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Abstract 
In this study, two Cu-based catalysts with and without N doped carbon ma-
trix, named N-Cu/CuO/C and Cu/CuO were synthesized via calcination of 
melamine-cupper acetate complex and cupper acetate at 500˚C under an inert 
atmosphere. The catalysts were characterized by X-ray powder diffraction 
(XRD), Field Emission Scanning Electron Microscope (FESEM), and CHNS 
elemental analyzer. The catalytic activity of both catalysts was evaluated through 
the NaBH4 associated reduction of commercial textile dye named reactive 
black 5 (RB5). The kinetics of the reduction of reactive black 5 was also de-
scribed by the pseudo-first-order kinetic equation. For the studied reduction, 
N-Cu/CuO/C exhibited enhanced catalytic activity both in conversion and 
kinetics (97% conv. in 315 sec) compared to that of by Cu/CuO/C (25% conv. 
in 1500 sec). Besides, N-Cu/CuO/C also demonstrated good reusability up to 
four consecutive cycles. 
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1. Introduction 

A huge amount of wastewaters having various synthetic dyes are generated 
worldwide because of their widespread use in the industry [1]. Every year ap-
proximately 8 × 105 tons of around 100,000 commercially available dyes are man-
ufactured worldwide, which are widely used in various industries such as textile, 
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pharmaceutical, cosmetics, food, and so on [2]. Among various commercial dyes, 
azo dyes are widely used dyes that cover around 70% of the world dye production 
[3]. Around 70% of the aqueous wastes generated from textile industries are due 
to the use of azo dyes [4]. These textile waste water (concentrations between 10% 
- 15% w/v) should be discharged into different natural aquifers after proper 
treatment, however, many of the industries especially in third world country reg-
ularly discharge such wastewater without proper treatment [5].  

Reactive Black 5 (RB5) is one of the most widely used azo dyes due to its high 
chemical stability along with enhanced water solubility [6] [7]. RB5 is a common 
reactive dye generally used to dye wool, nylon, cotton, and other cellulosic fiber 
[7]. In most cases, dyes do not completely fix the fabric which resulted in the 
generation of toxic aqueous waste [6]. These azo dyes are toxic and carcinogenic 
as a consequence, the wastewater with synthetic dyes can induce severe adverse 
effects such as carcinogenesis, mutagenesis in humans [8]. Moreover, the exis-
tence of a very small amount of dye in the water can alter the water transparency 
due to their high visibility that might adversely affect the aquatic life by sunlight 
to pass through the water [9]. 

At these circumstances, it is essential to develop methods and materials to 
remove these coloring contaminants from the aqueous media. So far, various 
methods have been applied to remove RB5 from water such as photo-catalytic 
degradation [10], Fenton/Fenton-like processes [11], biological treatments [12], 
electrochemical processes [13], electro-oxidation [14], ozonation [15], UV/H2O2 
oxidation [16], etc. Nevertheless, many of these techniques suffer from several 
shortcomings such as extended operation time, lower efficiency, and high cost. 
To overcome such shortcomings, researchers have focused on the development 
of new methods. Recently, such as NaBH4 assisted reductive decolorization us-
ing metal-based catalysts have drowned a great deal of attention [17]. In this 
method, so far, mostly noble metals based catalysts such as Au, Pd, Pt etc. have 
been widely used [17]. However, to reduce the cost, attempts to develop non- 
noble based catalysts such as Cu [18], Co [19], and Ni [20] were also encoun-
tered. Moreover, the catalytic activity of metals found to enhanced significantly 
when these metals were embedded in the N doped carbon matrix [21]. The 
presence of N atoms may enhance the electron density in the carbon architec-
ture, which eventually improves the electrical properties as well as surface reac-
tivity [21] [22] [23].  

