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1. Introduction

A coherent derivation of radius and center of the insphere of a general tetrahe-
dron is hard to find (see e.g. [1]). When setting up the linear system for their
calculation the uniform orientation of the faces of the tetrahedron has to be ob-
served. This is exemplified in the examples at the end. After transforming the
original linear system into a system having a coefficient matrix of block upper
triangular form the calculation of radius and center of the insphere of the tetra-
hedron can be separated from each other. The solution of the remaining linear

system for the center of the insphere rests upon an exercise in [2].

2. Preliminaries

Matrices are designated by capital letters, such as B, C, D, E. The center of the
insphere shall be denoted by P, =(X,,¥n,Z,) and its radius by r. Furthermore
the four vertices of the tetrahedron are designated by P =(x,y;,z) for
i=12,3,4. The four faces of the tetrahedron are triangles having the three ver-
tices: {P,P,,R}, {P.P,.P}, {P.P P}, {P,,P,P}. The order of the vertices
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for each triangle is chosen in such a way, that the normal to a face is directed in-
to the interior of the tetrahedron according to the corkscrew rule: the direction
of the normal of a face is defined such that the right thumb points in the direc-
tion of the normal and the fingers curl along the orientation of the bounding
curve of a triangle.
The plane through the three vertices 7, P, P can be described by (see e.g.

[3]):

X=X Y=Y -7

X=X Y,=Y1 Z,—74|=0. (1

X=X Ys=Y1 3—q

Expanding determinant (1) in terms of the elements of the first row leads to:

(X=X )15 (V,2) = (Y= Y1) dizs (%, 2) + (2 =2, ) dips (X, ¥) =0 ()
with
Yo=Y -7 X=X -7
dips (V,2)= O (X, 2)= (3)
123( ) Ys—Y1 Z3—4 123( ) X=X Zz3—1
X=X Yo%
d.(x,y)=|" .
123( ) X=X Y3— Y

If the vertices P, P, P5 do not lie on a straight line at least one of the terms

A (¥,2)s dips(X,2), dips(x,y) is different from zero and so is

W, = \/dm (v, z)2 + 5 (X, z)2 + 05 (X, y)2 . (4)

Dividing Equation (2) by w,,, leads to the so-called Hesse normal form of

the plane

1 1
123 123 W123

(ko) 820D (D) | (Y) g

With the Hesse normal form (5) the distance r of the point P, = (X, Y, Zy)
from the plane can be expressed by (see e.g. [3]):
_5 )d123(xl y) —r

)d123(ynz)_(ym_yl)d123(x’z)+(zm )

W123 W123 W123

(X0 =% (6)

An illustration is given in Figure 1.
Repeating the above procedure for the plane through the vertices P, £, P, of
the tetrahedron gives by exchanging the indices 2 >4, 3—>2:

P,

Py

Figure 1. Tetrahedron with insphere.
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() 20y e, gy deld) g
Wi 4o 142 Wigp
with
Yo=Y 4% b =X L
d 2)= , d ,Z)= 8
142()’ ) Yo=Y Z,—7 142()(2) =% =% ()
X=X Yo=Y
d,, (x,y)="
142( ) K=X Yo=Y
and
Wiy = \/d142 (y, 2)2 +d142 (X, Z)Z +d142 (X’ y)z. )

Repeating the above procedure for the plane through the vertices P, P, P; of
the tetrahedron gives by exchanging the indices 4 >3, 2—>4:

Oy (y, Z) s (X, Z) dys (X' y)
Xn =% )= == (Yn = V)————+(2, ~2)————==r  (10)
( ) Wig, ( 1) W34 ( 1) Waas
with
Ya= V1 437 X3=X% 3=
_ _ 11
d134(y,2) I 24_21, d134(X,Z) X, —% Z,-1, (11)
X=X Y;—V
gy (%, y) =]
134( ) X =% Yi—V,
and
Wigq = \/d134 (y’ 2)2 g, (X’ Z)Z + oy (X' y)Z' (12

Repeating the above procedure for the plane through the vertices 2, P, P of
the tetrahedron gives by exchanging the indices 12, 3—4 and 4—3:

(Xm_xz)dm(y,z) (m—yz)—d243(x’z)+(zm—zz)—d243(x'y)=r (13)
Woss W3 W3
with
Yo=Y, 2,7 X=X 2,71
_ = 14
d243( ,Z) yz_yz 23_22, d243(X,Z) X3_)(2 Z3_22 ( )
X=X Yo=Y,
d X,y) = 4~ N2
243( ) X3=X Y=Y,
and
Wy = \/d243 (y’ 2)2 +0, (X, 2)2 +0, (X, y)z- (15)

