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Abstract 
Polycyclic aromatic hydrocarbons (PAHs) are important pollutants, whose 
biodegradation and bioremediation with microorganisms are the promising 
ways to clean environments and reduce their exposure to humans. Although 
the transportation of PAHs across bacterial membrane is the first step for-
wards their biodegradation, it receives less attention. In this mini-review, we 
explore which transport system for uptake of carbon sources can serve for 
uptake of PAHs in bacteria, and try to uncover some patterns in their transport 
mechanisms. Collectively, 1) the major carbohydrate transport system, PTS, is 
unlikely to take PAHs because PAHs lack a hydroxy group for phosphorylation 
but aromatic acids are good candidates; 2) PAHs could probably go through H+ 
symporters, especially the low-molecular-weight PAHs, which are partially 
dissolvable in water; 3) it is unlikely that PAHs can produce chemiosmotic ion 
gradients to go through uniporters; and 4) antiporters could serve as transport-
ers to transport PAHs across bacterial membrane only after the metabolism of 
PAHs generates extra H+ inside cell. Accordingly, the basic mechanism for up-
take of PAHs is whether they can donate H+ in order to generate an electro-
chemical proton gradient to go through symporters.  
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1. Introduction 

Polycyclic aromatic hydrocarbons (PAHs) are important pollutants coming 
from crude oil, creosote, asphalt, coal tar, combustion of fossil fuels, burning of 
sugarcane, etc. [1]. Their existence is harmful not only to humans but also to en-
vironments [2]. Microbial degradation is a promising way for recovery of envi-
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ronment from PAH contamination [3] [4]. It turns out that some bacteria use 
PAHs as their sole carbon source to survive (Table 1). 

Utilization of PAHs is possible because the benzene ring is one of the most 
abundant chemical structures in the biosphere, its derivatives are accessible to 
microorganisms as their growth substrates [22] and PAHs are largely natural 
products [23]. However, an important difference between PAHs and non-PAHs 
carbon sources is that most PAHs are generally hydrophobic although 2-ring 
and several 3-ring PAHs are dissolvable in water to some degree [24]. Of various 
factors, the size and angularity of PAH contribute to its hydrophobicity and 
electrochemical stability [25]. Glucose is highly soluble in water, by contrast, 
PAHs reveal low aqueous solubility; however, they are easily absorbed to solid 
particles in soil [26]. Because bacteria usually take degraded solvable chemicals 
[24], an interesting question is how PAHs are transported across bacterial mem-
brane. Indeed, bacteria can secrete surfactants [27] [28], for example, P. aeruginosa 
can secrete rhamnolipid to facilitate the uptake of hydrophobic substrates [29] 
[30]. Can a bacterium evolve a specific transporter to transport PAHs from envi-
ronment into cells? It could be possible, because a bacterium may encounter a few 
types of PAHs during its lifetime. On the other hand, it is hard to imagine that a 
bacterium would evolve many specific transporters for each type of PAHs because 
at least 660 PAH structures have so far been defined [31]. Therefore, it is highly 
likely that bacteria would use their non-specific transport systems to move PAHs 
into cells rather than to evolve specific transporters for each PAH. 

Although the catabolism of PAHs in bacteria has been intensively studied and 
reviewed, the transportation of PAHs across bacterial membrane has yet to re-
ceive great attention. In broader sense, PAHs are aromatic compounds including 
aromatic acids so that the uptake of aromatic compounds should draw more at-
tention. 

 
Table 1. Some PAH compounds as sole carbon source for survival of bacteria. 

PAH Bacterium References 

anthracene Pseudomonas fluorescens 5R [5] [6] 

naphthalene Comamonas testosteroni GZ42 [7] [8] 

naphthalene Rhodococcus sp. NCIMB 12038, P200, P400 [9] [10] [11] 

fluoranthene P. paucimobilis EPA505 (now Sphingomonas paucimobilis EPA505) [12] [13] 

fluoranthene Mycobacterium vanbaalenii PYR-1 [14] 

phenanthrene Alcaligenes faecalis AFK2 [15] [16] 

phenanthrene Arthrobacter sp. P1-1 [17] 

phenanthrene Burkholderia sp. C3 [18] 

phenanthrene Comamonas testosteroni [7] [19] 

phenanthrene P. fluorescens [5] [20] 

pyrene M. vanbaalenii PYR-1 [21] 
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As bacteria can use aromatic compounds as carbon sources, the system for 
uptake of carbon sources in bacteria should be considered in the first place. The 
first system for uptake of carbons is the phosphoenolpyruvate (PEP):carbohydrate 
phosphotransferase system (PTS), which is an active transporter consuming 
ATP. The second system is highly likely to be symporters, which are the second-
ary active transporters without consuming ATP. 

