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Abstract 
In this study, we investigate the effects of missing data when estimating 
HIV/TB co-infection. We revisit the concept of missing data and examine 
three available approaches for dealing with missingness. The main objective 
is to identify the best method for correcting missing data in TB/HIV 
Co-infection setting. We employ both empirical data analysis and extensive 
simulation study to examine the effects of missing data, the accuracy, sensi-
tivity, specificity and train and test error for different approaches. The novel-
ty of this work hinges on the use of modern statistical learning algorithm 
when treating missingness. In the empirical analysis, both HIV data and 
TB-HIV co-infection data imputations were performed, and the missing val-
ues were imputed using different approaches. In the simulation study, sets of 
0% (Complete case), 10%, 30%, 50% and 80% of the data were drawn ran-
domly and replaced with missing values. Results show complete cases only 
had a co-infection rate (95% Confidence Interval band) of 29% (25%, 33%), 
weighted method 27% (23%, 31%), likelihood-based approach 26% (24%, 
28%) and multiple imputation approach 21% (20%, 22%). In conclusion, MI 
remains the best approach for dealing with missing data and failure to apply 
it, results to overestimation of HIV/TB co-infection rate by 8%. 
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1. Introduction 

Dealing with missing data remains a major challenge in any field. It is therefore 
important to carefully examine any given data to identify the type and pattern of 
missingness and apply the correct method in a given setting. Missing data always 
occur in research, they undermine the validity of research findings yet this is 
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overlooked by most researchers. Most of the researchers understand the exis-
tence of missing data but never report how they dealt with it, some address the 
issue by assuming that data is missing completely at random (MCAR, which 
rarely happens in practice) and apply ad hoc approaches (Listwise deletion, 
Pairwise Deletion, Single imputation) during analysis. 

A few researchers go further to apply Imputation methods, advanced methods 
like Multiple Imputation and Maximum Likelihood, but tend to apply them 
across all the different missing data mechanisms. All these methods of dealing 
with missing data have not applied to HIV/TB co-infection data setting. Here we 
seek to identify the best method to correct for missingness under different me-
chanisms in HIV/TB co-infection setting. 

TB is the leading comorbidity disease among PLWHIV as well as the leading 
cause of morbidity among HIV patients. Globally, HIV and TB are the leading 
infectious diseases that cause death. This makes it important to have valid and 
accurate statistics about the co-infection rates of these killer diseases. 

An important statistic is the prevalence rate of the co-infection. Globally, 
there are wide variations from the true to the reported prevalence rates both 
in-country and between countries. One of the reasons attributed to the varia-
tions is under-reporting which results from missing data. 

Missing data is mainly caused by irregular collection of information from HIV 
patients, no show of the patients for the baseline or consecutive checkup and 
nondisclosure of some information. Most of the researchers in public health ad-
dress the missing data problem by using the default complete case analysis 
available in the analysis software and/or single imputation. The two techniques 
are commonly applied without considering the mechanism under which data are 
missing thus yielding biasses and loss of power in the study. 

We therefore need to identify the best method to correct missing data for each 
of the missing data mechanism (MCAR, MAR and MNAR). As we do this, we 
are considering varying proportions of missing data as well as varying sample 
sizes. 

The main objective of this work is to identify the best method of correcting 
missing data in TB/HIV co-infection setting. To do this, we systematically assess 
the following methods of dealing with missing data: Complete case, Mean/Single 
imputation method, Maximum Likelihood Estimation, Multiple Imputation. 

Background   

Generally, missing data fail to fulfill the MAR assumption if cases with missing 
data on a particular variable tend to have lower/higher values on that variable 
than those with observed data, controlling for other observed variables [1]. 

Data is MCAR if the likelihood of missingness does not depend on the ob-
served data obsY , or on the missing data misY .  

The other mechanism is MNAR, which occurs when the probability of miss-
ing data on a variable depends on the value of the variable itself. An example is 
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being likely to have missing data on HIV/TB co-infection if HIV TB co-infected 
clients who do not attend clinics are more likely not to provide information as 
compared to those who attend clinics. 

Let our data set have p variables denoted: 1 2, , , PY Y Y . A data set is said to 
have a univariate pattern of missingness if the same records have missing data 
on one or more of the p variables. 

A missing data pattern is monotone if the variables can be arranged in such a 
way that, when jY  is missing, 1 2, , ,j j pY Y Y+ +   are missing as well. The mo-
notone pattern frequently occurs in longitudinal studies after dropouts. 

The arbitrary missing data pattern refers to when missing data occur in any 
variable for any participant in a random manner, this is computationally harder 
to handle than the other two patterns [2] [3]. 

Due to the serious consequences of missing data, ways have been developed to 
solve the issues of having missing data. Missing data solutions can be classified 
into both simple and advanced. Unfortunately most researchers go for the sim-
ple solutions (ad hoc techniques) which [4] indicate that do not always work. 

The most common method which is always the default way in analysis soft-
wares is complete case analysis. Complete case analysis can be classified into 
Listwise deletion and pairwise deletion. 

Listwise deletion. 
This refers to the removal of records with missing data on any variable. The 

method is the easiest. However, it greatly reduces the sample size and assumes 
that the data is MCAR. 

Pairwise deletion. 
This is an improvement of listwise deletion. This method works with pairs of 

variables in that: it calculates the covariance estimates for cases with complete 
observations on both variables, i.e. cases are removed if they have missing data 
on any of the variables involved in the analysis [5]. Pairwise deletion can be 
problematic as it results into varying sample sizes for different variable combi-
nations within the same data set. 