By splitting the terms X, —X,, Y, —VY,> Z,—Z, into
Xm_x1_(X2_X1)n ym_yl_(yz_yl)’ Zm_Zl_(ZZ_Zl)
one obtains from (13)

)d243(y’z)_(ym i

W243 W243 W243 W243

—yl)d243(x'z)+(z —zl)d243(x'y)+izr (16)

(X =X,

with
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p=((% =)t (¥,2) = (Y2 = Y1) dois (X 2) +(2, = 21) s (X ¥)); (17)
p can also be written as a determinant of the following matrix
=% Yo=% 5,-4
C=X%-X% Y:=Y%1 Z-17| (18)
Xg=% Yo=Y 444

From determinant |C| one obtains (17) by subtracting the first row from the
second and third row, exchanging rows two and three and expanding the result-
ing determinant with respect to the first row. This process is reversible.

Corollary 1

For determinant |C| holds |[C|=0 if and only if the four vertices P, P, P,
P, of the tetrahedron are lying in a plane.

Proof: Considering for instance the plane through P, P, P; according to (1)
the coordinates of vertex P; are fulfilling (1) if and only if determinant |C| is
zero after exchanging the third row with the second and afterwards with the first

row, leaving the value of the determinant unchanged. [J

3. A Linear System

From Equations (6), (7), (10) and (16) one obtains the following system of linear
equations for the unknowns X, =X, Y, — Y1, 2, — 2,1 :

dlzs(yvz) —d123(X, Z) d123(X1 y) —Wip, Xn =% 0

d14z (y! Z) _d142 (X’ Z) d142 (X1 y) Wi ym - yl — 0 (19)
d134 (Y! Z) _d134 (X’ Z) d134 (X’ Y) —Wigy .74 0 .
d243(y’z) —d243(X,Z) d243(x’ y) ~Wass r _|C|

With the following Proposition the elements d,,;(y,z), d,5(X,2), dyps(X,y)
in the last row of the linear system (19) can be expressed by the remaining ele-
ments.

Proposition 1

Oy (¥, 2)+diay (¥, 2)+dpps (¥, 2)+dy, (y,2) =0
Oy (X, 2)+dpg (X, 2) +dpps (X, 2) +dyyp (x,2) =0
Oyss (X Y) + iz (X Y) + s (X, y) +dpyp (X, y) =0
Proof: It is sufficient to prove the first statement.
Yo=Y, 7471
Ys=Y2s 23717
Vo= %=(Y2= %) 2.-2-(2-12)
Ya= Vo= (V.= W) Z-2,-(2,-2)
Yo=Y L4 Yam N %4
Ys=WY1 Z=4| [Ys—N Z3—%4
Ys=Y1 =4 |YomN 74|
Yo=Y Za—4| [Ys—N L4
=—dy3, (¥,2)—dpps (y,2)—dy, (v, 2).

d243(Yv Z) =
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Thus
Ay (¥, 2)+ iy, (Y, 2)+dpps (v, 2)+dyy, (y,2)=0. O

Multiplying the linear system (19) from the left by the following transfor-

mation matrix

= O O -

00
10
01
11

= O O O

—or what is equivalent, by adding the first three rows of (19) to the last
row—yields with the result of Proposition 1 a decomposed linear system, whose

coefficient matrix has block upper triangular form

d123 (y, ) _d123 (X Z) d123 (X’ y) _W123 Xm - Xl 0
d142 ( ) dis ( ) dis (X, y) Wiy, Yn = V1 _ 0 (20)
Ay (y Z) =03, ( ) diay (X, y) Wiz ,— 4 0
0 0

0 Z ijk r _|C|

The summation of the terms W, in the last row of (20) ranges over the in-
dex triplets 123, 142, 134 and 243. Looking at the last equation of (20) the calcu-
lation of r can be separated from the calculation of the other unknowns. The last
equation of (20) yields:

]

r= ,
Wigg +Wigp + Wiy + Woyg

(21)

where each of the terms W,,,, W,,, W, and W, according to (4), (9), (12)
and (15) is non-zero, if the three vertices involved do not lie on straight lines.

