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Abstract 

Ted Jacobson discovered that gravity was related to thermodynamics. How-
ever, the calculated temperature using the Boltzmann area entropy is still not 
reasonable. We searched and discovered an empirical equation for the gravi-
tational constant with a reasonable temperature. The calculated value was 
3.20 K, which is similar to the temperature of the cosmic microwave back-
ground of 2.73 K. Then, we examined Yasuo Katayama’s theory. For this 
purpose, we introduced the modified Wagner’s equation, which is compatible 
with Jarzynski equality. Finally, using Ted Jacobson’s theory, we proposed 
our theory of gravity with the Gibbs volume entropy. 
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1. Introduction 

Ted Jacobson attempted to relate gravity and thermodynamics [1]. Subsequently, 
the theory of entropic gravity [2] was studied by Erik Verlinde. However, the 
calculated temperature values obtained are still not reasonable. 

There are two kinds of entropy. The first is the Boltzmann area entropy, and 
the second is the Gibbs volume entropy (SGibbs). The theory of entropic gravity is 
based on the Boltzmann area entropy. The temperature calculated using this ap-
proach was very small and not reasonable. According to Jarzynski, the Gibbs 
volume entropy (SGibbs) is much stronger than the Boltzmann area entropy [3]. 
Therefore, instead of using the Boltzmann area entropy, we tried to use the 
Gibbs volume entropy to explain our empirical equation. 

In the area of solid-state ionics, the open circuit voltage is governed by Wagn-
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er’s equation. However, we noticed that during ion hopping, the chemical po-
tential of ions should increase, and the electrical potential energy of ions should 
decrease. Both the values of the increase in the chemical potential and the de-
crease in the electrical potential energy are equal to the ionic activation energy. 
We noticed that the ionic activation energy can be defined as the solvation Ha-
miltonian mean force (ϕ) [4]. The solvation Hamiltonian mean force (ϕ) in the 
electrolytes can be defined from the separation of the Boltzmann distribution. 
Furthermore, the solvation Hamiltonian mean force (ϕ) can be measured expe-
rimentally. 

In our theory, the energy of the rest mass slightly decreases after pair produc-
tion. At the same time, the Gibbs volume entropy (SGibbs) should slightly in-
crease. Both the values of the increase and the decrease are equal to the solvation 
Hamiltonian mean force (ϕ). However, the ratio between the solvation Hamilto-
nian mean force (ϕ) and the energy of the rest mass are too small and cannot be 
observed. We assumed that the solvation Hamiltonian mean force (ϕ) should 
increase with increasing distances. Then, the rest mass should increase with in-
creasing distances. The Gibbs volume entropy (SGibbs) should increase with in-
creasing distances. 

The rest of the paper is organized as follows: in Section 2, we present our em-
pirical equations and our conclusions. In Section 3, we attempt to explain our 
empirical equations using the modified Wagner’s equation. In Section 4, using 
Ted Jacobson’s method, we showed the obtained conclusions for our theory of 
gravity.  

The schematic view of our project is shown in Figure 1. 
The central concept from our experimental results is related to Wagner’s equ-

ation in electrochemistry. 

2. Empirical Equation for the Gravitational Constant 
2.1. Our Empirical Equation 

Our empirical equation is (quoted from Wikipedia  
https://en.wikipedia.org/wiki/Proton) 
 

 
Figure 1. Schematic view of our project. 
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1 kg 3× =p

p

Gm
kT

r
                         (1) 

G: gravitational constant, 6.6743 × 10−11 (m3∙kg−1∙s−2). 
mp: the rest mass of a proton, 1.67 × 10−27 (kg). 
rp: charge radius, 8.41 × 10−16 (m). 
k: Boltzmann constant, 1.38 × 10−23 (J/K). 
T: temperature (K). 
1 kg: the standard mass (kg). 
The temperature (T) calculated using this formula was 3.20 K, which is similar 

to the temperature of the cosmic microwave background of 2.73 K. The standard 
mass (1 kg) must be used due to the definition of the gravitational constant. This 
problem was explained in Section 3.1. 