Single imputation. 
An improvement over the two methods is the single imputation. Here, miss-

ing data on a continuous variable are replaced with the mean of observed data 
for the variable while missing data on a categorical variable are replaced with the 
mode of observed data for the variable. The pitfall of single imputation is that it 
ignores the variability within cases. 

The weighting of the available data to compensate for the missing data, or es-
timating means, variances and correlations, may lead to biased results because 
their main assumption is that the data is MCAR [6]. To correct for the bias, 
multiple imputation technique is recommended Multiple Imputation (MI). MI is 
described as a simulation based technique that replaces missing values with a 
number m of plausible values [7]. Each of the m complete data set is analyzed by 
use of the standard complete-data procedures and parameter estimates and their 
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respective standard errors are obtained. The results are later combined to pro-
duce estimates (multiple imputation estimates), the confidence intervals incor-
porate missing-data uncertainty [8] outlined the three steps of Multiple imputa-
tion :   

Step 1. Creation of plausible values. 
MI creates 1m >  plausible value for the missing values. The procedure 

draws the plausible values from a distribution specifically modeled for a miss-
ing value. For a given incomplete variable v, an imputation model is con-
structed that regresses v on variables with complete data, e.g. 1 2, , , kv v v , among 
individuals with the observed v. This results into m imputed complete datasets, 
the datasets are identical in observed values but differ in imputed values.  

Step 2. Parameter estimation. 
The standard analytical procedures are applied on to the imputed datasets as 

would have been on a complete data set. Variations are expected in the results 
due to the different imputed values.  

Step 3. Pooling results. 
Finally, the m parameter estimates are combined into an overall estimate 

and variance-covariance matrix using Rubin’s rules [6]. The combined va-
riance-covariance matrix incorporates the within-imputation (sampling variance) 
variance and the between-imputation (caused by missing data) variance. Ma-
thematically: 

Suppose ˆ
jθ  estimates the univariate or multivariate quantity of interest like 

regression coefficient obtained from the jth imputed data set and jW  the esti-
mated variance of ˆ

jθ . The combined estimate θ̂  is given by:  

 
1

1ˆ ˆ .
m

j
jm

θ θ
=

= ∑∑                              (1) 

within-imputation variance of θ̂  is:  

 
1

1 ,
m

j
j

W W
m =

= ∑                              (2) 

the between-imputation variance :  

 ( )2
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1 ˆ ˆ
1

m

j
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m

θ θ
=

= −
− ∑                          (3) 

and the total variance of θ̂  is given by combining both the within and between 
imputation variances:  

 ( ) 1ˆ 1 .Var W B
m

θ  = + + 
 

                       (4) 

This is proper imputation as it incorporates all sources of variability and un-
certainty in the imputed values, it also includes prediction errors of the individ-
ual values and errors of estimation in the fitted coefficients of the imputation 
model.  

Figure 1 illustrates multiple imputation steps. It shows imputation involv-
ing three (m) imputed data sets, the imputed data sets are stored in class  
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Figure 1. Multiple imputation steps. The imputation involving three (m) imputed data 
sets, and the imputed data sets are stored in class midst (multiply imputed dataset). 
 
midst (multiply imputed dataset). The next step is an analysis of each of the im-
puted datasets using the function with(), analysis results are stored in class mira 
(multiply imputed repeated analysis). Finally the pool() function is used to pool 
results using Rubin’s rules and store the pooled results in an object of class mipo 
(multiple imputed pooled outcomes) [9].  

Here we defined statistical learning as a vast set of tools for understating data. 
The set of tools can be classified into supervised and unsupervised. Supervised 
statistical learning refers to a statistical learning method in which a statistical 
model is built to predict or estimate an output based on one or more inputs. 
Unsupervised statistical learning refers to a statistical learning method in which 
we have input(s) but no supervising output the main aim here is to learn rela-
tionships and structure from the data.  

Let Y be a quantitative response with p predictors: 1 2, , , pX X X . We as-
sume that there is a relationship between Y and 1 2, , , pX X X X=  . The rela-
tionship between X and Y can be written as: ( )Y f X= +∈ . Where f is fixed but 
unknown function of 1 2, , , pX X X  which represents the systematic informa-
tion that X provides about Y and ∈  is a random error term independent of X 
with mean zero. Statistical learning refers to a set of approaches for estimating 
f. 

Reasons for estimating f:   
1) Prediction. 
This is motivated by the fact that inputs (X) are readily available but the out-

put Y cannot be easily obtained. Now that ∈  averages to zero, Y is predicted 
using: ( )ˆŶ f X= . 

Here, f̂  is the estimate of f and Ŷ  is the resulting prediction for Y. We are 
not interested in the exact form of f̂ , as long as it results into accurate predic-
tions for Y hence f̂  is often treated as a black box. 

Two quantities: reducible error and irreducible error determine the accuracy 
of Ŷ  as a prediction of Y. 

Generally, f̂  cannot be a perfect estimate of f, this introduces a reducible 
error. The error is reducible since we are able to improve the accuracy of f̂  
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using the best method of statistical learning to estimate f ( ( )ˆŶ f X= ) 
Our prediction would still have an irreducible error because Y is also a func-

tion of ∈  which from the definition cannot be predicted by X. No matter how 
well we estimate f, we cannot reduce the error introduced by ∈ .  