In fact, many bacteria transfer aromatic acids into cells using major facilitator 
superfamily (MFS), of which the aromatic acid:H+ symporter is the most im-
portant one. The other MFS members, which are involved in transporting aromatic 
compounds, include: 1) BenK, which transfers benzaldehyde [32] [33] and benzoate 
(from which comes BenK), 2) GenK, which transfers 3-hydroxybenzoate and 
2,5-dihydroxybenzoate (gentisate, from which comes GenK) [34], 3) MhbT, which 
transfers 3-hydroxybenzoate [35], and 4) PcaK, which transfers 4-hydroxybenzoate 
and 3,4-dihydroxybenzoate (protocatechuate, from which comes PcaK) [36] 
[37]. 

Besides MFS, aromatic compounds can be transported through several differ-
ent transporters. For instance, phthalate is transported into Burkholderia cepacia 
through three pathways, 1) OphD [38], 2) OphFGH, which is an ATP-binding 
cassette (ABC) [39], and 3) OphP [39]. 

So far, it is not very clear whether there are other transporters involved in the 
uptake of carbon sources. In this mini-review, we explore through which trans-
porters PAHs are transported across bacterial membrane. 

2. Can PAHs Pass through PTS? 

PTS is the major carbohydrate transport system in bacteria (upper part, Figure 
1), which is usually composed of enzyme E I (EI), histidine protein (HPr,  

 

 
Figure 1. Possible transporters for uptake of PAHs in bacteria. 

https://doi.org/10.4236/aim.2020.107024


S. M. Yan, G. Wu 
 

 

DOI: 10.4236/aim.2020.107024 334 Advances in Microbiology 
 

heat-stable protein) and enzyme E II (EII) [40] [41]. PTS only exists in bacteria, 
which was initially found in Escherichia coli [42] and then was found in other 
bacteria [41]. Although E. coli does not play an important role in PAH degrada-
tion, the knowledge on PTS of E. coli is useful for our understanding on whether 
PAHs can pass through PTS. 

So far, PTS has been classified into four superfamilies according to their EII’s 
phylogeny [43]: 1) the glucose-fructose-lactose superfamily including glucose, 
fructose-mannitol and lactose families, 2) the ascorbate-galactitol superfamily 
including ascorbate [44] [45] and galactitol families [46] [47], 3) the mannose 
family [48], and 4) the dihydroxyacetone family [49]. Taking glucose as an ex-
ample, the main mechanism for such transportation across the cell membrane is 
to phosphorylate glucose into glucose-6-phosphate using enzyme II B (EIIB) 
with consumption of ATP when glucose crosses plasma membrane through the 
trans-membrane enzyme II C (EIIC). Thus, the transport of glucose is an active 
process. 

The PTS substrates include monosaccharides (glucose, fructose and mannose), 
disaccharides (cellobiose), amino sugars (glucosamine, N-acetylglucosamine and 
N-acetylmannosamine), as well as polyols [41] [42]. Clearly, this list does not in-
clude any PAHs, so a question is whether PAHs can be transported into bacteria 
through PTS. 

The size of PTS substrates varies largely. For monosaccharides, glucose has 
long and short axes of 8.6 Å and 8.4 Å [50], and fructose has long and short axes 
of 9.8 Å and 8.5 Å [50]. For polyols, mannitol has a size of 11.92 Å × 8.11 Å × 
7.38 Å [51]. 