In this study, a novel approach to prepare N doped copper carbon catalyst is 
investigated utilizing low-cost and readily available chemicals, copper acetate 
monohydrate, and melamine via heat treatment under an inert atmosphere. The 
catalytic performance of prepared catalysts was evaluated by the NaBH4 assisted 
catalytic reduction of RB5.  

2. Experimental 
2.1. Materials 

All reagents and solvents are commercially available and were used without fur-
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ther purification. Copper (II) acetate monohydrate (Cu(C2H3O2)2·H2O, >98%), 
melamine (C3H6N6, >98%) were purchased from Sigma Aldrich. Sodium boro-
hydride (NaBH4, extra pure), methanol (CH3OH, 99.5%), ethanol (C2H5OH, 
99.9%) were purchased from Daejung chemical, South Korea. The dye, reactive 
black 5 (C26H21N5Na4O19S6) was supplied by Dye Star Ltd., Dhaka, Bangladesh. 

2.2. Synthesis Cu-Mel Composites 

25 ml water and 5.0 g of melamine were taken in a 200 ml round bottom flask 
and the solution are sonicated for 10 min at room temperature. The sonication 
resulted in the formation of white suspension where 1 mmol Copper (II) acetate 
monohydrate was added. The reaction mixture was further stirred using a mag-
netic hotplate stirrer at 100˚C under reflux condition for 3 h. After that, the sol-
ids were filtered and kept in a conventional drying oven at 105˚C for 12 h. After 
drying, the collected samples were stored for further heat treatment. The sample 
in this stage is denoted as Cu-Mel composites. 

2.3. Synthesis of N-Doped Cu/CuO2/Carbon Composites 

1.0 g prepared Cu-Mel composites were taken in high temperature alumina 
crucible (14 H * 18 * 75 L mm), which as placed in a tubular furnace. A 700 mm 
long alumina tube with 40 mm outer diameter was used as a tubular reactor. The 
Cu-Mel composites were heated at 500˚C under an inert atmosphere. The heat-
ing was set to 5˚C/min and the temperature was monitored using a K-type 
thermocouple. The inert atmosphere was maintained using a constant flow of N2 
gas at a rate of 30 mL/min throughout the reaction. After the reaction, when the 
temperature went down to room temperature, the black powder samples were 
collected, washed several times with methanol-water mixture and stored for next 
use in closed 20 mL vial. The synthesized composites were donated as N-doped 
Cu/CuO2/Carbon (N-Cu/CuO/C) composites. A similar method was adopted for 
calcination of Cu(C2H3O2)2·H2O and the obtained black powder was named as 
Cu/CuO composites. 

2.4. Characterization 

X-ray powder diffraction (XRD) analysis was conducted with the Rigaku 
DMax-2500 diffract meter using CuKα radiation. The morphologies and com-
position of the samples were examined with a field emission scanning electron 
microscopy (FE-SEM, JEOL-JSM7401F). An elemental analyzer (Thermo Fisher, 
Flash-2000) equipped with a TCD detector was used to measure the nitrogen 
content of the catalysts. 

2.5. Reduction of Reactive Black 5 (RB5) 

The catalytic reduction of RB5 was carried out in a standard quartz cuvette with 
1 cm path length in the presence of an excess amount of NaBH4 at room tem-
perature, and the progress of the reduction was monitored using a UV-vis spec-
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troscopy (Shimadzu-1800). A 10 mg/mL aqueous dispersion of N-Cu/CuO/C 
was prepared to use as a catalyst. First, 0.2 mL of 80 ppm RB5 mixed with 2.5 mL 
DI water, and then, 0.2 mL of varying concentrations of the freshly prepared 
NaBH4 solution was added to the cuvette. After that, 100 μL of the prepared dis-
persion was added to the cuvette, and the solution was quickly introduced to 
UV-vis measurements. The absorbance of the solutions was measured at differ-
ent intervals within the scanning range of 400 - 750 nm. The kinetics data of RB5 
reduction were obtained by monitoring the absorbance at 598 nm. 