2.2. Our Conclusions from Our Empirical Equation 

Equations (2)-(4) are our conclusions. 
3φ = kT .                           (2) 

2 3ν= −pm c h kT                         (3) 

Gibbsd 3
d

=
S nkTT

r r
                        (4) 

where h and v are the Planck constant and the frequency, respectively. n is the 
number of protons, and r is the distance from a large mass (n × mp). 

3. Explanation for Our Empirical Equation 
3.1. Consideration of the Law of Universal Gravitation 

This section is strongly influenced by Yasuo Katayama [5].  
http://home.catv.ne.jp/dd/pub/pot/pot.html#0.  

He thought that, according to Newton, the energy can be obtained infinitely 
from the gravitational potential energy, but according to Einstein, there should 
be an upper limit (mc2). Thus, the rest mass should decrease with decreasing the 
gravitational potential. Equation (16) was quoted from Yasuo Katayama. 

The gravitational potential (Φ(r)) is given by 

( )Φ = −
GMr

r
,                       (5) 

where M and r are the mass and the distance from the mass, respectively. Then, 
the work (W) is given by 

( ) ( )( )2 1
1 2

 
= × Φ −Φ = × − 

 

GM GMW m r r m
r r

          (6) 

where m is a sufficiently small mass. r1 and r2 (>r1) are the distances from mass 
M. Therefore, 

( )2

1

d
d

d
Φ

= ×∫
r

r

r
W m r

r
                     (7) 
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Then, 

d
d

=
W mg
r

                         (8) 

( )d
d
Φ

=
r

g
r

                         (9) 

Next, from the mass-energy equivalence and the Law of the Conservation of 
Energy, we obtain 

2 2
2 1= +m c m c W                      (10) 

Therefore, 

2 1 2− =
Wm m
c

.                        (11) 

m should increase with the increasing of r. 

2

d 1 d
d d

=
m W
r rc

.                        (12) 

From Equations (5) and (9), we obtain 

2

d 1
d

=
m mg
r c

.                        (13) 

Therefore, from Equation (6) and Equation (10), we find that 

( )
2

dd 1
d d

Φ
=

rm m
r rc

.                     (14) 

Then, 

( )2

1d d= Φm m r
c

.                      (15) 

Then, we assumed that m should be the minimum mass (mp1) when r is the 
minimum distance (rp1). 

( ) ( )( )2
2 12

1

1ln
 

= Φ −Φ  
 

p
p p

p

m
r r

m c
               (16) 

Thus, 

2 1 2
2

1 1 2

ln
   

= −      
   

p

p p p

m M MG
m r rc

                 (17) 

When M is n (the number of protons) × mp, 

1 1= × pM n m                        (18) 

2 2= × pM n m                        (19) 

From Equations (17)-(19), 

2 1 2
2

1 1 2

ln
   

= × −      
   

p p p

p p p

m m mnG
m r rc

                (20) 

when rp2 is infinitely large. 
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2 1
2

1 1

ln
 

= ×  
 

p p

p p

m mnG
m rc

                     (21) 

Therefore, 
2

2 1

1 1

ln
 

= ×  
 

p p

p p

m mc G
n m r

                     (22) 

When M1 is 1 kg, n is 6.02 × 1026 (=1000 × 1023). The value of n is calculated 
from Avogadro’s number. 

11 kg = × pn m                         (23) 

thus forming Equation (22) and Equation (23), 

2 12
1

1 1

ln 1 kg
 

× = × ×  
 

p p
p

p p

m m
m c G

m r
                (24) 

Then, n disappeared. This does not mean that n is unimportant. As shown in 
Equation (20), n is clearly meaningful. We tried to explain the influence of 1 
proton on the gravitational potential, and then, n disappeared. When Newton 
defined 10 kg as the standard mass, the value of G should change. However, Eq-
uation (24) should not change. The real meaning of Equation (24) was discussed 
in the later section. 

3.2. Consideration from Wagner’s Equation 

This section is the most important and is quoted from our own experimental 
results [4]. In this section, we tried to explain the concept of the solvation Ha-
miltonian mean force from the perspective of thermodynamics in relation to 
hopping conduction. 