For PAHs, they are usually grouped as low-molecular-weight PAHs with 2 to 
4 benzene rings (naphthalene, phenanthrene, anthracene and fluorene) and 
high-molecular-weight PAHs with more than 4 benzene rings (fluoranthene, 
benzo[α]pyrene, benz[α]anthracene and 7,12-dimethylbenz[α]anthracene) [52]. 
The size of five typical PAHs is listed in Table 2. As can be seen, the sizes of 
2-ring naphthalene and 3-ring anthracene and phenanthrene are compatible 
with the size of mannitol, so PTS could at least accommodate a portion of 
low-molecular-weight PAHs in terms of their size. 

In addition to PAH size, another necessary prerequisite for PTS transporta-
tion is whether PAHs can be phosphorylated because phosphorylation is the first  

 
Table 2. Size of 5 PAH compounds [31]. 

PAH Long axis Short axis 

2-ring naphthalene 9.195 Å 7.428 Å 

3-ring anthracene 11.650 Å 7.439 Å 

3-ring phenanthrene 11.750 Å 8.031 Å 

4-ring fluoranthene 11.160 Å 9.240 Å 

4-ring pyrene 11.660 Å 9.279 Å 
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step to transport glucose across membrane. To achieve this, PAHs need to have a 
hydroxy group on any of its carbons for phosphorylation. This prerequisite, 
however, needs to add oxygen to PAHs as a necessary step before phosphoryla-
tion because PAHs have no oxygen. Take naphthalene as an example for this 
possibility (Figure 2), naphthalene needs an oxygen to form a hydroxy group, 
and then it can go through phosphorylation with consumption of ATP, and then 
finally it can go through PTS into bacteria. However, the addition of oxygen re-
quires oxygenase, which could break the aromatic ring as the ring-cleaving 
dioxygenases do [53], so PAHs are unlikely to be transported by PTS. On the 
other hand, the inhibition of surfactant, Triton X-100, on the metabolism of 
fluoranthene and glucose in Sphingomonas paucimobilis strain EPA505 [54] 
might suggest the possibility that the transporters for fluoranthene and glucose 
share some similarity. 

Aromatic acids, such as benzoate and phenylacetic acid, appear to be possible 
candidates for PTS because they have a hydroxy group (Figure 3), which can be  

 

 
Figure 2. Possible mechanism for PAHs to be transported by PTS with naphthalene as an example. 
 

 
Figure 3. Possible mechanism for benzoate and phenylacetic acid with their hydroxy 
group to be transported by PTS. 
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used for phosphorylation. This can explain why benzoate and phenylacetic acid 
can be utilized in Pseudomonas prior to glucose as organic acids [55]. In reality, 
benzoate and phenylacetic acid are transported through aromatic acid:H+ 
symporter [56], but if they could be phosphorylated, they would block the up-
take of glucose through PTS, then the preference order of utilization of carbon 
sources would be different in Pseudomonas. 

3. Can PAHs Pass through MFS? 

MFS (lower part, Figure 1) is the largest family of secondary active membrane 
transporters [57], and transports the non-PTS substrates because these sub-
strates are not subject to phosphorylation. About 25% of all known membrane 
transport proteins belong to MFS in prokaryotes [58]. 

MFS has three types of transporters: 1) uniporter, which transports the sub-
strates whose concentration gradient push power transportation; 2) symporter, 
which simultaneously transports two or more substrates in the same direction 
because of the electrochemical gradient of one of its substrates; and 3) 
antiporter, which transports two or more substrates in opposite directions. MFS 
can transport ions, simple sugars [59] [60], sugar phosphates, oligosaccharides, 
inositols, drugs [61], neurotransmitters, nucleosides, amino acids and peptides, 
organophosphate esters, Krebs cycle metabolites, lipids, and a large variety of 
organic and inorganic anions and cations [57] [62]. 

Uniporter 
Can PAHs go through uniporter (right-lower corner of Figure 1) along the 

concentration gradient across the membrane? In plain words, can PAHs diffuse 
through plasma membrane? It seems unlikely because uniporters appear to be 
merely involved in transport of calcium, sodium and potassium [60] [63], alt-
hough PAHs should generate a PAH concentration gradient across the bacterial 
membrane. The key point is that PAHs are not able to produce chemiosmotic 
ion gradients. 