3. Results and Discussion 
3.1. Characterization of the Composites 

Figure 1 presents the XRD pattern of the composites prepared from Cu-melamine 
and copper acetate monohydrate, respectively. After calcination at 500˚C, both 
of the precursors resulted in the formation of composites having metallic Cu and 
cubic CuO phases.  

Both of the composites, N-Cu/CuO/C and Cu/CuO, exhibited three peaks 
evolved at 43.3˚, 50.3˚ and 74.1˚, which might be ascribed to the (111), (200) and 
(220) planes of metallic copper (JCPDS No: 4-0836), respectively [24] [25]. On 
the other hand, peaks exist at 38.9˚ and 66˚ might be attributed to the (111) and 
(31-1) phase of the monoclinic CuO phase ((JCPDS card No. 48-1548) [26]. No 
diffraction peaks of any Cu2O phases were observed in the diffraction pattern of 
both composites.  

SEM images of the prepared composites were used for the further illustration 
of the morphology of N-Cu/CuO/C and Cu/CuO/C composites. As depicted in 
Figure 2(a), the Cu/CuO/C seemed to be many aggregated particles comprising 
of a great amount of irregular small crystals. This agglomeration might be due to 
the high-temperature calcination of the solid precursors. However, agglomera-
tion was more prone in N-Cu/CuO/C composites as shown in Figure 2(b). Be-
sides, a little bit of layered type morphology was noticed in N-Cu/CuO/C which 
might be the presence of melamine in the precursor as the thermal condensation 
of melamine generally occurred during the heat treatment that usually resulted 
in the formation of the layered structure [27]. 

 

 
Figure 1. XRD patterns of N-Cu/CuO/C and Cu/CuO composites. 
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Figure 2. FE-SEM images of (a) Cu/CuO; (b) N-Cu/Cu/CuO. 

 
In both synthesis, Cu(C2H3O2)2·H2O was as the source of metal or metal or 

metal oxide. However, melamine has been used during the synthesis of the pre-
cursor of N-Cu/CuO/C composites, where melamine served as a source of car-
bon as well as nitrogen when heat treatment was conducted under inert atmos-
phere [28] [29] [30] [31]. The elemental analysis (CHNS) of N-Cu/CuO/C re-
vealed the presence of 4.12% nitrogen and 5.15%, respectively. 

3.2. Catalytic Reduction of RB5 

Figure 3 represents the UV-vis spectra of RB5 and the change of this spectra in 
the presence of NaBH4 along with/without catalyst (N-Cu/CuO/C). As seen in 
Figure 3, the pure RB 5 exhibited typical characteristic UV-absorbance peak 
(λmax) at 598 nm. However, in presence of NaBH4, the position of the characte-
ristic UV-absorbance peak did not undergo significant change, however, the ab-
sorbance reduced to 2.2 (80 ppm) to 1.9 (70 ppm) after 3600 Seconds. However, 
in the presence of N-Cu/CuO/C along with NaBH4, the concentration of RB5 
reduced to 2.5 ppm.  

Optimization of the concentration of NaBH4 during catalytic reduction is an 
important issue as it governs total reaction efficiency. As it is observed from 
Figure 3, NaBH4 itself could reduce the concentration of RB5 to a certain level as 
it could produce hydrogen via hydrolysis of NaBH4 [22] [32]. To study the effect 
of concentration of NaBH4 on the reduction of RB5, several kinetic experiments 
where the concentration of RB5 and catalyst amount were kept constant and the 
concentration of NaBH4 was varied. It was reported earlier that the reaction ki-
netics of the NaBH4 assisted catalytic reduction of organic contaminants could 
be well represented by pseudo first-order kinetics [22] [33] [34] [35]. As a con-
sequence similar methods have adopted to determine the rate constant. 