Thus one obtains from (20) a linear system for the remaining unknowns X, —X,,

Yo —VYi» Z,—Z. For convenience the first and the third row of (20) are inter-
changed.
g (¥,2) —Oige (%,2)  digy (X, Y) ) X0 =% W34
d142 (y| Z) _d142 (X, Z) d142 (X, y) Yo = Y1 | =] Wiy |- (22)
dips (¥,2) —dips(X,2) dig (X y) \ 2, —2 W95

The next Proposition is formulated for the coefficient matrix

A, (y’ Z) —0y3, (X, Z) [ (X, y)
D=|dy, (y, Z) —dy,, (X’ Z) dygy (X’ Y) (23)
d123(y’z) —d123(X,Z) dlza(xvy)

of the linear system (22). This Proposition rests upon an exercise in [2].
Proposition 2
For matrix Cfrom (18) and matrix D from (23) the following statement is true:
= |C| E, where C" denotes the transpose of Cand £ the identity matrix.
This means that D is the cofactor matrix of C. Furthermore for |C| #0 holds:

iCT is the inverse of Dand |D| = |C|2.

]
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Proof: Expanding |C| in terms of the elements of the first, second and third
column yields with denotations (11), (8), (3):
Ys=Y1 Z3—14
Yo=Y 2444 _(XS_Xl)
Yo=Y 77
Yo=Y Z3—Z4
= (X, =% ) dyay (¥, 2) + (X =% ) dyp (¥, 2) + (X, =%, ) iy (¥, 2)

3 =X 3= X=% =4
Xg=X 2,—7 Xy=X 2,—7
=% -7
X=X 237
==(¥2 = Y1) dhsa (X, 2) = (Y5 = Y1) duap (%, 2) = (Vs = Y1) dip5 (%, 2)

Yo=Y1 2,77

Cl=(x,—
IC[=(x,~%) Ve-V, 2-12,

+(X—%)

X

|C|:_(y2_y1) +(y3_y1)

_(y4 _yl)

X=X Y=Y N=X Yo=Y
Cl=(z,-2,)|" —(z,-2
|| (2 1))(4_X1 Yo—W (3 1)X4_X1 Yi—Y1
oy

=(2,-2,)digy (%, ¥) +(2, = 2) Ay (X, ¥) +(24 = 2,) dis (%, Y)

By multiplication of matrices C' and D one obtains with the above results
for determinant |C| the elements on the main diagonal of the product matrix:

X=X X=X X=X d134 (y, Z) _d134 (X’ Z) d134 (X’ y)

CD=|Y,~Y: Yo% VeV | G(¥,2) —dipp(%2) dip(xY)

=4 L= ;7L d123 (y’ Z) _d123 (X! Z) d123 (X, y)

(24)
ic| o o
=0 |c| ol
0 0 [c

The non-diagonal elements of the product matrix are zero because they can be
written as 3 x 3 determinants with two equal columns. As an example this shall

be shown for the element in row two and column one of the product matrix:
(yz - yl)d134 (y’ Z)+(y3 - yl)d142 (y! Z)+(y4 - yl)d123 (y, Z)
y3_y1 23_21 Yo=Y 2,77
—(¥;—Y

Yo=Y Z,— 4 ( ? 1)3/4_3/1 ,—4

Yo=Y L,—4

Ys= Y1 Z3—%4
Yo=Y1 YoV Z,-%

=YY= Ya— N 23—21=0
Ya=Y1 Yo=Y L%

=Y.~ %)

+(y4 _yl)

From (24) follows in case of |C|¢O that ﬁCT is the inverse of D.
Forming determinants in (24) yields |CT||D|=|C|3. Because of |CT|=|C| for
|C|;t0 one obtains |D|=|C|2. O
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Corollary 2
If for determinant |C| holds |C|=0 the coefficient matrix D of the linear

system (22) has the following determinant

X Y 4

|D| _% Y2 % . (25)
X Ys Zg
X Yy Z4

Proof: Determinant |C| can be transformed in the following way:

X Yi L -
|C|:X2_X1 Y= -z 0
=% Ys=Y1 3—74 0
X, =% Ys=Y1 Z,-% O (26)

X N 4 - X N4

e Y2 B T4 % Y. B

X3 Y3 I3 — X3 Y3 73

Xo Yo 2y — Xp Yo 4

With (26) and the result of Proposition 2 for determinant |D| of the linear
system (22) holds (25). [

Finally the coordinates of the center of the insphere of the tetrahedron are
obtained after solving the linear system (22). The result may also be found in [4].

