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Abstract 
DNA is the carrier of all cellular genetic information and increasingly used in 
nanotechnology. The study of DNA molecule achieved in vitro while submit-
ting the DNA to all chemicals agent capabilities to destabilize links hydrogen, 
such as pH, temperature. In fact, the DNA enveloped in the membrane cellu-
lar, so it is legitimate to study the influence of membrane undulations. In this 
work, we try to show that the fluctuations of the membrane can be conside-
rate as a physics agent is also capable to destabilize links hydrogen. In this in-
vestigation, we assume that each pair base formed an angle nα  with the 
membrane’s surface. We have proposed a theoretical model, and we have es-
tablished a relationship between the angle formed by the pair base eqθ  and 
angle nα  formed by the membrane and each pair base. We assume that 
DNA and biomembrane interact via a realistic potential of Morse type. To 
this end, use is made of a generalized model that extends that introduced by 
M. Peyrard and A. R. Bishop in the past modified by M. Zoli. This genera-
lized model is based on the resolution of a Schrödinger-like equation. The 
exact resolution gives the expression of the ground state, and the associated 
eigenvalue (energy) that equals the free energy, in the thermodynamic limit. 
First, we compute the denaturation temperature of DNA strands critical 
temperature. Second, we deduce all critical properties that mainly depend on 
the parameters of the model, and we quantify the effects of the membrane 
undulations. These undulations renormalize all physical quantities, such as 
harmonic stacking, melting temperature, eigenfunctions, eigenvalues and 
regular part of specific heat.  
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1. Introduction 

The Deoxyribose-Nucleic-Acid molecule (DNA) is considered among the most 
important biological systems for living beings. Since Watson and Crick unveiled 
its topological structure [1]. This molecule has become a vast field of research. 
All the genetic information that controls the cell reproduction is coded there, 
constituting the most sensitive molecule of the cellular nucleic. 

A chromosome with protein components is a complete DNA molecule. Ami-
no acids are assembling in the right order to produce the protein. This assembly 
is triggered by a chemical message carried by the DNA of each gene, tells the cell 
how to organize this assembly. Monomers that constitute the molecule of DNA 
are called nucleotides contained information. The structure of the DNA mole-
cule consists of a base and a skeleton alternating phosphate ions and sugar mo-
lecules. In DNA, there are four different nucleotides, namely guanine (G), ade-
nine (A), cytosine (C) and thymine (T), whose repeated stacks are formed by AT 
or GC. The stability of the double helix, i.e. its denaturation resistance depends 
on its sequence: the G-C rich sequences have a greater resistance to denaturation 
than the A-T rich one. Because the opening of the G-C base requires the break-
ing of three hydrogen bonds, while the opening of a pair of A-T involves only 
two hydrogen bridges. In the case of thermal denaturation, the mean denatura-
tion temperature of a given chain is effectively related to the percentage of G-C 
contained in the sequence [2]. 

Several works have been interesting by the study of DNA-interface interac-
tions considered as a subject of general nature. DNA interactions with surfaces 
can be repulsive leading to confinement or depletion [3] [4]. In this situation, 
there exist a repulsive interaction between negatively charged phosphates of 
DNA and phospholipids of membranes and contributes to enclose the genetic 
material within the cell [5]. The depletion forces also confine DNA within viral 
capsids [6]. To indicate the repulsive interactions are a common requirement in 
micro and nano-fluidics [7]. On the one hand, the attractive interactions lead to 
adsorption on a surface. The adsorption studied is done by x-ray reflectivity [8]. 
In some recent work [9], a theoretical analysis of such scenarios is based on the 
self-consistent field theory approach. In this work, they treated the importance 
of the charge correlation effect. 

