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Abstract 
In this work, we tackled an optimal investment strategy problem of an insurance 
investor, who had logarithmic utility preference and invested in two assets: 1) 
a riskless bond with a constant rate of return and 2) a risky asset (stock) whose 
price dynamics followed modified constant elasticity of variance (M-CEV) 
model. We focused on getting an optimal investment strategy that will max-
imize his returns and pays policy holders their claims whenever they occur. 
We derived formulae that allowed us to analyze the impact of the models pa-
rameters of the coefficient of correlation of the Brownian motions and trans-
action cost. It was found, among others, that if the Brownian motions in-
crease or decrease together, the investor will need less funds to be in business 
than when the Brownian motions do not increase or decrease together. 
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1. Introduction 

Optimal portfolio problem is of practical importance in finance and insurance 
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mathematics. These days, insurance companies invest both in the money market 
and stocks. Due to the high risks involved in the stock market, investment strat-
egies and risk management are becoming more important. 

Most of the studies and insurance mathematics have focused on finding op-
timal investment strategies that minimized the probability of ruin when the risk 
process of an insurance company follows the Cramar-Lundberg model, however, 
this does not come as easily as it presents difficult numerical computations of the 
ruin probability. 

In this work therefore, we intend to study the risk process of insurance com-
pany that follows Modified constant of elasticity (MCEV) model. We take this 
approach, because we viewed that analytical solutions can be obtained with less 
difficulty. The company is expected to invest in two assets: a risk-free bond hav-
ing a constant rate of return and a risky asset (stock) whose price dynamics fol-
lows Modified Constant Elasticity of variance model. The investment strategy 
will help in deciding how the investor should invest in both assets (the risk-free 
bond and the risky stock) subject to paying policy holders their claims.  

2. Review of Related Literature 

In order to achieve this objective some works done in this area were reviewed 
and the contributions were penciled down in the sequel.  

Bayraktar (2009) [1] worked on a problem Involving individual consumers 
and especially beneficiaries of endowments funds who generally employ strate-
gies such that consumption never decreases (Ratcheted) or at least they try to do 
this. They assumed that an agent’s rate of consumption is ratcheted that is it 
forms a non-decreasing process. They found that the agents invests in a financial 
market with one risk-less asset and one risky asset with the latter’s price follow-
ing geometric Brownian motion as in Black schools model given the rate of 
consumption of the agent, they act as financial advisers and find optimal in-
vestment strategies for the agent who wishes to minimize his/her probability of 
running out of money either before dying or before the organization holding the 
endowment fails due to causes other than the ruin of the fund itself. They solved 
this minimization problem using stochastic optimal control techniques. 

Qian and Lin (2009) [2] considered an insurance company whose surplus (re-
verse) is modeled by a jump diffusion risk process. The insurance company can 
invest part of its surplus in risky assets and purchase a proportional reinsurance 
for claims. 

Their main goal is to find an optimal investment and proportional reinsur-
ance policy which minimizes ruin probability. They apply stochastic control 
theory to solve the problem. They obtained close form expression for the mini-
mum probability, optimal investment and proportional reinsurance policy. They 
found out that the minimum ruin probability satisfies the Lundberg equality. 
They also investigated the diffusion volatility parameter. The market price of 
risk and the correlation coefficient on the minimal ruin probability, optimal in-
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vestment and proportional reinsurance policy through numerical calculations. 
Azcue et al. (2009) [3] considered that the reserve of an insurance company 

follows a Cramer-Lungberg process. They considered that the management of an 
insurance company had the possibility of investing part of the reserve in a risky 
asset. They considered that the risky asset was a stock as it is with most of the 
rest of the studies whose price process was a geometric Brownian motion. Their 
main aim was to find a dynamic choice of investment policy which would mi-
nimize the ruin probability of the insurance company. They imposed that the 
proportion of the reserve invested in the risky asset was to be smaller than a 
given positive bound for instance the case a = 1 meant that the company could 
not borrow money to buy stocks. 

They characterized the optimal value function as the classical solution of the 
associated Hamilton-Jacobi-Bellman equation which was a non-linear second 
order integro-differential equation.  