Symporter 
Can PAHs go through symporters (middle lower part of Figure 1)? Aromatic 

acids could produce electrochemical gradients, and thus go readily through 
symporters. Aromatic acid:H+ symporter (AAHS) family (TC# 2.A.1.15) is the 
best studied symporter in terms of transportation of aromatic acids. AAHS fam-
ily includes at least BenK, GenK, MhbT, MucK [64], PcaK and VanK for trans-
portation of aromatic acids. After passing through BenK, MucK, PcaK and 
VanK, aromatic acids undergo mineralization via β-ketoadipate pathway [65] 
[66].  

As aromatic acids can pass through symporters, can PAHs pass through aro-
matic AAHS family? Essentially, the substrates for AAHS family are 1-ring aro-
matic acids, i.e., 3-hydroxybenzoate, 4-hydroxybenzoate, 2,4-dihydroxybenzoate, 
2,5-dihydroxybenzoate (gentisate), 3,4-dihydroxybenzoate (protocatechuate), 
4-hydroxy-3-methoxybenzoate (vanillate), benzaldehyde, benzoic acid, and sa-
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licylate. Evidently, the size of 1-ring aromatic acids is smaller than any typical 
PAHs. 

In eukaryotic organisms, the pathogenic yeast Candida parapsilosis has 
permeases Hbt1 and Hbt2, which are similar to bacterial aromatic acid:H+ 
symporters (AAHS) such as GenK, MhbT and PcaK. Permeases Hbt1 and Hbt2 
transport 3-hydroxybenzoate, 4-hydroxybenzoate and protocatechuate into C. 
parapsilosis [67], and then are metabolized through different pathways. For exam-
ple, 3-hydroxybenzoate and 2,5-dihydroxybenzoate are metabolized via the 
gentisate pathway, while hydroquinone, resorcinol, 4-hydroxybenzoate, 2,4- 
dihydroxybenzoate (β-resorcylate) and 3,4-dihydroxybenzoate (protocatechuate) 
are metabolized via 3-oxoadipate pathway [68] [69] [70].  

In general, the mechanism for transportation of aromatic acids is simplified as 
[56]: benzoate (out) + H+ (out) → benzoate (in) + H+ (in).  

For more complicated mechanism, it would be functionally asymmetric in 
PcaK [71], where an electrochemical proton gradient (Δμ−H+) or a membrane 
potential (ΔΨ), but not ΔpH alone, energizes asymmetric transportation [37]. 
This is why the number of substrates for AAHS is relatively small [37]. The im-
plication is that PAHs should donate H+ in order to generate an electrochemical 
proton gradient across the aromatic acid:H+ symporters (AAHS), which is possi-
ble for low-molecular-weight PAHs because they are dissolvable in water to 
some extend [24]. So it is likely that naphthalene, for example, can go through 
AAHS in such a way (Figure 4). 

Anion:cation symporter (ACS) family (TC# 2.A.1.14) includes OphD and OphP 
in B. cepacia [39], and Pht1 in Pseudomonas putida [72] for transporting 
phthalate. Actually, the size of phthalate can be very large and comparable with 
even high-molecular-weight PAHs, because phthalate can be as simple as phthalic 
acid but complicated with different functional groups (Figure 5). Therefore, there 
is a possibility that PAHs generate anion and cation to go through anion:cation 
symporter. 

Similarly, the rest H+ symporters follow the same reasoning for uptake of 
PAHs. Metabolite:H+ symporter (MHS) family (TC# 2.A.1.6) includes MopB in 
B. cepacia for transporting 4-methyl-o-phthalate [73], PcaT in P putida for 
transporting beta-ketoadipate [74] and ferulic acid [75], and ShiA in E. coli for 
transporting shikimate [76]. 

Oligosaccharide:H+ symporter (OHS) family 2 (TC# 2.A.1.5) includes lac-
tose:H+ permease (LacY) [57] from Citrobacter freundii, Klebsiella pneumoniae  

 

 
Figure 4. Possible mechanism for naphthalene to go through aromatic acid:H+ symporters. 

https://doi.org/10.4236/aim.2020.107024


S. M. Yan, G. Wu 
 

 

DOI: 10.4236/aim.2020.107024 338 Advances in Microbiology 
 

 
Figure 5. Possible mechanism for phthalic acid and phthalate to go through aromatic ac-
id:H+ symporters. 

 
and E. coli [77] [78] [79] [80] [81]; sucrose permease (CscB) from E. coli [82] [83] 
[84]; melibiose permease (MelY) from Enterobacter cloacae [85] and melibiose 
permease MelB from E. coli [86] [87] [88] and Salmonella typhimurium [89]. This 
family transports galactosides such as lactose and melibiose [90] [91] [92] with 
electrochemical proton gradient. OHS family seems to be a very good candidate 
for transporting PAHs, because the LacY is a 6 nm × 3 nm oval shaped transporter 
on membrane surface [93]. 