Theorem 1

If the vertices P, P, P, P, of the tetrahedron are not lying in a plane the
center of the insphere is given by:

W52 X, + W, 10 Xs + W0, X, + W.
x,, = —azsXa T Vhar¥o T Mgy %y 213%y 27)
Wigg + Wiy + Wigy + Wy

_ Wigs¥s +Wigp Y5 + Wigg Y, + Woss ¥y
Wigg + Wigp + Wigg + Woyg

Ym (28)

— W123 Z4 + Wl42 Z3 + W134 Z2 + W243 zl

m

(29)
W123 + W142 + W134 + W243

Proof: The three vertices of each face of the tetrahedron cannot lie on a
straight line; otherwise the vertices 7, P, P, P would lie in a plane. So the
terms W5, Wiy, Wigy, W, defined in (4), (9), (12) and (15) are different from
zero. Furthermore according to Corollary 1 determinant |C| is different from

zero.
1
Multiplying the linear system (22) from the left by ECT , the inverse of co-

efficient matrix D according to Proposition 2, yields

Xn =% :L(Wm(xz _X1)+W142(X3 _X1)+W123(X4 _Xl))v
C|

r
Yo = Y1 :ﬂ(W134(y2 - y1)+W142(Y3 - Y1)+W123(YA - yl))’
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r
I, —74 :ﬂ<W134(22 - Z1)"'W142 (23 _21)+W123(24 _Zl))'

With formula (21) for rone obtains

—x = Wy (XZ _X1)+W142 (X3 _X1)+W123(X4 _X1)
Wiag + Wigp + Wigg + Woys

X (30)

Y =Y = Wisy (Y2 = Ya) + Wi (Vs — Ya) + Wzs (Vs = yl). (31)
m 1 Wipg + Wy +Wigy +Wyys

7 7 :W134(Zz_21)+W142(23_21)+W123(Z4_21) (32)
"o Wigg +Wigp + Wigy +Woyg

From (30), (31), (32) one can deduce (27), (28), (29). O

4. The Planar Case

Assume that the three vertices of a triangle P =(x,y,), P, =(X.Y,)>
P, =(X;,¥;) arenot coinciding. The center of the incircle of the triangle shall be
denoted by P, =(x,,Y,) and itsradius by r.

The straight line through P and 7, is given by

X=X Y=Y
=(x— Yo =Y ) —(Y—Y, )(X,—%x)=0.
X, =% Y-V, (x=%)(¥2 = Y1) = (Y= Y1) (% = %)
The so-called Hesse normal form of the line is obtained by dividing the equa-
tion by
2 2
W, = \/(Xz _Xl) +(y2 - yl)
yielding

Y= % X=X
(x=%) === (y =) == =0.
Wi, Y,
The distance r of the point P, =(X,,Y, ) from this line is given by (see e.g.
(3)

Yool (y _yyeXy (33)

WlZ WlZ

(% =)

Repeating the above procedure for the line through P and 7 of the triangle
gives by exchanging the indices 1—»>2 and 2—3

— Xy —X
(X = %) 2 (y, —y,) e oy

Wos Wys

with

2 2
W23=\/(X3_X2) +(y3_y2) :
By splitting the terms X, —X,, Y, —Y, into
X =% = (% =%), Yo =¥i= (Y2~ Y1)

one obtains
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- X; —X o
(Xm—xl)ySWzsy2 (Yn = ¥1)= 232+W—23=r (34)
with
o ==((6 %) (%= ¥2) = (% = %) (% = %))
I LR T PR A B R A PR
=% Y=Y X=X Ys— Y

X=X Y=Y
X=X YoY%

Introducing matrix

B:(X3_X1 y3_y1j
X=X Y=Y

and its determinant |B| Equation (34) turns into

Y=Y, X=X |B|
X, —% )22 (y, —y, )22y 35
( " Xl) W23 (ym yl) W23 W23 ( )
As the vertices of the triangle were assumed to be not coinciding |B| =0 is
true. Repeating the above procedure for the line through 7; and P of the triangle
gives by exchanging the indices 2—3 and 3-1

- - X
(Xm_xs)u_(ym _YS)Xl S=r

31 W31

with

Way :\/(Xl _X3)2 +(y1 - ys)z-
By splitting the terms X, —X;, Y, —Y; into
X =% =% %), Yu=¥=(Ys = V1)

one obtains

A=Y (g —y) 2l Ty (36)
W. W.