Jung (2012) [4] “Optimal investment strategies for the HARA utility under the 
constant elasticity of variance model”, gave an explicit expression for the optimal 
investment strategy, under the constant elasticity of variance model, which 
maximizes the expected HARA utility of the final value of the surplus at the ma-
turity time. To do this, the corresponding HJB equation was transformed into a 
linear partial differential equation by applying a Legendre transform and proved 
that the optimal investment strategy corresponding to the HARA utility function 
converges as to the one corresponding to the exponential utility function. 

Zhao and Rong (2012) [5] “Portfolio selection problem with multiple risky 
assets under the constant elasticity of variance model,” their work focuses on the 
constant elasticity of variance model for studying the utility maximization port-
folio selection problem with multiple risky assets and a risk-free asset. The Ham-
ilton–Jacobi–Bellman (HJB) equation associated with the portfolio optimization 
problem is established. By applying a power transform and a variable change 
technique, they derive the explicit solution for the constant absolute risk aver-
sion (CARA) utility function when the elasticity coefficient is −1 or 0. In order 
to obtain a general optimal strategy for all values of the elasticity coefficient, they 
propose a model with two risky assets and one risk-free asset and solve it under a 
given assumption. Furthermore, they analyzed the properties of the optimal 
strategies and discuss the effects of market parameters on the optimal strategies. 
Finally, they presented a numerical simulation to illustrate the similarities and 
differences between the results of the two models proposed in their work. 

Ihedioha (2014) [6] worked on a problem on how to take the risk reserve of an 
insurance company to follow Brownian motion with drift and tackle an optimal 
portfolio selection problem of the company. The investment case considered was 
insurance company that trades two assets; the money market account (bond) 
growing at a rate “r” and a risky stock with investment behavior in the pressure 
of a stochastic cash flow or a risk process continuously in the economy. His fo-
cus was on obtaining investment strategies that are optimal in the sense of opti-
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mizing the returns of the company. He established among others that the opti-
mized investment is the assets and the optimal value functions are dependent on 
horizon and the wealth. 

Muravey (2018) [7] work on optimal investment problem under modified 
constant elasticity of variance (M-CEV) model for the assets price and power 
utility over the final wealth for a finite horizon agent. This model was introduced 
in Health and Platen (2002) and is a natural extension of the famous CEV mod-
el.  

From the discussions above, we note that the risk process of an insurance 
company in most of the papers is modeled by the Cramer-Lundberg model while 
investment is done with either two assets or with a single asset and reinsurance 
hence our choice. 

We here find an optimal investment strategy for an insurance investor who 
trades two assets; a riskless bond with a constant rate of return and a risky asset 
which price dynamics follows the modified constant elasticity of variance model, 
and look into the effects of transaction cost and the correlation of Brownian mo-
tions on the investor’s optimal strategies. 

3. Methodology 

In this section, we explain some concepts that we hope will make clear our dis-
cussion. We give brief notes on the following: Brownian motion, Geometric 
Brownian motion, Modified-constant elasticity of variance, Ito’s lemma and 
formulate the insurance investor’s investment problem.  

3.1. Brownian Motion 

The Brownian motion was developed to explain the random movement seen in 
suspended particles but is used to explain market fluctuations and stock market 
trading today. Brownian motion is a continuous time stochastic process (Wiener 
process) named in honor of Norbert Wiener and is characterized by the follow-
ing four facts: 

1) 0 0Z = . 2) 1Z  is almost surely continuous. 3) tZ  has independent in-
crements. 4) ( )0~ ,t sZ Z N t s− −  (for 0 s t≤ ≤ ).  

( )2,N µ δ  denotes the normal distribution with the expected value µ  and 
variance 2δ . The condition that it has independent increment means that if 

1 1 2 20 s t s t≤ ≤ ≤ ≤  then 
1 2t sZ Z−  are independent random variables. 