A solid oxide fuel cell (SOFC) directly converts the chemical energy of a fuel 
gas, such as hydrogen or methane, to electrical energy. A solid oxide film is used 
as the electrolyte, where the main carriers are oxygen ions. As electrolytes, YSZ 
and SDC (samaria-doped ceria) are well known. The open circuit voltage (OCV) 
is calculated from Wagner’s equation. 

( )( )
( )cathode

2
anode2 2

ln el ion
22 ln

el ion

d ln
16

σ σ
σ σ

= −
+∫

pO
O pO

RTJ pO
F L

           (25) 

where 
2OJ  and 2pO  are the O2 flux and the O2 partial pressure, respectively; 

cathode
2pO  and anode

2pO  are the O2 partial pressures at the cathode and the 
anode, respectively; R, T, and F are the gas constant, the absolute temperature, 
and Faraday’s constant, respectively; L is the thickness of the membrane or film; 
and σel and σion are the conductivities of the electrons and oxygen vacancies, re-
spectively. 

However, we have previously reported two experimental problems related to 
Wagner’s equation. 

Problem 1: The unchanged OCV during electrode degradation [6] [7]. 
Problem 2: The equilibration process in response to a change in the anode gas 
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using thick SDC electrolytes [8]. 
To solve these problems, we proposed the concept of the solvation Hamilto-

nian of mean force (ϕ), which was discussed by Jarzynski theoretically [3]. After 
introducing the concept of the solvation Hamiltonian of mean force (ϕ), we no-
ticed that our model was still compatible with Wagner’s equation. Thus, we 
called our model “the modified Wagner’s equation”. 

Using only three graphs, the solvation Hamiltonian of mean force (ϕ) can be 
explained. The Boltzmann distribution of oxygen ions in the electrolyte at 1073 
K is displayed in Figure 2. The ions with energies exceeding the ionic activation 
energy become carriers (hopping ions). Figure 3 presents an incorrect carrier 
distribution. According to Jarzynski, an accurate distribution should be a ca-
nonical ensemble, as shown in Figure 4. The solvation Hamiltonian of mean 
force (ϕ) can be defined and is illustrated in Figure 3. 
 

 

Figure 2. Boltzmann distribution at 1073 K. 
 

 

Figure 3. Forbidden distribution of hopping ions. 
 

 

Figure 4. Correct distribution of hopping ions. 
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Ions with energies exceeding the ionic activation energy are converted into 
charge carriers (i.e., hopping ions). 

According to Jarzynski, an accurate distribution should be a canonical ensem-
ble, and the solvation Hamiltonian of mean force (ϕ) can be defined [3]. 

The shape of the distribution in this figure should be the same as the shape of 
the distribution in Figure 1. 

The electrochemical potential can be separated into the chemical potential 
and the electrostatic potential, as given by 

η µ ϕ= +i i iz F                         (26) 

where zi, ηi, μi and φ are the valence of species i, the electrochemical potential, 
the chemical potential and the electrostatic potential, respectively. In Equation 
(26), the following transformation should be considered during ion hopping: 

_hopping _vacanciesµ µ= +i i aNE                    (27) 

hopping vacanciesϕ ϕ= −i i az F z F NE                  (28) 

where N, μi_hopping, μi_vacancies, φi_hopping, and φi_vacancies are Avogadro’s number, the 
chemical potential of hopping ions, the chemical potential of ions in vacancies, 
the electrical potential of hopping ions, and the electrical potential of ions in va-
cancies, respectively. For example, Ea is 0.7 eV in SDC electrolytes, 

hopping vacancies vacancies 0.35 V
2

ϕ ϕ ϕ= + = +aE
e

            (29) 

When there are enough electrons from the anode side in the SDC electrolyte, 
due to microscopic interactions, this voltage (0.35 V) should be neutralized, and 
the electrical potential energy of ions should be dissipated by electrons. When 
the Nernst voltage at 1073 K is 1.15 V, the measured open circuit voltage (OCV) 
at 1073 K should be 0.80 V (=1.15 V − 0.35 V). Strictly speaking, the voltage loss 
can be calculated as follows, 

( )loss ionOCV 1
2

= × −aE
t

e
                   (30) 

ion
ion

el ion

σ
σ σ

=
+

t                        (31) 

where OCVloss and tion are the voltage loss in the OCV and the ionic transference 
number, respectively. We conclude that the solvation Hamiltonian of mean force 
(ϕ) should be 

φ = aNE .                         (32) 

Therefore, from Equation (27) and Equation (28), 

_hopping _vacanciesµ µ φ= +i i                    (33) 

hopping vacanciesϕ ϕ φ= −i iz F z F                  (34) 

From Equation (30), 

( )ion1φ∆ = × −sE t                       (35) 

where ΔEs is the fixed entropy energy difference. Equation (33), Equation (34) 
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and Equation (35) demonstrate the central concept of “the modified Wagner’s 
equation”. 

