations is a mix of 
particle and antiparticle. We will be using the quantum information limit which 
amounts to an infinite mass. In this limit the Dirac equation also splits into two 
Weyl type equations, but massive, one is for particles the other for antiparticles 
and the momentum is required to be zero. The 43 µσ    algebra includes both 
left handed and right handed coupled Weyl equations, but the irreducible 
representations will mix these leaving particles and antiparticles. So our 
uncoupled Weyl equations will have a basis of “spin-up electron”, “spin-down 
electron”, “spin-up positron” and “spin-down positron”. This makes it easy to 
find the operator for electric charge. By looking at the left and right handed parts 
of the algebra, we can pick out the left and right handed parts of the particles 
and therefore we can derive operators for weak hypercharge and weak isospin. 

An alternative to our calculation would be to write a generalized massless 
Dirac equation using the handed octahedral point group Geo43 , which has 24 
elements and is the subgroup consisting of Geo43’s proper rotations. Then the 
algebra would be 43 µγ   . The reason we’ve chosen 43 µσ    instead is that it 
makes the projection operators for handedness part of the point group 
symmetry. With 43 µγ   , the handedness projection operators are ( )51 2γ±  
which would mean our particle identities would be defined by a combination of 
the point group symmetry and the gamma matrices. 

Half of the 24 elements of the Geo43 point group are proper rotations and 
leave the Pauli spin matrices left handed. The other 24 elements change the 
handedness of the Pauli spin matrices to right handed. The irreducible 
representations exist in two types. Half have the same signs for the left-handed 
and right handed elements, the other have opposite signs. The usual convention 
is that particles take the representations with the same signs while the 
antiparticles use the representations with opposite signs. In addition to the 
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difference in handedness, the basis elements of Geo43 can also be classified as 
“even” and “odd”. The proper rotations which can be obtained as an even 
number of right angle rotations, and the improper rotations which are a proper 
even rotation times the inversion i are the “even” elements, the rest are “odd”. 
For the left handed particles, weak hypercharge depends on left handed even 
elements while weak isospin depends on left handed odd elements. 

It’s clear that the lepton irreps will correspond to 1 × 1 blocks on the diagonal 
while the quarks will be 3 × 3. With these assumptions, it remains to distinguish 
between the two leptons, i.e. electron and neutrino, and between the two quarks. 
Until we have a more complete theory that includes the gauge bosons, we will 
make an arbitrary choice for these. Labeling the irreps of the character table with 
the particles and antiparticles we have two irreps left over that we assign to dark 
matter D and its antiparticle D : 

    (46) 

In the above table, the five columns on the left are the left handed or proper 
rotations, and the five columns on the right are the right handed or improper 
rotations. Each of these five columns are split into three even and two odd 
columns. 

We can write the operator for electric charge Q in terms of the classes of the 
Geo43 group. That is, Q is a diagonal operator in 43 µσ    that commutes with 
all the irreps and so can be written as a sum  

j j jQ q I= Σ                           (47) 

where jq  is the electric charge of the jth particle, and jI  is the identity for the 
corresponding block on the diagonal. The blocks on the diagonal correspond to 
the irreps of the original character table and so each jI  can be written as a sum 
of products of the group classes. These can be read off of the character table as 
shown in the previous section. As always occurs with character tables, the 
number of irreps is the same as the number of classes (columns) so there is only 
one choice for the electric charge operator when writing it as an element of 
43 µσ   . 

Since particles and anti particles have opposite electric charge, examining the 
table shows that the Q operator can be composed only of right handed elements. 
The left (right) handed particles will be composed only of left (right) handed 
elements so their weak isospin and weak hypercharge will depend only on left 
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(right) handed group elements. Weak hypercharge for right handed particles is 
the same as electric charge which we already know is made only of right handed 
elements. This reduces the algebra needed to define the charges to be a 5 × 5 
transformation instead of 10 × 10. Writing the left and right handed elements of 
the particles in the same columns we have:  

        (48) 

When the classes in the above table are expanded to the elements the five 
columns will increase to 1 3 8 6 6 24+ + + + =  and the operators are obtained by 
dividing by 24. We will do the algebra without this division and insert it at the 
end. Also, in the above table there is a subtlety on the scaling. The projection 
operators for the quark identities 13 is three times the amount shown. This 
would require us to multiply those rows by three, but these projection operators 
apply to three colors of quarks while the experimentally measured charges are 
for a single quark so we also need to divide by three. 