Figure 4 represents the time courses of RB5 reduction with the variation of the 
concentrations of NaBH4. The corresponding pseudo-first-order rate constants 
(kapp) retrieved from Figure 4 for the reduction of RB5 using 0.2, 0.3 and 0.3 M 
NaBH4 are 0.059, 0.087, and 0.087 S−1, respectively. The values of kapp increase 
with an increase of concentration of NaBH4 to 0.3 M, however, more increase of 
NaBH4 concentration did not exhibit higher reduction kinetics. The higher value 
of RB5 reduction kinetics at higher NaBH4 concentration up to 0.3 M might be 
ascribed to higher availability of BH− 

4  that worked as a reductant while bonded 
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to the catalyst [22] [36]. In the present study, when the NaBH4 concentration 
exceeded 0.3 M, the catalytic surface might be saturated and no more increase in 
the reduction kinetics of RB5 was witnessed. Consequently, 0.3 M NaBH4 was 
taken as an optimum concentration for the present study. 

Catalytic conversion of RB5 by N-Cu/CuO/C and Cu/CuO in the presence of 
NaBH4 is presented in Figure 5(a). When N-Cu/CuO/C catalyst was used, about 
97% conversion was attained within 315 s, whereas for Cu/CuO catalyst, around 
25% conversion was found after 1500 s reaction. The calculated kapp value of RB5 
reduction by N-Cu/CuO/C was 0.058 S−1 which was much higher than that by 
Cu/CuO (0.023 S−1, See Figure 5(b)). The enhanced catalytic activity by 
N-Cu/CuO/C over Cu/CuO might me for the presence of carbon matrix as well 
as for the presence of N moiety which will be discussed in more detail in the next 
sections.  

3.3. Plausible Mechanisms 

As observed in Figure 6, at the beginning (when t = 0), the UV-Vis Spectra of 
RB5 is showed two main characteristic peaks at 597 nm and 313 nm within visi-
ble range along with a small peak at 255 nm within UV range which is in good 
agreement with the previous report [34]. The peaks at 597 nm, 312 nm, and 254 
nm represent chromophoric (-N=N-) group, naphthalene, and benzene rings,  

 

 
Figure 3. UV-vis spectrum of RB5 (blank); before and after 
the addition of NaBH4 along with and without the catalyst. 

 

 
Figure 4. Effect of the concentration of NaBH4 on 
catalytic reduction of RB5 by N-Cu/CuO/C catalyst. 
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Figure 5. (a) Catalytic conversion of RB5 by N-Cu/CuO/C and Cu/CuO catalysts; (b) The 
relationship between ln(At/Ao) and reaction time (t) for the reduction of RB5 in presence 
of 0.2 M NaBH4 by N-Cu/CuO/C and Cu/CuO catalysts. 

 

 

Figure 6. UV-Vis Spectra at various time points during 
NaBH4 assisted catalytic reduction of RB5 by N-Cu/CuO/C. 

 
respectively [34] [37]. In electrocatalytic reduction, Popli et al. demonstrated 
that the reductive decomposition of RB5 proceeded via cleavage of azo (-N=N-) 
bond to produce aromatic amines (-NH2 groups), such as Sodium 1, 2, 
7-triamino-8-hydroxynaphthalene-3,6-disulfonate and Sodium  
2-[(4-aminophynyl) sulfonyl] ethyl sulphate [34]. So during the progression of 
the reduction, the azo bond diminished which resulted in the disappearance 
peak at 597 nm (corresponding to azo bond in Figure 6). Sodium borohydride is 
a well-known strong reducing agent (with standard redox potential (−1.24 E˚/V 
at pH 14) that has been used to reducing a wide range of redox-active pollutants 
[18] [38]. However, due to the negative charge on BH− 