The thermodynamic magnitudes of DNA are affected by several factors, for 
example the thermodynamic properties with the interaction of the solvent on the 
nonlinear dynamical structure of a DNA segment [10], by using a time-independent 
perturbation approach. Also, for a short fragment of heterogeneous DNA with a 
stabilizing solvent interaction term, the technique used in this case is the imagi-
nary time path integral formalism that is applied to a nonlinear Hamiltonian 
[11]. These nonlinearities in DNA dynamics were first emphasized by Englander 
et al. [12] who interpreted the formation of temporary open segments of base 
pairs as moving defects propagating coherently along the backbone of the mole-
cule. This phenomenon has been treated like a bubble dynamics in a random 
DNA sequence, in a study of the localization of denaturation [13]. 
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The denaturation transition is done by the hydrogen bond rupture between 
two pair bases, so the set of the two strands is transformed into a single strand. 
This phenomenon is done by several factors, for example, when a sufficiently 
heated solution of DNA. The temperature at which the DNA strands are half 
denatured, meaning half double-stranded, half single-stranded, is called the 
melting temperature (Tm) or denaturation temperature (Td). The amount of 
strand separation, or melting, is measured by the absorbance of the DNA solu-
tion at 260 nm (absorb in the ultraviolet). Nucleic acids absorb light at this wa-
velength because of the electronic structure in their bases, but when two strands 
of DNA come together, the proximity of the bases in the two strands quenches 
some of this absorbance. As the DNA becomes denatured, its absorption of light 
ultraviolet increases, when the two strands separate, this quenching disappears, 
and the absorbance rises 30% - 40%. This is called Hyperchromicity. The Hy-
pochromic effect is the effect of stacked bases in a double helix absorbing less ul-
tra-violet light. 

For a quantitative study, Thierry Dauxois and Michel Peyrard presented a 
model for the dynamical structure of DNA that can be considered as an exten-
sion of the usual Ising-like statistical approach to the melting curves. Also, 
Thierry Dauxois and Michel showed by numerical simulation method at con-
strained temperature show that it provides a good qualitative description of the 
collective motions of the base pairs, including their large-amplitude fluctuational 
openings and the emergence of the denaturation bubbles from the thermal fluc-
tuation [14]. 

In this paper, we focus on the statistical of a DNA molecule on the fluid 
membrane, our aim is to determine the quantity physics. Our system physics 
constituted by a fluid membrane fluctuating around a horizontal, plane on this 
the latter adsorbed a DNA molecule. Firstly, we determine the partition func-
tion, from which we establish the free energy of the system. Based on the latter, 
we derive the magnitudes thermodynamics such as heat energy. As results, we 
have showed that the constant of harmonic stacking is renormalized, and the 
DNA becomes more elastic. This constant depends crucially on the membrane 
parameters. The thermal fluctuations of membrane modify the depth of interac-
tion potential of staking and inverse length. On the other hand, we concluded 
that the fluctuations of the membrane increase the denaturation temperature. In 
the transition point we constant that the average separation between base-pair 
and specific heat are diverging. 

The remaining of the presentation proceeds as follows. In Section 2, we pre-
sented the physical system with its parameters, and the Section 3 is reserved to 
formalism for partition function and free energy, the exact study of the denatu-
ration transition is presented in the Section 4, Some concluding remarks are 
drawn in Section 5. 

2. Description of the Physical System and the Basic Equation 

The denaturation transition can be achieved in vitro, while submitting the DNA 
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to all chemicals or physical agent capabilities to destabilize links hydrogen, such 
as pH, temperature, certain solvents, alkaline agents, high ionic concentrations 
[10], in this paper, the authors investigated the effect of solution concentrations 
on physical quantities such as specific heat, entropy, melting temperature, and 
the mean hydrogen bonding stretching.  

In the living cells, the DNA molecule is compacted in a biological membrane. 
Quantitative understanding and optimization of its functions require precise 
experimental characterization and accurate modelling of DNA properties on the 
biological membrane. The legitimate question, how the thermal fluctuations of 
the membrane affect the denaturation temperature of the DNA molecule, and its 
influence on thermodynamics quantities. Due to the nature of electrically 
charged DNA, as well as superficially charged cell membrane leads to the phe-
nomenon of adsorption [9]. Therefore, in this investigation, we assume a 
DNA-molecule adsorbed on a fluctuating membrane, such as each base pair of 
index n, formed an angle nα , with the plan of the membrane (see Figure 1). In 
this model, the interaction between DNA-molecule and membrane per area has 
an attraction, as well as hard wall repulsion for a base pair residing at a point on 
the membrane surface. 