It was found that the amino acid-polyamine-organocation (APC) transporter 
such as BenE [94] and the outer membrane pore-forming protein (OMPP) such 
as BenP [33] transport aromatic substrates. 

In other kingdoms, studies on basidiomycete Trichosporon cutaneum found 
an energy-dependent system for the uptake of phenol, where phenolate anions 
are co-transported with protons in stoichiometry 1:1 [95] [96]. In another 
basidiomycete Fomitopsis palustris, symporter with H+ ion was shown for the 
uptake of vanillate [97]. In humans, sodium-coupled monocarboxylate trans-
porters, i.e. SMCT1 and SLC5A8, are involved in the uptake of nicotinate and 
various aromatic monocarboxylates such as benzoate and salicylate [98]. 

For the non-PTS sugars, the uptake of raffinose [99] across the cytoplasmic 
membrane of E. coli is a secondary active transporter termed as the raffinose 
permease (RafB) [99] [100] [101] [102]. Interestingly, galactose belongs to mon-
osaccharide but it does not pass PTS system. The uptake system for galactose 
[103], galactose permease or GalP, belongs to MFS [104] [105] [106] [107]. No 
information is found that these two transporters could transport PHAs across 
bacterial membrane. 

In this context, symporters could potentially serve as a biosensor system [108] to 
detect the PAH influx as mitochondria as biosensors of calcium microdomains 
[109] or special antibody could be used for this purpose [110]. Clearly, more ex-
perimental evidence is in need to explore this aspect of symporters with PAH up-
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take. 
Antiporter 
Can PAHs go through antiporters (left-lower corner of Figure 1)? This looks 

unlikely because there is usually no H+ inside bacteria. However, the common 
catabolic pathway to salicylate from naphthalene [111], fluorine [112] and 
phenanthrene [18] can generate extra H+. Still, the common catabolic pathway to 
phthalate from fluorine [113], anthracene [114], phenanthrene [18], and pyrene 
[21] can generate extra H+. Thus the produced H+ could be used for antiporter to 
transport PAHs; however this process could begin only after the beginning of 
metabolism of PAHs, so the uptake of PAHs through antiporter can occur at a 
later stage. 

4. Conclusions 

In this mini-review, every effort was made to find how PAHs are transported 
into bacterial cells in literature. Because of lack of recent research in this field, 
our review focuses on the theoretical derivation in order to stimulate the re-
search interests. In a broader sense, this is the question of how hydrophobic sub-
stances are transported into bacteria and which transporter is used to transport 
less soluble substances. Although the substrate-dependent gene modulation can 
inhibit the glucose transport and metabolism [115], which would create the 
conditions for transporting PAHs and their utilization. Collectively, 1) the 
major carbohydrate transport system, PTS, is unlikely to take PAHs because 
PAHs lack a hydroxy group for phosphorylation but aromatic acids are good 
candidates; 2) PAHs could probably go through H+ symporters, especially the 
low-molecular-weight PAHs which are partially dissolvable in water; 3) it is 
unlikely that PAHs can produce chemiosmotic ion gradients to go through 
uniporters; and 4) antiporters could serve as transporters to transport PAHs 
across bacterial membrane only after the metabolism of PAHs generates extra 
H+ inside cell. Accordingly, the basic mechanism for uptake of PAHs is whether 
they can donate H+ in order to generate an electrochemical proton gradient to go 
through symporters. However, it is still not clear how the high-molecular-weight 
PAHs are transported into cells. Thus, more studies are needed in order to un-
derstand how PAHs are transported into bacteria. The current literature has yet 
to provide sufficient knowledge on uptake dynamics if we consider the driving 
force in transportation as uptake kinetics. Therefore, the uptake dynamics 
should be a direction for pursuit. 
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