3.3. Consideration of the Compatibility with the Jarzynski’s  
Equality 

The compatibility between the Jarzynski’s equality and the modified Wagner’s 
equation is discussed in this section. According to Jarzynski [3], the Gibbs vo-
lume entropy is given by 

2
33 1 ln

2

 
    ≥ − ≥         

A A

B B

V VW NkT NkT
V V

.            (36) 

In the area of solid-state ionics, the Nernst equation is 

2
th

2

OCV ln
4

 
=  

 

A

B

pONkT
F pO

,                  (37) 

where OCVth is the Nernst voltage. Similar to Equation (36) and Equation (37), 
the study on the OCV in the solid-state ionics is related with the Gibbs volume 
entropy. 

The nonequilibrium work relation is described by Jarzynski’s equality [3]. 

e e ββ − ∆− = TFW                       (38) 

where β, W and ΔFT are 1/kT, the work and the difference in the Helmholtz free 
energy, respectively. k is the Boltzmann constant. The angular brackets <-> in-
dicate an ensemble over the realizations of the process. 

For adiabatic processes, ΔFT is zero. The following equation should be added 
[3]: 

e 1β− =X                         (39) 

where X is the energy for the same adiabatic process and ensemble of realiza-
tions. In the area of solid-state ionics, X is the ionic activation energy. From Eq-
uation (39), an accurate distribution of hopping ions in the electrolytes should 
be a canonical ensemble. Thus, the Boltzmann distribution during the ion hop-
ping shown in Figure 4 can be explained by the Jarzynski’s equality. 

Furthermore, the solvation Hamiltonian of mean force (ϕ) and the fixed en-
tropy energy difference (ΔEs) in Equation (39) can be defined mathematically 
[3]. Their mathematical approach is too general. In the area of the generalized 
second law, the separation of the Boltzmann distribution is called “Maxwell’s 
demon”.  

Consequently, the concept of “the modified Wagner’s equation” can be the 
specialized version of the Jarzynski’s equality. 

3.4. Explanation of Our Empirical Equation Using the Modified  
Wagner’s Equation 

3.4.1. Assumption from Our Empirical Equation 
The explanation of our empirical equation using the modified Wagner’s equa-
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tion is discussed in this section for when mp2 is near mp1. We rewrite Equation 
(1) and Equation (24) again. 

1 kg 3× =p

p

Gm
kT

r
                      (40) 

2 12
1

1 1

ln 1 kg
 

× = × ×  
 

p p
p

p p

m m
m c G

m r
               (41) 

Then, by comparing Equation (40) to Equation (41), we proposed the follow-
ing equation. 

22
1

1

ln 3
 

× =  
 

p
p

p

m
m c kT

m
                   (42) 

When mp2 is near mp1, 

2 2 1

1 1

ln
  −

=  
 

p p p

p p

m m m
m m

                    (43) 

From Equation (42) and Equation (43), 

( ) 2
2 1 3− =p pm m c kT                     (44) 

Then, we consider the following a pair production. 

2 ν → +h p p                        (45) 

where h, ν, p and p  are the Planck constant, frequency, proton and antiproton, 
respectively. hν does not include both the rest mass and the gravitational poten-
tial energy. However, the protons have both the rest mass and the negative gra-
vitational potential energy. Then, we proposed the following equation.  

2 3ν= −pm c h kT                      (46) 

3φ = kT .                        (47) 

Equation (46) and Equation (47) are hinted from Equation (32) and Equation 
(34). The electrical potential energy (internal energy) of hopping ions should be 
smaller than that of ions in vacancies. The value of the decrease is equal to the 
solvation Hamiltonian of mean force (ϕ). 