with
7=—((% %) (Y= ¥) = (¥s = 1) (. = %)) =0
Equations (33), (36) and (35) are forming a linear system for the unknowns
X, —X

m~ %> Yp—Y andr

Yo=Y —(% %) W, )X, =% 0

Vi=Ys —(a=%) Wy | Yo—Yi[=| O | (37)
Yo=Y, —(=%) —Wy r -[8|
Adding the first and the second row of the linear system (37) to the last row
yields
Yo=Y _(Xz_x1) —Wp, Xn =X 0
Yi—Ys _(Xl_xs) —Way Yo=Y |=| O |, (38)
0 0 - W r -|B|
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where the sum in the third row of (38) ranges over the index doublets 12, 31 and

23. From the third row of (38) one obtains
8]

r=—11
Wiy + Wap + Wog

The remaining reduced linear system for X, —X, and Yy, —Y, reads

[yZ -V (%= Xl)][xm - XlJ _ (rwlzj

Y1—Ys _(Xil_x3) Yo = V1 Wy,
Multiplying the linear system (40) from the left by B' yields because of
(xa—xi X, —&J(yz -y, (%, —XOJZ{IBI 0 J
Ys= Y1 Yo=Y )\ V1~ Ys _(Xl_x3) 0 |B|
and [B|#0 as solution
r
Xm =% ZH(WH (Xs - X1)+W31 (Xz - X1))

r

Y = V1 :E(le(ys _y1)+W31(y2 _yl))‘

With formula (39) for rone obtains from this result

—x = W12(X3_X1)+W31(X2 _Xl)
Wip + Wy +Wog

Wip (Vs = ¥a) + Wy (V2 — V1)
Wi, + Wy + Wy

Yo~ =

and thus

— W12X3 + W31X2 + W23X1
m
W12 + W31 + W23

_ W Y5 +Wai Yy + WYy
o )
Wiy + Way + Wog

5. Examples

(39)

(40)

(41)

The tetrahedrons considered in the sequel are having as vertex the origin, a ver-

tex on the x-axis, a vertex in the x-y plane and a vertex in three-dimensional
space: P, =(0,0,0), P,=(%,,0,0), P,=(X;,¥5,0) and P, =(x,,Y,,2,). For

determinant |C| according to (26) holds:

0 0 01 0 0 01
X, 0 0
o= 0 01 o000 [t
X, Y; 0 1 [x y, 0 0 x3 : , 2rsm
% Ve 204 fxoyozoof T

Determinant |C| is different from zero if the product X,y,z, is different
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from zero.

Example 1
Consider a regular tetrahedron of edge length a, having the vertices

P =(0,0,0), P,=(a,0,0), P3=(%,§a,OJ and P4=[%,%a,\gaj. For
B E

it holds Wy = W,,, = Wiy, = Wy, =2 and [C|= 7

1
is r =ma. The linear system (22) for the calculation of the center of the

a’. From (21) the radius

insphere reads:

iaz _iaz _iaz 1 a.3
N AN PN NG
2 1 Xn 1
0 \ﬁaz ——a’|y, |=| —=a%|
3 2.3 Z W2
\/§ 2 " 1 s
NO ——a

The solution of the linear system is: P, = . The same result

(E 1, La]
" (27243 26
is obtained with (27), (28), (29). The distance of P,, from each vertex is % \Ea.

Example 2

Consider an irregular tetrahedron with the vertices P, = (0, 0,0), P,=(6,0,0),
P,=(54,0) and P,=(237) . |[C|=168 and from (21) the radius is
r=1.14508. The linear system (22) for the calculation of the center of the

insphere reads using decimal numbers:

28 =35 7 (X, 51.9469

0 42 -18| vy, |=|52.3242 |.
0 0 24)\z 27.482

m

The solution of the linear system is: P, :(3.73968,1.73656,1.14508). The
distance of P, to P is 4.27926, the distance of P, to A is 3.07179, the dis-
tance of P, to P is 2.83245 and the distance of P, to 7, is 6.23721. These
numerical results have been obtained with Mathematica.

6. Conclusion

A coherent derivation of radius and center of the insphere of a general tetrahe-
dron is given. By means of elementary techniques of linear algebra the original
linear system for the determination of radius and center of the insphere of a tet-
rahedron can be broken up to calculate the radius and the coordinates of the
center separately. The remaining linear system for the coordinates of the center
of the insphere can be solved by multiplying with the inverse of the coefficient
matrix, which is found in the course of the treatise. This procedure can readily

be applied in the planar case.
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