On the other hand, we introduce the twist angle eq cteθ = , for the pairs bases 
adsorbed, we take the equilibrium twist angle value, in our situation 10eqθ = π , 
we choose the model of Dauxois-Peyrard-Bishop (DPB) modified by Zoli [11]. 
This author introduced the rotation angle between adjacent bases n, and 1n −
along the DNA backbone. The twist angle between adjacent base n, and 1n − , 
we assume constant, therefore 

1

1

eq n n

eq n n

θ θ θ

θ θ θ
−

+

= −
 = −

                           (1) 

 

 
Figure 1. Biological membrane with a twisted DNA adsorbed. 
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We consider the adsorption of DNA on the membrane as the adsorption of 
copolymer on the substrate, which forms loops, so there are a few base-pair are 
adsorbing on this membrane for each loop. In the other hand, some work show 
that [15] the distance between adjacent bases in closed case of base pair (~3.3 Å) 
is smaller than the distance of separation between base pairs (~18 Å), but it's 
clear that length between base pair in the opening state is greater than the dis-
tance between two base, so with these considerations we assume that the two 
bases adjacent are coplanar. We take for example the first adjacent bases (base 1 
and 2), we can establish the first relation between the angels 1α  and 2α , such 
as 2 1eqα θ α= +  and the second adjacent bases (base 2 and 3), we find 

3 12 eqα θ α= + , etc. (see Figure 2), finally, we get the relationship between eqθ  
and nα  

( ) 11n eqnα θ α= − +                       (2) 

where 1α  is the first angle between adsorbed base pair and membrane, from 
this relationship, we can determine the maximum number of base pairs (bp) ad-
sorbed on the membrane and contribute to the denaturation transition pheno-
mena by the following relation: 

( )max 1
1 .n
eq

n α α
θ

= −                     (2a) 

As long as adsorption takes place with a few monomers (we take for example 

max 5n = ) to form the brush, we can choose for example 1 10α = π , and the 
number of base pair which contribute to adsorption is 0 5n< ≤ , we deduct that 
0 2nα≤ ≤ π . In the absence of the membrane, the number of base pairs that 
contribute to the denaturation transition is of the order of 20 bp for 310N ∼  
total number of base pairs [13]. 
 

 
Figure 2. Cross-section of a membrane with an adsorbed DNA molecule. 
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The double-strand is denoted by the base sequence 1 1 n nA B A B  (where kA
and kB  are the nucleotides with { }, A,C,G,Tk kA B ∈ , of one of the strands, 
ordered from the 5' to 3' end. The distance between the mass center of the base 
pairs and a point situated on the surface of the membrane is given by barycenter 
technique sinGn An n nz z z m α= + , where ( )Bn An Bnm m m m= +  is the reduced 
mass, Anz  is the abscissa of the nucleotide nA , and nz  is the distance between 
two nucleotides nA  and nB  (i.e. is the length of the hydrogen bond), since we 
are interested in the bases of pairs, that is adsorbed on the membrane, we take 

Anz  or Bnz  equal the fluctuation amplitude of the membrane ( ),h x y  

2.1. The Hamiltonian of Membrane 

The membrane is a flexible, continuous surface that has a size L and area 
2L= . Membrane local position vectors are, in the Monge representation, 

( )ˆ ˆ ˆ,x y h x y= + +r x y z , where ( ),h x y  is the height of the membrane. The posi-
tion of the (almost flat) membrane is specified through the displacement field 
( ),h x y . The surface fluctuates around the horizontal plane 0z = . The equili-

brium statistical mechanic of the membrane is based on the Canham-Helfrich 
Hamiltonian [16] [17] 

( )( ) ( )( )2 22 21 d
2m

S

H h hρ ρ ρ σ ρ ρκ = ∇ + ∇  ∫              (3) 

where ( )20 50 Bk Tκ − , is the membrane bending rigidity, σ  is the micro-
scopic membrane surface tension, and ˆ ˆxx yyρ = +  is the projection of r in the 
reference plane, ( ),x yρ∇ = ∂ ∂  is the cartesian operator in the basic ( ),x y , 
and   is the projected membrane area. Although we mainly refer to mem-
branes, our development below with this Hamiltonian applies to a variety of 
membranes and interface including fluid membranes ( 0σ  ) and elastic inter-
face ( 0κ  ). 