This means that the rest mass should decrease from hν. 3kT (T = 3.20 K) is 
0.0083 eV, which is much smaller than the energy of the rest mass of protons 
(938 MeV). The increasing ratio is 8.8 × 10−13, and the decrease in the rest mass 
cannot be observed easily.  

3.4.2. Consideration for the Temperature of the Proton 
The solvation Hamiltonian of mean force (ϕ) is rewritten. 

3φ = kT .                         (48) 

Here, T is 3.2 K, which is similar to the temperature of the cosmic microwave 
background of 2.73 K. This does not mean that the temperature of the proton 
should be near 9 K.  
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For example, in the area of solid-state ionics, the solvation Hamiltonian of 
mean force (ϕ) should be equal to the ionic activation energy. When the ionic 
activation energy is 1.0 eV, the calculated temperature is 1.16 × 104 K. This tem-
perature is different from the background temperature of 1073 K. 3kT is the in-
teraction energy between the proton and the rest mass. 

The proton consists of three quarks. Thus, the solvation Hamiltonian of mean 
force (ϕ) of one quark is 

quarkφ = kT .                       (49) 

Equation (49) is more reasonable than Equation (48). The temperature of the 
cosmic microwave background of 2.73 K is the universal temperature. The ori-
gin of this temperature may be from the interaction energy between the quark 
and gravity. 

3.4.3. The Lower Limit of the Rest Mass 
The particle, which has a total energy less than 0.0083 eV (3kT), cannot be in-
fluenced by gravity. For example, in the area of solid-state ionics, ions that have 
an energy less than the ionic activation energy cannot be carriers. The lower lim-
it of the small mass is 0.0083 eV (3kT). The mass of a neutrino is assumed to be 
less than 0.5 eV. This may provide a solution for the neutrino oscillation prob-
lem. 

From Equation (35), inevitable dissipation was predicted. When the transfe-
rence of gravity is not exactly 1, there should be inevitable dissipation. The inte-
raction coefficient should be on the order of 8.8 × 10−13. This value is similar to 
the value of the weak interaction. 

3.4.4. Consideration for Einstein’s Equivalence Principle 
Equation (46) is rewritten. 

2 3ν= −pm c h kT                       (50) 

In Equation (50), the value of mp1 can be changed. Then, by measuring the 
decreasing ratio of the rest mass of the proton after a pair is produced in the 
falling elevator, we can measure the gravitation potential in the elevator. How-
ever, according to Einstein, not everybody cannot do it. To solve this problem, 
we proposed the following equation. 

1 1

2 2

=p

p

m k
m k

                        (51) 

where k1 and k2 are the Boltzmann constant in place 1 and in place 2. The 
Boltzmann constant was defined from the mass of a proton. Thus, Equation (51) 
is correct. Equation (50) should be 

2
1 13= +phv m c k T                     (52) 

Then, by using k1T instead of kT, in the following Equation (53), the calcu-
lated value was constant. Thus, we cannot measure the gravitation potential in 
the elevator. This means that 3kT should increase with increasing mp. Conse-
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quently, the solvation Hamiltonian mean force (ϕ) should increase with in-
creasing distance. 

131
2

1

3
8.8 10−= ×

p

k T
m c

                       (53) 

3.4.5. Consideration When mp2 Is Not near mp1 

When mp2 is not near mp1, the explanation for our empirical equation using the 
modified Wagner’s equation is discussed in this section. Equation (42) is rewrit-
ten. 

22
1

1

ln 3
 

× =  
 

p
p

p

m
m c kT

m
                    (54) 

Thus, 
2

2 1

1

ln
3

 
=  

 

p p

p

m m c
m kT

                       (55) 

Thus, 
2

1
2 3

1

e=
pm c

p kT

p

m
m

                         (56) 

Then, k is a function of the mass of a proton (mp) and cannot be constant. In 
Equation (56), the relationship between the rest mass and the distance cannot be 
obtained. It is impossible to progress any further. This conclusion is the same as 
the conclusion proposed by Yasuo Katayama in Equation (16). 

Using Ted Jacobson’s theory, this problem can be solved. 