2) Inference. 
Here, we are interested in understanding the way Y is affected by how X 

changes. We estimate f but our main goal is not making predictions of Y but 
understanding the relationship between X and Y, how Y changes as a function of 
X. Therefore, f̂  cannot be treated as a black box as its exact form needs to be 
known.  

Supervised and Unsupervised learning. 
Under supervised learning, for each observation of the predictor measure-

ment(s) , 1, 2, ,ix i n=  , there is an associated response measurement iy . Our 
model relates the response to the predictors with the aim of accurately predict-
ing the response for future observations (prediction) or understanding the rela-
tionship between predictors an the response (inference). 

For unsupervised learning, for every observation 1,2, ,i n=   we have a 
vector of measurements ix  but no associated response iy . We are working 
blind because of lack of a response variable to supervise our analysis. A statistical 
tool that we can use in this setting is cluster analysis in which the goal is to as-
certain, on the basis of 1 2, , , nx x x , if the observations fall into relatively dis-
tinct groups. 

Regression and Classification problems  
Models with a quantitative response are referred to as regression models, 

while the models with a qualitative response are called classification models. 
Least squares linear regression is used for regression models while logistic re-

gression is used for classification models. In statistical learning methods predic-
tor variable type is less important as long as any qualitative predictors are prop-
erly coded before analysis. 

TB is the leading opportunistic infection and the leading cause of morbidity 
and mortality among HIV-infected persons. TB is a global health problem with 
yearly new infections of 9 million and around 2 million annual deaths. The most 
affected countries are in Africa which account for 85% of the global rates of in-
fection. There are 22 high-burden countries (Kenya among the 22) that account 
for 80% of the worlds TB cases [10]. Approximately 30% of HIV-infected per-
sons are estimated TB. Globally, 13 million individuals are co-infected with HIV 
and TB, 70% of the worldwide HIV TB co-infections live in sub-Saharan Africa 
[11]. HIV and Mycobacterium tuberculosis highly interact each increasing progres-
sion of the other. Treatment of TB is made difficult by frequent drug-interactions 
with highly active antiretroviral therapy (HAART) and adverse drug reactions 
are more common among HIV-infected patients. Active TB is over 8 times 
higher in HIV-positive than HIV-negative individuals in Africa. Active TB is the 
first sign of AIDS in HIV-infected persons. Both active TB and HIV accelerate 
the progression of the other with the former decreasing the number of CD4+ 
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lymphocytes thereby increasing HIV viral replication and eventually shortening 
the lives of HIV-positive persons. The fatality rate of HIV-related TB is over 50% 
[12]. Further information on TB and HIV can be found at [13]. 

In Kenya, the [14] report indicates that 98% of TB patients were tested for 
HIV, 27% of the TB patients tested were found to be co-infected with HIV. This 
was close to the 28% 2017 co-infection rate [15]. The prevalence rates for the two 
years are questionable due to what was reported on strategies for finding missing 
people with TB. The key strategy was the Active Case Finding (ACF) which en-
tails a systematic screening for TB among all patients presenting to health facili-
ties regardless of whether they present with TB symptoms or not. The key moti-
vation to our study comes from one of the challenges encountered during the 
ACF strategy implementation the challenge was called “System challenges” and 
quoted as: “incomplete documentation in the presumptive TB registers leading 
to leakage e.g. missing lab results was also noted during the implementation”. 

2. Materials and Method        
2.1. Statistical Learning Algorithm   

Let ψ  be an observed quantitative response and η  different predictors, 

1 2, , ,X X Xη . Assuming that there is some relationship between ψ  and 
( )1 2, , ,X X X Xη=  , which can be written in the form  

 ( )f Xψ = +  .                         (5) 

where f is some fixed but unknown function of 1 2, , ,X X Xη , and   is a 
random error term, which is independent of X and has mean zero. In this for-
mulation, f represents the systematic information that X provides about ψ . 

Assuming that there is a true underlying parameter vector dΩ∈  which 
governs the outputs. For each 1,2, ,i n=  :  

i i iXψ = Ω+   

The problem of statistical learning involves a set of approaches for estimating 
f as well as tools for evaluating the estimates obtained. The two main reasons for 
estimating f are for prediction and inference. For, prediction, a set of inputs X 
are readily available, but the output ψ  cannot be easily obtained. In this setting, 
since the error term averages to zero, we can predict ψ  using 

( )ˆˆ ,f Xψ =                           (6) 

where f̂  represents our estimate for f, and ψ̂  represents the resulting predic-
tion for ψ . In this setting, f̂  is treated as a black box, in the sense that one is 
not typically concerned with the exact form of f̂ , provided that it yields accu-
rate predictions for ψ . 

At training segment, we observe one realization of 1 2, , , nψ ψ ψ . The data 
matrices are given as:  

[ ]T1 1, , , .n
nX X X X η×= ∈   

[ ]T1 2, , , .n
η= ∈      
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[ ]T1 2, , , .n
ηψ ψ ψ ψ= ∈   

T1 .X X
n

η η×Σ = ∈  

The goal is to naturally minimize the expected risk.     

2.2. Handling Missing Data   

Here we employ the complete case scenario and compare with three methods i.e. 
Weighted Method, Maximum likelihood approach and MI.  

2.2.1. Complete Case 
By complete cases, we refer to available data analysis, or pairwise deletion, uses 
all available data to generate estimate of the parameters of interest. This ap-
proach is illustrated in Equation (2) where required statistics is generated on 
different sets of cases. 