3.2. The Geometric Brownian Motion (GBM) (also Known as  
Exponential Brownian Motion) 

GBM is a continuous-time stochastic process in which the logarithm of the ran-
domly varying quantity follows a Brownian motion with drift. It is an important 
example of stochastic process satisfying a stochastic differential equation (SDE). 
In particular, it is used in mathematical finance to model stock prices in the 
Black-Scholes model. 
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A stochastic process ( )S t  is said to follow GBM if it satisfies the following  

stochastic differential equation (SDE): 
( )
( ) ( )

d
d d

S t
t Z t

S t
µ δ= + , where ( )Z t  is a  

standard Brownian motion, µ  is the appreciation rate and δ  the volatility, 
are constants. 

3.3. Constant Elasticity of Variance Model (CEV) 

The Constant Elasticity of Variance (CEV) model is a stochastic volatility model, 
which generally has negative correlation between an asset return and its changes 
of volatility. The model was introduced by John Cox (1975) as one of the early 
alternatives to the geometric Brownian motion to model asset price process. The 
CEV model describes a process which evolves according to the following stochastic  

differential equation: 
( )
( ) ( ) ( )

d
d d

S t
t S t Z t

S t
γµ δ= + , where µ  and δ  are con-

stant parameters which satisfy the condition 0, 0µ δ≥ ≥ . The parameter γ   

controls the relationship between volatility and price of the risky asset and is a 
central feature of the model. If 1γ < , we see the so-called leverage effect, com-
monly observed in equity markets where the volatility of a stock increases as its 
price falls. 

Conversely, when 1γ > , we obtain the so-called inverse leverage effect in a 
commodity market whereby the volatility of the price of a commodity tends to 
increase as its price increases. 

3.4. Modified Constant Elasticity of Variance (M-CEV) 

Consider a simple market consisting of a risk-free bond which price we shall 
denote by ( )B t  and a risky asset (stock) with price ( )S t  at time t. The bond 
and stock prices are driven by the differential equation 

( ) ( ) ( ) ( )d d ; 0;B t r t B t t B t B= = >  

for the risk-free asset and the stochastic differential equation (SDE) 

( )
( ) ( ) ( ) ( )( ) ( )( ) ( ) ( )

d
, d , d ; 0;

S t
r t q t S t t t S t t Z t S t S

S t
λ σ = − + + = >    

where ( )Z t  is a standard Wiener process, ( ) 0r t ≥ , ( ) 0q t ≥ , ( ), 0S tσ >  and 
( ), 0S tλ ≥  are the time-dependent risk-free interest rate, the time-dependent 

dividend yield, the time and state-dependent instantaneous stock volatility, and 
the time-and state-dependent default intensity, respectively. The M-CEV model 
has the following specifications:  

( )( ) ( ),S t t aS tγσ = , ( )( ) ( )( ) ( )2 2 2, ,S t t b c S t t bca S tγλ σ= + = , ( )q t q= , 
( )r t r= ; r q bα = − + ; and defined by this corresponding SDE;  
( )
( ) ( )2 2d

d d
S t

ca S t aS W t
S t

γ γα = + +  . 

Heath and Platen (2002) considered model above with 1c = . The case of 
1c ≠  is not an extension of original M-CEV model because this case can be re-
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duced to the original model by a simple change of measure. 

3.5. Ito’s lemma 

Recall from Taylors series;  

( ) ( ) ( ) ( ) ( )2 30 0
0 0

2! 3!
f f

f x f f x x x
′′ ′′′

′= + + + +            (i) 

This defines the case of one variable. 
Now we consider the second dimension case of two variables thus: 

( ) ( ) ( ) ( ) ( )

( ) ( )

2

2

0,0
, 0,0 0,0 0,0

2!
0,0

0,0
2!

aa
a b

bb

f
f a b f f a f b a

f
b

= + + +

+ + +

        (ii) 

We note that  

         ab baf f= .                           (iii) 

From the above equation we get: 

( ) ( ) 2 2, 0,0
2! 2!
aa bb

a b ab
f f

f a b f f a f b a b f ab= + + + + +⋅ ⋅ ⋅ ⋅ ⋅ +    (iv)  

and 

( ) ( ) ( )( ) ( )
2 2

2

2

1d , d d d d d
2 d dt

f f v ff t X t X t X t t X t
t x t xw

∂ ∂ ∂ ∂
= ⋅ + ⋅ + + ⋅ ⋅ +
∂ ∂ ∂

  (v) 