4. Explanation for Our Model for Gravity 
4.1. Ted Jacobson’s Theory 

Ted Jacobson discovered that the general relative theory is governed by the fol-
lowing Equation (57). 

d d d∂ ∂
= +
∂ ∂

S SS E V
E V

                    (57) 

where S, E and V are the entropy, the internal energy and the volume, respec-
tively. 

4.2. Our Model for Gravity 

Equation (46) is rewritten. 
2 3ν= −pm c h kT                       (58) 

In Equation (58), internal energy (E) should decrease. However, the entropy 
should not decrease. From Equation (57), the Gibbs volume entropy (SGibbs) can 
be defined. 

( ) ( )2
Gibbs Gibbs 3ν× = × +pS m c T S h T kT               (59) 
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Then, we must consider the degree of freedom (x, y and z direction). In Equa-
tion (59), the Gibbs volume entropy (SGibbs) for one direction is 

( ) ( )2
Gibbs Gibbs ν= +pS m c S h kT                   (60) 

Next, dV in the distance (r) from the mass should be 
2d 4 d= ×πV r r                         (60) 

Thus, 

2Gibbs Gibbs Gibbs

3

3
d 4 d d

4
3

π
π

∂
= × × =

∂
S S S

V r r r
V rr

             (61) 

Therefore, from Equation (60) and Equation (61), 

Gibbsd 3
d

=
S kTT

r r
                       (62) 

When the number of protons is n, 

Gibbsd 3
d

=
S nkTT

r r
                      (63) 

It is important that the direction is opposite to that of the gravitational poten-
tial. However, Equation (63) is similar to Newton’s Law. k is one of the “defining 
constants” and becomes part of the 2019 redefinition of SI base units. However, 
from Equation (53), the value of k should be changed. Equation (53) is rewritten. 

131
2

1

3
8.8 10−= ×

p

k T
m c

                     (64) 

It is possible that the increase in the rest mass can be observed on the galaxy 
scale. Then, k should increase with increasing the mass of a proton. This may 
provide a solution for the dark matter problem. 

4.3. Consideration for the Origin of the Solvation Hamiltonian of  
Mean Force (ϕ) in the Universe 

The solvation Hamiltonian mean force (ϕ) is assumed to originate from the 
asymmetry of space-time. The asymmetry of space-time was already discovered 
and is known as “chirality”. According to Einstein, 

2 2 2 2 0+ + − =x y z ct                    (65) 

We proposed the following equation. 
2 2 2 2
1 2 3 0 0+ + + =Z Z Z Z                    (65) 

where Z1, Z2, Z3 and Z0 are complex numbers. Then, the asymmetry eiθ can be 
defined. In the area of solid-state ionics, the asymmetry can be produced artifi-
cially. For example, YSZ (yttria stabilized zirconia) can be obtained from ZrO2 
with an addition of 8% Y2O3. Then, ions can move in the YSZ electrolytes due to 
the existence of vacancies. Therefore, the ionic activation energy (Ea) can be de-
fined for the ionic conduction. We noticed that the ionic activation energy can 
be defined as the solvation Hamiltonian mean force (ϕ). Then, the Gibbs volume 
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entropy can be measured experimentally. Consequently, we proposed the fifth 
dimension, which is the internal dimension originating from the asymmetry that 
acts to separate the Boltzmann distribution. 

5. Conclusion 

We discovered an empirical relationship. Then, we examined Yasuo Katayama’s 
theory. Previously, we developed “the modified Wagner’s concept” from our 
own experimental results. We attempted to explain this concept from the gene-
ralized second law. The concept of “the modified Wagner’s equation” can be the 
specialized version of the Jarzynski’s equality. We examined Ted Jacobson’s 
theory, which is very difficult. However, the basic concept is very easy for us. 
The Gibbs volume entropy can be defined. Using the Gibbs volume entropy, we 
tried to explain our empirical equation and tried to comprehensively develop 
Yasuo Katayama’s theory. The calculated temperature was 3.20 K, which is simi-
lar to the temperature of the cosmic microwave background of 2.73 K and was 
much larger than the Unruh temperature. Several topics were suggested for fu-
ture discussion.  
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