2.2. Hamiltonian Model of DNA 

In our investigation, we choose the model (DPB) modified by Zoli [11] [14], 
thus generalizing the DPB Hamiltonian, is given by 

( ) ( )
2 22 2

1 1 0
1

2 cos e 1 ,
2 2

n
N

azn
DNA z n n n eq n

n

mz K z z z z Dθ −
− − −

=

 
= + − + + − 

 
∑



     (4) 

where m is the base pair reduced mass, d dn nz tz=  is the nucleotide velocity, 
K is the harmonic stacking, 0D  and a are the pair dissociation energy and the 
inverse length setting the hydrogen bond potential range for the n-th base pair. 
The first term is the kinetic energy, the second term is the potential energy of the 
longitudinal links and the last term represents the dissociation energy of the pair (for 
a very deep reading see the Ref. [14]). The settings in this Hamiltonian are adjusted 
to match our problem ( 24 eV nmK −= ⋅ , 0 0.15 eVD = , 10.63 nma −= , [18]). 

2.3. Interaction between DNA Molecule and Membrane 

The DNA molecule and membrane are subject to mutual interaction which we 
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denote by 

( )( )2

1
d

N

DNA m Gn
n

V U z h−
=

= −∑∫ ρ ρ                   (5) 

the sum of all the base pairs, and continued sum covers the surface of the mem-
brane. The potential that can be used to model interactions such as the interac-
tion between an atom and a surface is the Morse potential. Because of its sim-
plicity, it is not used in modern spectroscopy [19]. However, its mathematical 
form has inspired the MLR (Morse/Long Range) potential, which is the most 
used potential energy function for spectroscopic data fitting [19]. The potential 
chose to mimic the adsorption potential by a simpler one, the Morse potential 

( )( ) ( )( )( ) 2
0

01 exp ,Gn Gn
U

U z h b z h − = − − − 
ρ ρ          (5b) 

we replace Gnz  by its expression in this potential we find 

( ) ( ) 20 1 exp sin ,n n n
U

U z bz α = − − 
               (5c) 

with 0b mb=  and   is the membrane’s surface. In our model, the interaction 
( )nU z  between base pair and membrane per area has an attraction, as well as 

hard wall repulsion (impenetrability) for a base pair residing at a position 
( )( ),hρ ρ  on the surface. Such impenetrability by DNA molecule is conceivable 

even in fluid membrane unless the striking barrier formed by the lipid bilayer 
self-assembly is disturbed by a strong attraction, (i.e. between hydrophobic seg-
ment in the DNA-chain and inner hydrophobic part of the bilayer) leading to 
chain penetration into the membrane, the choice of the Morse potential to en-
sure the adsorption phenomena, in a similar work [20], the potential chosen is 
the hard square-well with depth 0U  and width 0b . The Parameters for the 
Morse potential are adjusted to have a good match at the minimum with the true 
potential ( 1

0 0.3 nmb −= , 0 0.05 eVU = ). 