In pairwise deletion, all cases would be used to estimate the mean of φ , but 
only the complete cases would contribute to an estimate of Φ , and the correla-
tion between φ  and Φ . Different sets of cases are used to estimate parameters 
of interest in the data. When variables are highly correlated, available case analy-
sis provides estimates that are inferior to complete case results [16]. 

Let iψ  be a given ith observation. Then  

1,1 1,2 1,

2,1 2,2 2,
,

,1 ,2 ,

n

n
m n

m m m n

ψ ψ ψ
ψ ψ ψ

ψ ψ ψ

 
 
 Ψ =  
  
 





   



 

1,1 1,2 1,1

2,1 2,2 2,2
,

,1 ,2 ,

m m n

m m n
p q

mp mp mp nq

ψ ψ ψ
ψ ψ ψ

ψ ψ ψ

 
 
 Ψ =  
  
 





   



 

where ,m nΨ  are complete cases and ,p qΨ  refers to incomplete cases. The esti-
mates for the mean, standard error can be obtained as  

1
1

n
ii

n
ψ

ψ = ∑  

( ) ( )2
1 1.

n
iis e
n

ψ ψ
ψ

−
= ∑  

2.2.2. Weighted Method 
In this approach, the missing value is replaced with a plausible figure, such as the 
mean for observed cases. This approach is repeated as if the data are completely 
observed. While this allows the inclusion of all cases in a standard analysis pro-
cedure, replacing missing values with a single value changes the distribution of 
that variable by decreasing the variance that is likely present. 

Impute all missing values of ψ  by (weighted) respondent mean of ψ , if ψ  

https://doi.org/10.4236/jdaip.2020.83007


J. O. Mwaro et al. 
 

 

DOI: 10.4236/jdaip.2020.83007 118 Journal of Data Analysis and Information Processing 
 

continuous. Impute by respondent mode if categorical variable. Define homo-
geneous classes and impute mean or mode within class Want ψ  mean (or 
mode) same for respondents and missing values within classes. We may use 
segmentation algorithm to develop homogenous classes. 

2.2.3. Maximum Likelihood Method 
The principle here is when missing data occur; we base estimation on the like-
lihood of the observed data. The difficulty lies in specifying the likelihood of the 
observed data. Intrinsically, we use iterative solution, termed the EM algorithm, 
to find the estimate of a parameter (such as the means and covariance matrix) 
when closed form solutions to the maximization of a likelihood are not possible.  

The basic idea is to maximize the conditional likelihood using the set of res-
pondents, those with 1iTϕ = , for whom the response probability is reversed in 
the sense that, instead of the original probability, the conditional probability of 

1 1itϕ − =  given that 1iTϕ =  is considered. The conditional likelihood for the 
special case T = 1, i.e., no followup. 

The approach based on conditional likelihood consists of two steps. In the 
first step, the reverse conditional probability ( ), , 11 | 1, ,it i t i t i iq pr ϕ ϕ ψ υ+= = =  is 
derived using Baye’s formula from the assumed response model. 

We can obtain 
1

it
it

it

q
Ξ

=
+Ξ

 where  

( )
( )
( )
( )
( )
( )

( )
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, 1

, 1

, 1
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where ( )11 11kj j
it ij ij jt tjp p υ== =

−
 ϒ = − = ∑ ∑∏ . More of the parameter estima-

tion can be found in [17].  
multiple Imputation 
Generally, there are three steps for executing MI i.e.   
1) Imputation: Generate a set of m > 1 plausible values for ( );mis mis misθ τ υ=   
2) Analysis: Analyze the datasets using complete-case methods.  
3) Combination: Combine the results from the m analyses.  
Imputation step relies upon assumptions regarding the missing mechanism 

that generated the observed sample. The goal of the imputation is to account for 
the relationships between unobserved and observed variables, while considering 
the uncertainty of the imputation. The MAR assumption (which is generally as-
sumed for many missing data methods, and as previously noted is intestable 
without additional information) is key to the validity of multiple imputation. Use 
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of this assumption allows the researcher to generate imputations ( )1 2, , , mθ θ θ . 
When missingness is monotone, simple methods are employed, including (for 

continuous variables) propensity methods, predictive mean matching, and (for 
discrete variables) discriminant analysis or logistic regression. However, for 
more complicated missingness, Markov Chain Monte Carlo (MCMC) ap-
proaches are applied. Both the predictive mean matching and MCMC ap-
proaches require assumptions of multivariate normality. 

2.3. Simulation 

We adopted the missing data methodology proposed by [18]. The methodology 
comprises of the following steps: 

Step 1. Simulation of a multivariate, complete data set to be considered the 
population of interest. 

Step 2. Making the dataset incomplete. 
Step 3. Estimating the incomplete data by methods of correcting for missing 

data. 
Step 4. Comparing the Statistical inferences obtained for the original, com-

plete data set and after dealing with the missing values to get an indication of the 
performance of the missing data method. We then apply real HIV-TB coinfec-
tion data. 

2.4. Step 1: Simulated Multivariate Complete Data Set   

We reproduced a simulated data set “Default” in R. The “Default” dataset is 
found in ISLR package of R. The dataset contains 10,000 observations with four 
variables. The variables are: “default”; A factor with levels “No” and “Yes” indi-
cating whether the customer defaulted on their debt, “student”; A factor with le-
vels “No” and “Yes” indicating whether the customer is a student, “balance”; The 
average balance that the customer has remaining on their credit card after mak-
ing their monthly payment and “income”; Income of customer [19]. 