Using the hint that  

( ) ( )d d d d d d 0t t X t t t X t= = = , ( ) ( )d d dX t X t t= ,          (vi) 

then  

( )( ) ( ) ( )( )
2

2

2

1d , d d d
2

f f ff t X t t X t X t
t x x

∂ ∂ ∂
= ⋅ + ⋅ +
∂ ∂ ∂

+         (vii) 

Now comparing ( )( )d ,f t X t  with the function ( )( )d ,V t W t , we obtain the 
Ito’s lemma, 

      ( )( ) ( ) ( )( )
2

2

2

1d , d d d
2

V V VV t W t t W t W t
t W W

∂ ∂ ∂
= ⋅ + ⋅ +
∂ ∂ ∂

.       (viii) 

3.6. Model Formulation 

We adapt the formulation of Osu et al. (2014). The insurance investor trades two 
assets, a bond and a stock, continuously in the economy where the first asset is 
the money market account (bond) growing at a rate, r. The equation governing 
the dynamics of the money market account (bond) is given as 

( ) ( )dB t rB t= .                            (1) 

We assume that the risky stock available for investment has the price ( )S t  at 
time t is driven by Modified Constant Elasticity of Variance (M-CEV). 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2d , , dS t S t r t q t s t s t Z tλ δ= − + +             (2) 
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where, ( ) ( )2Z t  is a standard Wiener process, ( ),s tδ  is the time–and state 
dependent instantaneous stock volatility, ( ),s tλ  is the time – and state – de-
pendent default intensity, ( )r t  the time – dependent risk – free interest rate, 
( )q t  the time – dependent dividend yield. 
Using the following specifications of the M-CEV model  
( ),s t aS γδ = , ( ) ( ) ( )2 2 2 2, , ,s t b ca s t b ca s t b ca S γλ = + = + = + , ( )q t q= ,  
( )r t r= , r q bα = − + , we have the correspond stochastic differential equation 

(SDE) 

( ) ( ) ( )2 2 2d d dS t S t ca S t aS Z tγ γα = + +                (3) 

where α  is the appreciation rate of the risky asset, γ  is the elasticity parame-
ter of the local volatility, c is the local volatility scale parameter, ( ) ( )2dZ t  is 
standard Brownian motion parameter. 

This work concerns an investment behavior in the presence of stochastic cash 
flow or a risk process which we will denote by ( )R t  and satisfies the stochastic 
differential equation (SDE). 

( ) ( ) ( )1d d dR t t Z tβ= ∅ +                       (4) 

where ∅  and β  are constants with 0β ≥ . We also allow the two Brownian 
motions 1Z  and 2Z  to correlate with correlation coefficient ρ . That is 

( )1 2E Z Z ρ= . 
Let ( )W t  be the total wealth the insurance investor has for investment and is 

allocated as follows: ( )tπ  be the total amount of the insurance investor’s 
wealth that is invested in risky assets. The remaining balance ( ) ( )( )W t tπ−  is 
invested in a risk – less asset (bond/market). 

The wealth process of the insurance investor evolves according to the stochas-
tic differential equations (SDE). 

3.6.1. The Case of No Transaction Cost 
When there is no transaction cost and the Brownian motions correlate, the 
wealth process of the insurance investor evolves according to the stochastic dif-
ferential equations (SDE)     

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )
d d

d d
s t B t

W t t W t t R t
s t B t

π π π= + − +   .            (5) 

Applying Equation (1), (3) and (4) in (5) gives 

( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

22 2

1

d d d

d d d

W t t ca S t t aS t Z t

W t t r t t Z t

π γ γπ α

π β

 = + + 

+ − +∅ +  
           (6) 

Equation (6) becomes 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

2 2

2 1

d d

d d d

W t t t ca S t r W t t t

t aS t Z t Z t

π γ

γ

π α π π

π β

 = + + − +∅ 

+ +
       (7) 

Applying the assumption that ( )1Z  and ( )2Z  are correlated with correlation 
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coefficient ρ . The quadratic variation of the wealth process is 

( )( ) ( ) ( )( ) ( ) ( )
2 22 2 2d 2 dW t t a S t t aS t tπ γ γπ π βρ β = + +  

.       (8) 