Right weak isospin is always zero, and charge is the same as right weak 
hypercharge leaving us three equations to solve: left and right weak hypercharge, 
and left weak isospin. Left weak hypercharge depends only on the even left 
components giving three equations in three unknowns:  

3 2 8 3

3 2 8 3

3 2 8 3

1 2 1 2 1 2 1 2,

3 2 1 2 0 2 1 6,

2 2 2 2 1 2 0.

E C C

E C C

E C C

Y Y Y
Y Y Y
Y Y Y

+ + = −

− + =

+ − =

               (49) 

Left weak isospin depends only on the odd left components so there are two 
equations in two unknowns:  

6 2 6 4
3 3
6 2 6 4
3 3

1 1 1 2,

1 1 1 2.

C C

C C

I I

I I

+ =

− = −
                     (50) 

Electric charge and right weak hypercharge use all five right components 
giving five equations:  

63 8 6 6 4

63 8 6 6 4

63 8 6 6 4

63 8 6 6 4

63 8 6 6 4

1 2 1 2 1 2 1 2 1 2 0,

1 2 1 2 1 2 1 2 1 2 1,

3 2 1 2 0 2 1 2 1 2 1 3,

3 2 1 2 0 2 1 2 1 2 2 3,

2 2 2 2 1 2 0 2 0 2 0.

d

d

d

d

d

i h S S

i h S S

i h S S

i h S S

i h S S

Y Y Y Y Y

Y Y Y Y Y

Y Y Y Y Y

Y Y Y Y Y

Y Y Y Y Y

σσ

σσ

σσ

σσ

σσ

+ + + + =

+ + − − = −

− + + − = −

− + − + =

+ − + + =

       (51) 

Solving these linear equations for the operator coefficients defines the 
operators as 
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( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( )

3 4

2 2

6

6

0 0 0 0 12 6 , Left
2 0 4 3 8 8 0 0 Left

0 4 3 8 8 0 12 6 , Right
0 4 3 8 8 0 12 6 , Right

h d

h d

I C
Y C C

S
Q S

σ σ
σ σ

= +
= − −

− − +
= − − +

      (52) 

where the terms have been arranged according to their symmetry and their left 
and right elements are labeled to the right side. The coefficients are for the class; 
we could have divided by the size of each class and obtained charges per group 
element of −4/3 for ( )23C  and ( )3 hσ , −1 for ( )28C  and ( )68S , and +2 for 
( )46C  and ( )6 dσ . 

In mapping the irreps to the particles we had freedom in that we could 
independently swap the leptons and swap the quarks. This would change some 
of the signs in the −4 and −8 columns as well as swapping ( )46C  for ( )26C  
and ( )46S  for ( )6 dσ . 

Since charge does not commute with handedness, the equation 32Y I Q+ =  
requires an assumption not obvious in the above: it follows when one uses Q as 
the charge of a Dirac bispinor so that the particle portion has charge Q while the 
antiparticle portion has charge −Q. 

For low temperatures, a heat bath is typically conceived as an object that can 
exchange electric field gauge bosons (i.e. heat photons) with the system under 
study. However, when we model such a system with density matrices the gauge 
bosons do not appear explicitly; their effect is implicit. The gauge boson for the 
weak force is the W ± . As the temperature rises above the amount needed to 
create W ±  gauge bosons, it becomes possible for the heat bath to convert 
between electrons and neutrinos, and to convert between up quarks and down 
quarks. In the temperature flow shown in Figure 1, we can see that the cooling 
states clump together into curving arcs. These occur because certain degrees of 
freedom cool faster than others. We can imagine that these correspond to a 
cascade of symmetry breaking from the high temperature limit where all states 
are approximately identical. Then the weak symmetry breaking is the coolest of 
these.  

5. Generations 

While the group algebra Geo43 discussed in the previous section includes a 
single generation of the Standard Model fermions, to include the generation 
structure requires that we use a finite group that has three times as many degrees 
of freedom. The finite Abelian group of size 3, 3C , is perfect for this. To define 
this group we will use the complex cubed root of unity  

( )exp 2 3 .iω = π                      (53) 

So the group elements are { }*1, ,ω ω  and the group product is the usual for 
complex numbers. The character table for 3Z  is:  

*
3

*

* *

1
1 1 1
1
1

C
A
E
E

ω ω

ω ω
ω ω

                     (54) 
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Since this is an Abelian group, the three classes correspond to the three 
elements of the group and the character table defines a discrete Fourier 
transform. 