The statistical inferences of interest are the Accuracy, Sensitivity, Specificity 
and AUC of the original complete dataset that we would compare with the sta-
tistical inferences of the original dataset after creating missingness (under MAR, 
MNAR and MCAR) and correcting for the missingness by: complete case analy-
sis, single imputation, multiple imputation and maximum likelihood methods. 

2.5. Step 2: Missing Data Amputation   

The amputation (generation of missing values) was done using the “ampute” 
function which is available in mice package of R software, a multivariate ampu-
tation procedure as explained by [18] was used. Missing data were generated in 
three mechanisms: MCAR, MAR and MNAR with varying proportion of mis-
singness (7%, 10%, 30%, 50% and 80%). The default patterns (combinations of 
variables with; coded 0 and without; coded 1 missing values) in ampute function 
of R was adopted, here each pattern had missingness on one variable only. Our 
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frequency (a vector of length number of patterns containing the relative fre-
quency with which the patterns should occur.) too was default (equal probability 
for each pattern) i.e. (0.25, 0.25, 0.25, 0.25). Specification of weights (a ma-
trix/data frame of size number of patterns by number of variables, weights are 
used to calculate weighted sum of scores) was as follows: For MAR mechanism, 
we assigned weights of value zero to the variables that would be made incom-
plete. Whereas for MNAR mechanism, we assigned weights of value zero to the 
variables that would remain completely observed and weights of value one to the 
variables that would be made incomplete. The MCAR mechanism does not use 
weights.     

2.6. Step 3: Correcting for the Missing Data  

We started the procedure of correcting for missing values by first reconverting 
the categorical which had been converted (during amputation) into numerical 
into their original categorical form. Checked to ensure the data was coded cor-
rectly, identified missing values and patterns within each variable and graphical-
ly represented the missingness. Finally, we corrected for the missingness in each 
of the amputed (under the three mechanisms) datasets using each of these me-
thods: Complete case analysis, Single imputation, Multiple imputation and the 
likelihood method.     

2.7. Step 4: Comparing the Statistical Inferences Obtained for the  
Original, Complete Data Set and after Correcting for the  
Missing Values   

We repeated the analysis in step 1 on each of the datasets that we had corrected 
for missingness. The goal was to obtain similar statistical inferences (Accuracy, 
Sensitivity, Specificity and AUC) for comparison with those obtained in the first 
step.     

3. Results      
Simulation Results   

Prediction of “default” using “balance”, “income” and “student” of the “Default” 
data set in R’s ISLR package, resulted into 0.9726, 0.3058824, 0.9960663 and 
0.9510306 as the Accuracy, Sensitivity, Specificity and AUC of our prediction 
model respectively. These are the standard inferences that we used to compare 
to get an indication of the performance of the missing data method. We gen-
erated missingness in the simulated “Default” data set of the ISLR package in R. 
The proportion of missingness ranged from 7% to 80%. Then used four ap-
proaches of dealing with missing data: Complete case analysis (List wise dele-
tion), Mean/Single imputation, Multiple imputation and Maximum Likelihood 
Estimation Imputation method. We re-analyzed the data sets to obtain new: 
Accuracy, Sensitivity, Specificity and the area under the receiver-operator curve 
(AUC) for comparison with the complete case values. 
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Table 1 shows analysis where missing data are corrected for by List wise dele-
tion; complete case analysis. Under MAR, We see lower (compared to Complete 
data) values of sensitivity which systematically decrease as the proportion of 
missingness increase. However, we observe inconsistencies in the AUC values. 
We are unable to obtain inferences for the highest proportion of missingness, 
this is attributed to the few observed cases which result into extremely few 
training and testing data sets. When the mechanism is MCAR, we observe irre-
gular inference values, this is caused by the complete randomness in the ampu-
tation of the missing values.   

Table 1 shows analysis when missing data are corrected for by Mean/Mode 
single imputation. We replaced missing values with mean and mode of observed 
cases for continuous and categorical variables respectively. There is a systematic 
decrease in the sensitivity and AUC values which are greatly lower than the  
 
Table 1. Complete case analysis. 

Listwise deletion: Complete Case Analysis (CCA) 

Missingness under MAR 

Percentage Missing Accuracy Sensitivity Specificity AUC 

Original Complete Data 0.9726 0.3058824 0.9960663 0.9510306 

7% 0.9862543 0.1666667 0.9991274 0.937443 

10% 0.98733896 0.08333333 0.99954975 0.9465462 

30% 0.99242424 0.01960784 1.000000 0.9642857 

50% 0.9946667 0 0.999665 0.9107317 

80% - - - 0.9230769 

Missingness under MNAR 

Percentage Missing Accuracy Sensitivity Specificity AUC 

Original Complete Data 0.9726 0.3058824 0.9960663 0.9510306 

7% 0.9783076 0.2586207 0.9966960 0.9570831 

10% 0.9824522 0.2282609 0.9981859 0.95467 

30% 0.9851515 0.2203390 0.9990744 0.9755696 

50% 0.9840000 0.3064516 0.9982982 0.9683496 

80% 0.9839519 0.1176471 0.9989796 0.9497348 

Missingness under MCAR 

Percentage Missing Accuracy Sensitivity Specificity AUC 

Original Complete Data 0.9726 0.3058824 0.9960663 0.9510306 

7% 0.974348 0.316129 0.9969047 0.955583 

10% 0.9724244 0.2792208 0.9968029 0.9501156 

30% 0.9743954 0.3478261 0.9955882 0.9374005 

50% 0.9742063 0.3956044 0.9958831 0.9388399 

80% 0.9714286 0.2413793 0.9936909 0.9545671 
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complete data values. For MCAR, we observe a similar trend of systematic de-
crease in sensitivity and AUC, but values (sensitivity and AUC) for lower pro-
portions (7% and 10%) of missingness are closer to the complete data values. 