Therefore, the insurance investor’s problem can be written as 

( ) ( ) ( )( ), supV T W E U W tππ  =                     (9) 

subject to (7) ; 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

2 2

2 1

d d

d d d

W t t t ca S t r W t t t

t aS t Z t Z t

π γ

γ

π α π π

π β

 = + + − +∅ 

+ +
 

3.6.2. The Case of Transaction Cost 
In this case, it is assumed that transaction cost is charged on the risky asset only. 
Therefore Equation (5) modifies to 

( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )

( ) ( )
d d

d 1 d
S t B t

W t t b t W t t R t
S t B t

π π π= − + − +        (10) 

where ( )b t  is the rate at which transaction cost is charged. 
Applying (1), (3) and (4) to Equation (10), we get 

( ) ( )[ ] ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

22 2

1

d 1 d d

d d d

W t t bt ca S t t aS t Z t

W t t r t t Z t

π γ γπ α

π β

 = − + + 

+ − +∅ +  
     (11) 

and we further get 

( )
( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( )( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2

2 1

d

1 1 d

1 d d

W t

b t t b t t ca S t W t t r t

b t t aS t Z t Z t

π

γ

γ

π α π π

π β

 = − + − + − +∅ 

+ − +

 (12) 

The quadratic variation of the wealth process given in Equation (12), ( )1Z  
and ( )2Z  being correlated with correlation coefficient ρ  is 

( )( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )
2 22 2 2 2d 1 2 1 dW t b t t a S t b t t aS t tπ γ γπ π βρ β = − + − +  

(13) 

Therefore, the insurance investor’s problem can be written as 

( ) ( ) ( )( ), supV t W E U W tππ  =    

subject to (12).  

4. The Optimization Programmme 

In this section, we find the optimal investment strategies of the insurance inves-
tor’s and examine the effects of transaction cost and the correlation of the Brownian 
motions under logarithmic utility preference. To derive the Hamilton-Jacobi 
Bellman (HJB) partial differential equation, we start with the Bellman equation.  

The cases that will be examined are: 
1) when there is no transaction cost and the Brownian motions do not correlate 
2) when there is no transaction cost and the Brownian motions correlate. 
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3) when there is transaction cost and the Brownian motions do not correlate 
4) when there is transaction cost and the Brownian motions correlate. 
The Hamilton-Jacobi-Bellman (HJB) equation is  

( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )

2 2

2 2 12 d 0
2

t w

ww

V t t Ca s r w t t V

t as t t as t t V

γ

γ γ

π α π π α

π π βρ β

+ + + − +

 + + + =  

          (14)  

where tV  and wV  are first partial derivatives of V with respect to t and W re-
spectively. wwV  is second partial derivative of V with respect to W.  

We now consider the logarithm preference of the form  

( ) lnU W W= ,                            (15) 

and let the value function be of the form 

  ( ) ( ), ; , lnV W T t g t T W= ,                        (16) 

such that at the terminal time T  

( ); 1g T T = .                             (17) 

We obtain from (16) that 

2

1 1ln , ,t t w wwV Wg V g V g
w w

= = = −                   (18) 

The application of (16) and (18) in (14) gives 

( ) ( ) ( ) ( ) ( )( )

( )( ) ( )( ) ( )

2 2

22 2
2

1ln

12 0

tWg t t Ca s t r W t t g
w

t as t t as g
W

γ

γ γ

π α π π α

π π βρ β

 + + + − + 

 + + + − =  

      (19) 

To obtain the optimal value ( )* tπ  of ( )tπ , we differentiate Equation (19) 
with respect to ( )tπ  and evaluate to obtain 

( )( ) ( ) ( )( )22 2 2
2

1 1 2 2 0
2

g Ca s t r g t a s t as
W W

γ γ γα π βρ  + − − + =    
.  (20) 

From (20) we obtain the investor’s optimal strategy when there is no transaction 
cost and the Brownian motions correlate as 

( )
( )( )( )

( )( ) ( )( )
2 2

22
ntcb

w Ca s t r
t

a s ta s t

γ

γγ

α βρπ ∗
+ −

= − .           (21) 

Next, we find the general optimal investment strategy for the investor under 
logarithm utility preference when there is transaction cost the Brownian motions 
correlate 