4 , it exhibited inadequate 
applicability to the anionic substance. In aqueous media, NaBH4 hydrolyze 
(NaBH4 + 4H2O → NaOH + H3BO3 + 4H2) to produce H2 that can increase the 
pH of the solution [32] [38]. As a consequence, the addition of NaBH4 in RB5 
might increase the pH over the pka value of RB5 (6.9) [39]. The higher pH of the 
solution (over the pKa value of the RB5) might induce speciation which ulti-
mately reduces the probability for the direct reduction due to the development 
of electronic repulsion between BH− 

4  and anion part of RB5. 
It was evident from the previous study that novel metals such as Ag, Pt, Pd, 

etc. played an important role in the enhanced reduction of different pollutants in 
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association with NaBH4 [17]. Later, some non-novel metals such Co, Ni, Cu, etc. 
have also demonstrated similar activities. Both for the novel or non-novel met-
al000 catalyst, the reduction process seemed to follow the same mechanism [18] 
[22] [32]. In the first step, the accumulation of BH− 

4  and binding SO− 
3  groups of 

the dye via anchoring the two oxygens (exist in SO− 
3  groups) onto surface Cu 

catalyst. In the next step, the electrical reaction between BH− 
4  and RB5 on the 

catalyst surface. The surface of the synthesized might play a vital role to establish 
an electrical connection between BH− 

4  and RB5 and consequently allowing the 
electrons to travel from the oxidation site to the reduction site [40]. In the case 
of the N-Cu/CuO/C catalyst, the active Cu or CuO sites are distributed through- 
out the carbon matrix that might enhance electron travel from the oxidation site 
to the reduction site. As a consequence, higher conversion RB5 was occurred by 
N-Cu/CuO/C (97%) compared to that by Cu/CuO (23%) catalyst. Additionally, 
different studies revealed that the presence of N doping in the carbon matrix 
may enhance the chemical reactivity and electronic density [21]. Consequently, 
the presence of these supplementary active sites resulted in the improved cata-
lytic activity of N-Cu/CuO/C composite compared to Cu/CuO. 

3.4. Reusability 

In consideration of economic as well as environmental aspects, the reusability of 
a catalyst is an important parameter. As a result, the reusability of best-synthesized 
catalyst i.e. N-Cu/CuO/C was assessed by conducting repetitive reduction cycles. 
After every consecutive cycle, the samples were carefully filtered, washed with 
ethanol and water, and finally dried to use for the next cycle. After each run, 
Co-NCC was separated using a magnet and washed with ethanol for regenera-
tion. Figure 7(a) demonstrated the result of RB5 by N-Cu/Cu/C. As observed in 
the figure, the N-Cu/Cu/C catalyst showed superb reusability, steadily keeping 
more than 96% conversion up to the last cycle. However, the time needed to 
complete each cycle increased from 315 s in the first cycle to 555 s in the fourth 
cycle (Figure 7(b)), showing a slight decrease in catalytic efficiency. This de-
crease in catalytic efficiency might be attributed to the leaching of a small 
amount of active species, along with the blocking of the active sites. 

 

 

Figure 7. (a) Reusability of N-Cu/CuO/C catalyst during the reduction of RB5; (b) Time 
required to accomplish each complete cycle for the reduction of RB5 by N-Cu/CuO/C. 
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4. Conclusion 

Two Cu-based catalysts were successfully synthesized and their catalytic activity 
was evaluated via the reduction of RB5 in the presence of NaBH4. Between the 
two catalysts, N-Cu/CuO/C exhibited 97% conversion which is around 4.21 
times higher than that of by compared to that of by Cu/CuO. The apparent reac-
tion rate for RB5 reduction by N-Cu/CuO/C was 2.5 times higher than that by 
Cu/CuO. The greater catalytic activity of N-Cu/CuO/C probably originates from 
the presence of carbon matrix as well as N moiety. The carbon might boost the 
electron travel from oxidation to reduction site and the N moiety might work as 
an additional active site for the reduction. Besides, N-Cu/CuO/C also demon-
strated good reusability up to four consecutive cycles. 
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