Table 2 shows analysis when missing data are corrected for by Single imputa-
tion. We used the MICE package in R to carry out multiple imputations. We 
imputed three data sets using all the variables (“default”, “student”, “balance” 
and “income”). Results indicate similar characteristics among the three mechan-
isms: the values for Accuracy, Specificity and AUC are very close to the complete 
data set values. The Sensitivity values are similar across the mechanism but 
slightly higher than the complete data set Sensitivity values.   

Table 3 shows results when missing data are corrected for by Multiple Imputa-
tion method. Under MAR and MNAR: we observe fluctuations in the sensitivity 
values which are close to the sensitivity values of the complete data set. Fluctuations  
 
Table 2. Mean/mode single imputation method. 

Mean/Mode Single Imputation Method 

Missingness under MAR 

Percentage Missing Accuracy Sensitivity Specificity AUC 

Original Complete Data 0.9726 0.3058824 0.9960663 0.9510306 

7% 0.9694000 0.06962025 0.99876084 0.8638239 

10% 0.9692000 0.04545455 0.99855551 0.8589932 

30% 0.9726000 0.02919708 0.99917746 0.8333297 

50% 0.9732000 0.02255639 0.99917814 0.8213744 

80% 0.9742000 0.0234375 0.999179 0.8067571 

Missingness under MNAR 

Percentage Missing Accuracy Sensitivity Specificity AUC 

Original Complete Data 0.9726 0.3058824 0.9960663 0.9510306 

7% 0.9748000 0.1461538 0.9969199 0.9123312 

10% 0.9742000 0.1015625 0.9971264 0.9043917 

30% 0.9748000 0.0320000 0.9989744 0.8552557 

50% 0.97480000 0.02419355 0.99897457 0.8448201 

80% 0.97500000 0.02419355 0.99917966 0.8192981 

Missingness under MCAR 

Percentage Missing Accuracy Sensitivity Specificity AUC 

Original Complete Data 0.9726 0.3058824 0.9960663 0.9510306 

7% 0.9728000 0.297619 0.9962748 0.9414881 

10% 0.9730000 0.297619 0.9964818 0.9415958 

30% 0.9718000 0.21875 0.9966942 0.9363456 

50% 0.9732000 0.1458333 0.9977348 0.9110347 

80% 0.9738000 0.04580153 0.99876771 0.8360101 
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Table 3. Multiple imputation method. 

Multiple Imputation Method 

Missingness under MAR 

Percentage Missing Accuracy Sensitivity Specificity AUC 

Original Complete Data 0.9726 0.3058824 0.9960663 0.9510306 

7% 0.9757333 0.3388773 0.9968317 0.9501267 

10% 0.9742667 0.3190184 0.9963476 0.9509557 

30% 0.9756000 0.3702970 0.9966885 0.9493033 

50% 0.9751333 0.3447581 0.9966906 0.9542059 

80% 0.9752667 0.3265306 0.9971744 0.9479768 

Missingness under MNAR 

Percentage Missing Accuracy Sensitivity Specificity AUC 

Original Complete Data 0.9726 0.3058824 0.9960663 0.9510306 

7% 0.9757333 0.3388773 0.9968317 0.9501267 

10% 0.9742667 0.3190184 0.9963476 0.9509557 

30% 0.9756000 0.3702970 0.9966885 0.9493033 

50% 0.9751333 0.3447581 0.9966906 0.9542059 

80% 0.9752667 0.3265306 0.9971744 0.9479768 

Missingness under MCAR 

Percentage Missing Accuracy Sensitivity Specificity AUC 

Original Complete Data 0.9726 0.3058824 0.9960663 0.9510306 

7% 0.9750000 0.3326572 0.9968291 0.9505351 

10% 0.9748667 0.3360324 0.9966221 0.9499557 

30% 0.9746667 0.3490196 0.9966874 0.9507702 

50% 0.9761333 0.3382353 0.9970394 0.9552228 

80% 0.9742000 0.3340000 0.9962759 0.9501424 

 
are also witnessed in the AUC values but all the values are lower than the com-
plete data AUC values. 

Table 4 shows results when missing data are corrected for by MLE Imputa-
tion method. Under MAR and MNAR: we observe fluctuations in the sensitivity 
values which are close to the sensitivity values of the complete data set. The sta-
tistical analysis could not however, run missingness under MCAR. 

CRUDE Co-infection rate:  
We generated a crude co-infection rate as displayed in Table 5.   
Plotting Missingness 
Plot the missing values for HIV Patients Screened for TB 
Plot the missing values for HIV/TB Coinfection 
Results show in Table 6; complete cases only had a co-infection rate (95% 

Confidence Interval band) of 29% (25%, 33%), weighted method 27% (23%,  
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Table 4. MLE imputation method. 