We apply Equation (12) and Equation (13) in (viii), the Ito’s lemma, to obtain  

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )( ) ( )( ) ( ) ( )

2 2 2 2

2 1

2 22 2 2 2
2

d d

d 1 d d d

1 1 2 1 d
2

V VV t t t Ca s t t b t t b t Ca s t
t W
w t t r t b t t as t Z t Z t

V b t t a s t b t t as t t
W

γ γ

γ

γ γ

π α π π α π

π θ π β

π π βρ β

∂ ∂ = + + − −∂ ∂
+ − + +



− +
∂

+ − + − + ∂ 

(22) 
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The application of Equation (22) to Equation (14) we get the HJB equation  

( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )

2 2

2 2

22 2 2

1

11 2 1 0
2

t

w

ww

V b t t t Ca s t

t b t Ca s t w t t r V

b t t as t b t t as t V

γ

γ

γ γ

π α π

π π θ

π π βρ β

+ − +

− + − +

 + − + − + =  

 (23) 

Using (15) to (17) in Equation (23) we obtain. 

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )

2 2

2 2

22 2
2

ln 1

1

1 1 2 1 0

twg b t t t Ca s t

t b t Ca s t r w t t g
w

g b t t as t b t t as t
w

γ

γ

γ γ

π α π

π π θ

π π βρ β

+ − +

− + − + 

 − − + − + =  

  (24) 

Differentiating Equation (24) with respect to ( )tπ  we get 

( )( ) ( )( ) ( ) ( )

( ) ( )( ) ( )( ) ( )( ) ( )

2 2 2 2

22 2
2

1 1

1 2 2 1 0
2

g b t Ca s t b t Ca s t r
w

g t b t a s t b t as t
w

γ γ

γ γ

α

π α βρ

 − + − − 

 − − + − =  

    (25) 

from which on making ( )tπ  the subject we obtain the investor’s optimal strat-
egy when there is transaction cost and correlated Brownian motions as 

( )
( ) ( ) ( ) ( )( )

( )( ) ( )( )
( )( )
( )( ) ( )( )

2 2 2 2

222

2

1

tcb

w Ca s t b t b t Ca s t r
t

a b t s t

b t

a b t s t

γ γ

γ

γ

α α
π

α

βρ

α

∗
+ − − −

=
−

−
−

−

         (26) 

Now we look at the listed cases thus: 
Case 1: when there is no transaction cost and the Brownian motions do 

not correlate 
In (26) 

( )
( )( )( )

( )( ) ( )( )
2 2

22
ntcb

w Ca s t r
t

a s ta s t

γ

γγ

α βρπ ∗
+ −

= − , 

if 0ρ =  and there is no transaction cost, the optimal strategy is 

( )
( )( )( )

( )( )

2 2

22
nt

w Ca s t r
t

a s t

γ

γ

α
π ∗

+ −
= .                 (27) 

The optimal investment strategy is a fraction the wealth at hand and depends on 
horizon. The investor remains in business as long as ( )2 2Ca s t rγα + > . 

Case 2: when there is no transaction cost and the Brownian motions cor-
relate. 

In this case the insurance investor’s optimal strategy is as given by equation 
(21) 
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( )
( )( )( )

( )( ) ( )( )
2 2

22
ntccb

w Ca s t r
t

a s ta s t

γ

γγ

α βρπ ∗
+ −

= − . 

Clearly 

( ) ( )
( )( )ntccb nctt t

a s tγ

βρπ π∗ ∗= − .                  (28) 

This implies that the investor requires fewer funds to invest in the risky asset 
when the Brownian motions have positive correlation. That is, if the Brownian 
motions increase or decrease together the investor will need less funds to be in 
business than when the Brownian motions do not correlate. 