When we multiply a finite group by an Abelian finite group the character 
table of the new group is the product of the two character tables. Thus when we 
triple Geo43 with 3C  to form the modified point group we call 3Geo43 it will 
have 30 classes instead of the 10 that Geo43 had, and it will have 30 irreps as well. 
Each of the old Geo43 irreps will appear in the new character table three times, 
once with ( )1,1,1  as the characters of ( )*1, ,ω ω , again with characters 

( )*1, ,ω ω  and finally with characters ( )*1, ,ω ω . Thus ν  will now appear 
three times, once with thirty 1s, once with ten 1s, ten ω s and ten *ω s, and 
finally the same but with ω  and *ω  reversed. 

The character table of 3Geo43 will be of size 30 × 30 and is larger than we can 
reasonably print in a journal. There will now be 144 Weyl equations to decouple 
with a total of 22 4 144 165888× × =  terms but the equations will uncouple 
according to the character table as before and the result will be three copies or 
generations of the Standard Model fermions. 

Given that the character table of 3C  defines the generation structure, it’s 
natural to look for a dependency on those characters in experimental data that 
depends on generation. The most obvious of these are how the masses of the 
Standard Model fermions depend on the generation and indeed, this is precisely 
what is seen in the Koide formulas for the lepton and quark masses [12] [13] 
[14]. Other generation structures, such as the CKM and PMNS matrices that 
define how the weak force converts between generations will be more 
complicated in that they must depend on both the 3C  and Geo43 character 
tables and formulas for those have not yet been found. 

6. Dark Matter Nomenclature 

The extra “dark matter” irreps, D and D  in the 43 µσ    character table of 
Equation (46) have zero electric charge, weak hypercharge and weak isospin and 
so do not participate in the electric or weak forces. In the Standard Model, the 
color force is determined by quark SU(3) internal symmetries. In this model, the 
quark SU(3) operators are internal to the quark irreps in that they act on the 
traceless degrees of freedom in the 3 × 3 quark blocks. The remaining degree of 
freedom is the 3 × 3 unit matrix which is the projection operator proportional to 
the usual irrep. These quark SU(3) color degrees of freedom are restricted to the 
corresponding quark 3 × 3 blocks so they annihilate between different quarks. 

Examining the character table we see that the quarks differ in the signs of their 
odd elements, ( )26C , ( )46C , ( )46S  and ( )6 dσ  therefore the gluons must 
be associated with changes in these elements. But the dark matter irreps are zero 
in those columns so they cannot participate in the strong force. Thus the dark 
matter irreps are indeed dark. 

As with the leptons and quarks, dark matter comes in particle D and 
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antiparticle D  form and appears in three generations. They differ in sign 
between the left and right handed parts of the particles as do the leptons and 
quarks so we expect that dark matter will also have mass. 

The dark matter irreps have an internal SU(2) symmetry that is otherwise 
similar to the quark’s internal SU(3) symmetry. By analogy with the quarks, we 
will label the dark matter SU(2) internal symmetry as colors. As the dark matter 
particles that correspond to quarks, we will call them “dark quarks” or “duarks”. 
Since these have only an SU(2) symmetry, there are only two dark colors needed 
as a basis for dark color. Where the colors for quarks are expressive of their 
participation in electromagnetic photon interactions, the duarks are dark so in 
contrast to the quark colors of red, green and blue, we will use dark colors of 
“doom” and “gloom”. These are also appropriate for this paper which is being 
written under the looming threat of the Covid19 pandemic. 

We assume that there is a force boson similar to the gluon between them, call 
it the “duon”, that will follow an SU(2) triplet symmetry. Where the eight gluons 
are often described using a basis of the eight Gell-Mann matrices, the three 
duons can use the three Pauli matrices to define the dark matter triplet:  

( )
( )

( )

2 ,

2 ,

2

dg gd

i dg gd

dd gg

+

− −

−

                      (55) 

where d and g stand for the doom and gloom dark colors. The presence of a 
gluon-like force implies that dark matter has a significant scattering cross 
section with itself. This possibility is in the literature described as “self 
interacting cold dark matter” or SICDM [14]. 

A quark and an antiquark can combine to form a meson; we expect that a 
duark and an antiduark similarly combine to form a “deson”. While the mesons 
decay by electroweak processes, the desons do not participate so we may suppose 
that they are stable. Similarly, three quarks can combine to form a baryon so two 
duarks of different dark colors, combine to form a “daryon”.  
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