MLE Imputation Method 

Missingness under MAR 

Percentage Missing Accuracy Sensitivity Specificity AUC 

Original Complete Data 0.9726 0.3058824 0.9960663 0.9510306 

7% 0.9718000 0.2500000 0.9962779 0.9378383 

10% 0.9736000 0.3173653 0.9962756 0.9460736 

30% 0.9730000 0.3048780 0.9956576 0.9344419 

50% 0.9736000 0.2926829 0.9966915 0.9283667 

80% 0.9712000 0.2931034 0.9956486 0.9464979 

Missingness under MNAR 

Percentage Missing Accuracy Sensitivity Specificity AUC 

Original Complete Data 0.9726 0.3058824 0.9960663 0.9510306 

7% 0.9718000 0.2500000 0.9962779 0.9378383 

10% 0.9736000 0.3154762 0.9964818 0.9423608 

30% 0.9738000 0.3372781 0.9960671 0.9418557 

50% 0.9736000 0.2926829 0.9966915 0.9283667 

80% 0.9712000 0.2937853 0.9960605 0.9338375 

Missingness under MCAR 

Percentage Missing Accuracy Sensitivity Specificity AUC 

Original Complete Data 0.9726 0.3058824 0.9960663 0.9510306 

7%     

10%     

30%     

50%     

80%     

 
Table 5. CRUDE coinfection rate. 

No. Tested TB/HIV HIV/TB Coinfection Rate 

7,379,664 2,112,688 29% (LCI 25%, UCI 33%) 

 
Table 6. Comparison of four approaches. 

Approach Estimated HIV/TB Co-infection Rate 95% LCI 95% UCI 

Complete Cases Only 29% 25% 33% 

Weighted Method 27% 23% 31% 

Likelihood Based approach 26% 24% 28% 

Multiple Imputation Approach 21% 20% 22% 

 
31%), likelihood-based approach 26% (24%, 28%) and multiple imputation ap-
proach 21% (20%, 22%). In conclusion, MI remains the best approach for deal-
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ing with missing data and failure to apply it results to overestimation of HIV/TB 
co-infection rate by 8%. Comparison of four approaches:   

Complete cases only 
Results show a cyclic trend 
Weighted Method 
Shows a deep downward trend in the recent months 
Likelihood Method 
Shows an upward trend in the recent months 
Multiple Imputation 
Cyclic trend but generally lower 

4. Discussion  

The aim of this work was to revisit and review the topic of dealing with missing 
data in the context of estimating national HIV/TB co-infection. In addition, we 
wanted to assess the accuracy of MI using an example where models from im-
puted data could be compared with models derived from actual data using a 
modern approach i.e. statistical learning. 

It is estimated that HIV/TB co-infection is 14 million globally [20], and TB 
remains the leading cause of death among PLHIV. HIV infection is estimated to 
increase the risk of TB 20-fold compared to HIV-seronegative individuals in high 
HIV-prevalence countries [13]. Of the estimated 8.7 million people who developed 
TB globally in 2012, 1.1 million (13%) were estimated to be HIV-coinfected. Of the 
2.8 million people with TB who were screened for HIV in 2012, 20% tested 
HIV-positive, including 42% of people with TB in sub-Saharan Africa. More than 
75% of the estimated HIV-positive incident TB cases live in just 10 countries 
(Ethiopia, India, Kenya, Mozambique, Nigeria, South Africa, United Republic 
of Tanzania, Uganda, Zambia, and Zimbabwe) [13]. The increased incidence 
of active TB in HIV-infected individuals can be attributed to at least two me-
chanisms: the increased reactivation of latent TB or increased susceptibility to 
miliary TB infection. The increased risk of active TB among HIV-infected per-
sons was initially mainly attributed to an increased risk of reactivation of a latent 
infection. 

With all these HIV/TB co-infection estimates at national and international le-
vels ignoring missing data can have serious consequences in HIV programming 
contexts. Missing data are effectively ignored when using “complete case” ana-
lyses and the automated use of step-wise selection procedures often exacerbates 
this as cases can easily be excluded on the basis of data missing from variables 
not even part of a final estimation. Ignoring missing data causes problems when 
the data are not missing completely at random, as is likely for most missing data 
in HIV/TB setting. We demonstrated using extensive simulation procedure for 
how to deal with missing data with different settings and adjustments. This pro-
cedure can be used in any research area facing similar missing data problems 
involves identifying missing data (with descriptive statistics); investigate missing 
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data patterns; define variables in the data set which may be related to missing 
values to be used for the imputation model; impute missing data to give “m” 
complete data sets; run the models of interest using the “m” imputed data sets; 
combine the “m” models’ parameters; report the final model (as you would have 
done for any regression model). 

The assumptions made by the Statistical Learning Theory framework include 
the future (i.e. test) observations are related to the past (i.e. training) ones, so 
that the feature is stationary. At the core of the theory is a probabilistic model of 
the phenomenon (or data generation process). Within this model (see Figures 
2-9), the relationship between past and future observations is that they both are 
sampled independently from the same distribution (i.i.d.). The independence 
assumption means that each new observation yields maximum information. The 
identical distribution means that the observations give information about the 
underlying phenomenon (here a probability distribution). An immediate con-
sequence of this very general setting is that one can construct algorithms (e.g.  
 

 
Figure 2. Box plots of yearly HIV/TB coinfection 

 

 
Figure 3. Line graph of yearly HIV/TB coinfection. 
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Figure 4. Missingness patterns for HIV patients screened for TB. 