If the Brownian motions do not either increase or decrease together the re-
verse becomes the case as shown by: when the correlation Brownian motion is 
negative, say ρ θ= − , then Equation (28) becomes    

( ) ( )
( )ntccb nctt t

as tγ

βθπ π∗ ∗= + .                    (29) 

Case 3: when there is transaction cost and the Brownian motions do not 
correlate 

Here we have from Equation (26) 

( )
( ) ( ) ( ) ( )( )

( )( ) ( )( )
( )( )
( )( ) ( )( )

2 2 2 2

222

2

1

tccb

w Ca s t b t b t Ca s t r
t

a b t s t

b t

a b t s t

γ γ

γ

γ

α α
π

α

βρ

α

∗
+ − − −

=
−

−
−

−

 

that if 0ρ =  there is no correlation of Brownian motions and there is transac-
tion cost, then the optimal strategy becomes 

( )
( ) ( ) ( ) ( )( )

( )( ) ( )( )

2 2 2 2

222
tc

w Ca s t b t b t Ca s t r
t

a b t s t

γ γ

γ

α α
π

α
∗

+ − − −
=

−
.       (30) 

It can be seen that 

   ( ) ( )
( )( )
( )( ) ( )( )2

1
tccb tc

b t
t t

a b t s tγ

βρ
π π

α
∗ ∗ −

= −
−

.              (31) 

Equation (29) shows that the investor requires extra 
( )( )
( )( ) ( )( )2

1 b t

a b t s tγ

βρ

α

−

−
  

amount money to invest in the risky asset when there is transaction cost and the 
Brownian motions correlate with positive correlation coefficient. That is, if the 
Brownian motions increase or decrease together the investor will need less funds 
to be in business than when the Brownian motions do not correlate. 

The reverse is the case as shown by: when the correlation Brownian motion is 
negative (if the Brownian motions do not either increase or decrease together), 
say ρ θ= − , then Equation (31) becomes    
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( ) ( )
( )( )
( )( ) ( )( )2

1
tccb tc

b t
t t

a b t s tγ

βθ
π π

α
∗ ∗ −

= +
−

.              (32) 

Case 4: when there is transaction cost and the Brownian motions corre-
late  

In this case, the general rule holds as in Equation (26) 

( )
( ) ( ) ( ) ( )( )

( )( ) ( )( )
( )( )
( )( ) ( )( )

2 2 2 2

222

2

1

tcb

w Ca s t b t b t Ca s t r
t

a b t s t

b t

a b t s t

γ γ

γ

γ

α α
π

α

βρ

α

∗
+ − − −

=
−

−
−

−

 

This is the situation when 0ρ > , but when 0ρ < , say ρ θ= − , we have 

( )
( ) ( ) ( ) ( )( )

( )( ) ( )( )
( )( )
( )( ) ( )( )

2 2 2 2

222

2

1

tcb

w Ca s t b t b t Ca s t r
t

a b t s t

b t

a b t s t

γ γ

γ

γ

α α
π

α

βθ

α

∗
+ − − −

=
−

−
+

−

       (33) 

the insurance investor will require more amount of money to invest in the risky 
asset. 

5. Conclusions 

In this research, we take the risk reserve of an insurance company to follow 
modified constant elasticity of variance model to tackle an optimal problem of 
the company. The investment case considered was insurance company that 
trades two assets: the money market account (bond) growing at a rate r and a 
risky stock with investment behavior in the presence of stochastic cash flow or a 
risk process, continuously in the economy. Our focus was on obtaining invest-
ment strategies that are optimal in the sense of optimizing the returns of the 
company; we establish among others that the optimized investment in the assets 
and the optimal value function are dependent on horizon and wealth. It is rec-
ommended that the managers of the assets of the insurance company should 
take into consideration this horizon dependency when making policy decision.  

In this study, we optimize the insurance company’s returns under the loga-
rithm utility function. The Hamilton-Jacobi-Bellman (HJB) partial differential 
equation is used to solve the dynamic optimization problem. 

Recent studies have uncovered several systematic patterns that increase the 
probability that individual investors can select stock portfolio with excess re-
turns. In this study, the problem of investors’ portfolio selection through loga-
rithmic utility optimization under modified constant elasticity of variance model 
was dealt with. 

The characterization of investors’ behavior is central in the optimal portfolio 
selection decision making. The main emphasis here is on how the choice of lo-
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garithmic utility preference affects the insurance investor’s investment choices. 
The proportion for optimizing the company’s expected return was observed to 
be a proportion of the investor’s total wealth. 
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