 

 
Figure 5. Missingness patterns for HIV/TB coinfection. 

 

 
Figure 6. Plot of the complete cases only. 
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Figure 7. Plot of the weighted data. 
 

 
Figure 8. Plot of the likelihood estimated data. 
 

 
Figure 9. Plot of the Multiply Imputed data.  
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k-nearest neighbors with appropriate k) that are consistent, which means that, as 
one gets more and more data, the predictions of the algorithm are closer and 
closer to the optimal ones. So this seems to indicate that we can have some sort 
of universal algorithm.     

Comparison of Four Approaches    

Table 7 shows the comparison between Complete Case Analysis, Weighted me-
thod, Maximum Likelihood Based approach and Multiple imputation approach. 
Clearly, the complete case overestimates TB/HIV co-infection by a hooping 8%.  

1) Complete Case Analysis 
One major difficulty experienced in available case analysis, is that it can pro-

duce estimated covariance matrices that are implausible, such as estimating cor-
relations outside of the range of Φ . Errors in estimation occur because of the 
differing numbers of observations used to estimate components of the cova-
riance matrix. The relative performance of complete-case analysis and available 
case analysis, with MCAR data, depends on the correlation between the variables; 
available case analysis will provide consistent estimates only when variables are 
weakly correlated. The major difficulty with available case analysis lies in the fact 
that one cannot predict when available case analysis will provide adequate re-
sults and is thus not useful as a general method.  

2) Weighted Method 
In many scenarios, the mean imputation results in overall means that are 

equal to the complete case values, the variance of these same variables is unde-
restimated. This underestimation derives from two sources. First, filling in the 
missing values with the same mean value does not account for the variation that 
would likely be present if the variables were observed. The true values probably 
vary from the mean. Second, the smaller standard errors due to the increased 
sample size do not adequately reflect the uncertainty that does exist in the data. 
A researcher does not have the same amount of information present when some 
cases are missing important variables as he or she would have with completely 
observed data. Bias in the estimation of variances and standard errors are com-
pounded when estimating multivariate parameters such as regression coeffi-
cients. Under no circumstances does mean imputation produce unbiased results. 

3) Likelihood Based approach 
Maximum likelihood methods for missing multivariate normal data focus on  

 
Table 7. Comparison of three approaches. 

 Estimated HIV/TB Co-infection Rate 95% LCI 95% UCI 

Complete Cases Only 29% 25% 33% 

Weighted Method 27% 23% 31% 

Likelihood Based approach 26% 24% 28% 

Multiple Imputation Approach 21% 20% 22% 
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the estimation of the parameters of the observed data, namely the mean vector 
and variance-covariance matrix. Because we assume the data multivariate nor-
mal, we can utilize the well-known properties of conditional normal distribu-
tions to estimate the expected values of the sums and cross products of the va-
riables. Using maximum likelihood with the EM algorithm does not result in 
values for individual missing variables. The estimates obtained for the means 
and the variance-covariance matrix of the variables of interest, and then uses of 
these parameter estimates to obtain model parameters such as the coefficients of 
a linear regression model (See Tables 1-4). 

The one major difficulty with treatment methods for missing data is the com-
putation of the standard errors of estimates (such as the standard error of the 
mean). Testing whether a mean is significantly different from zero, for example, 
requires an estimate of how accurate our estimate is. In maximum likelihood 
theory, the negative second derivative of the observed data log likelihood is 
needed to obtain standard errors of the estimated mean vector and covariance 
matrix. This quantity requires algebraic analysis to compute, and is unique to 
every set of multivariate data. 

4) Multiple Imputation Approach 
Multiple imputation avoids two of the difficulties associated with maximum 

likelihood methods using the EM algorithm. From Tables 1-4, with multiple 
imputation, a researcher will use standard methods of analysis once imputa-
tions are computed, and can easily obtain standard errors of estimates. Though 
specialized computing is required in multiple imputation, the method provides 
much more flexibility than in the method described in the previous section. 
While multiple imputation appears the most promising of current missing da-
ta methods, some criticisms of the method center on the amount of computing 
and analysis time. Analyzing five sets of data is certainly more costly than one 
analysis, and the method does require specialized software. Whatever model 
the analyst fits using the imputed data sets must be congenial to (must include 
the same variables) as the model used by the person who originally imputed the 
data.  

5. Conclusion 

When few cases are missing values, complete case analysis methods can provide 
unbiased estimates. In other circumstances, as in the HIV/TB co-infection set-
ting, the number of complete cases is a small fraction of the total. The expense 
and investment in the study warrant our using methods that utilize as much data 
as possible. There is need to assess and acknowledge the missingness mechanism 
limitations whenever there is missing data. 
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Appendices      

1) Abbreviations   
MCAR: Missing completely at random. 
MAR: Missing at random. 
MNAR: Missing not at random. 
MI: Multiple Imputation. 
TB: Tuberculosis 
HIV: Human Immunodeficiency Virus 
MCMC: Markov chain Monte Carlo 
MICE: Multiple imputation by chained equations 
NTLD-P: National Tuberculosis, Leprosy and Lung Disease Program 
AUC: Area Under the receiver-operator Curve     
2) Amputation results   

 

Table A1. Graphical presentation of the amputations. 

Missing Data 
Mechanism 

7% Missingness 10% Missingness 30% Missingness 50% Missingness 80% Missingness 

MNAR 

     

MAR 

     

MCAR 
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