3. The Partition Function of System and Free Energy 

For a chain containing N units (nucleotide), the classical partition function of 
the system may be factored as 

( ) ( )
( ) ( ) ( ){ }

exp

exp e expDNA

n n n m DNA DNA m

p m n n DNA m

p h z V

h z Vβ

α β

β α β
−

−
−

 = − + + 
   = × − × −   

∫
∫ ∫ ∫

      

    

ρ

ρ
 (6) 

where we define as usual 1 Bk Tβ = , with T the absolute temperature, Bk  
Boltzmann’s constant. The momentums parts are readily integrated to give the 
familiar kinetic factor for N particles ( ) 22 N

P Bmk T= π . The sum on the varia-
ble nα  in Equation (6) is independent of the other variables, so we can com-
pute this sum separately, therefore we get the following relation (see Appendix) 
[21] 

( )( )

( ) ( )
( )

2
0

2
0

1 exp sin2

0
2 1

01

0

e

0

e

2 1 e1 1 e
2 1 !

n n

nbzn

U bz

n
kbzk

U

n k

U

bz kU

β α

β

α

β

β

−

 − − −π   

+
−

− − ∞

=

 −   = × 
+  

∑

∫ 

        (7) 
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we are restricted to the first order, and, we have been interested in the pheno-
menon of breathing, which is affected near of point of equilibrium, then nz  is 
weak. Thus, we get the potential expressed by the following relationship 

( )( )

( )

2 2
00

2

0

exp 1 exp sin

exp 1 e n

n n n

bz

U bz

U

α β α

β

π

−

 − − −  
 − −  

∫




            (7a) 

The partition function (6) becomes 

( ) ( )

( ) ( ){ }
( )

2 2 2
0 1 1

2 2

0 0

1

2
0

2 exp 2 cos
2

exp 1 e 1 e

2 ,

n n

N

n

N
B n n n n eq n

az bz

N
B z

Kmk T z z z z z

D U

mk T

β θ

β

− −
=

− −

 = π − − +  

 × − + − + −  

= π ×

 
 
 

∑∫  

 

  (8) 

where ( ) ( )0 exp mDh ρ β= −∫   is the partition function of the free mem-
brane for developing the part related to the twist angle in the last equation, we 
are introducing sum and difference coordinates ( )1 2n n nd z z −= +  and 

1n n nz zδ −= − . In this work, we also assume the twist angle is very low, which af-
fects the harmonic part, becomes ( )2

1 12 2n n eq n nK z z K z zβ β θ− −− − − . There-
fore n  can be expressed in the form 

( )1,

1
d e ,pot n n

N
E z z

z n
n

z β −
+∞

−

=−∞

= ∑∫                   (9) 

where potE  denotes the total potential energy in nz . This integral can be eva-
luated exactly in the thermodynamic limit of a large system ( N →∞ ) using the 
eigenfunctions and eigenvalues of the transfer-integral operator [22] [23] [24]  

( ) ( ) ( ),d e e .pot iE z z
i iz z zβ βϕ ϕ′− −′ ′ ′=∫                (10) 

To solve this integral we change the variable of integration from z to z' (where 
z d δ′ = + ), in what follows, we assume nd z≈ , and introducing  
( ) ( ) ( ) ( ) 2 2ii i id z z zϕ δ ϕ ϕ δ ϕ δ′ ′′+ ≈ + + , and performing the Gaussian integrals 

over δ . From this equation, with the new parameter, in the continuum limit 
approximation, the transfer integral eigenvalue problem can be reduced the fol-
lowing Schrödinger-like equation 

( )( ) ( )
2

2
2

d
2 0,

d
i

i tot iK s V z z
z
ϕ

β ϕ′+ − − =               (11) 

where the harmonic stacking K ′  depend on the eqθ  defined by  

( )21 4eqK K θ′ = − , ( ) ( ) ( ) ( )2 22 2
0 02 e 1 1 eaz bz

tot eqV z K z D Uθ − −= + − + −  is the 
new potential and s is the modified entropy by the presence the angle twist 

2

0
1 ln 1 ,

2 4
eqs s

θ
β

 
= + −  

 
                     (12) 

with ( ) ( )0 1 2 ln 2s Kβ β= π  is the entropy determined by T. Dauxois et al. 
[14], from this relation we can deduce that twist angle minimizes the entropy of 
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the DNA-molecule and the harmonic stacking. The first term is harmonic po-
tential, we can be transformed as a Morse potential at high temperature, we find 
potential with six pertinent parameters ( )0 0 0, , , , ,a b c D D U′  given by the fol-
lowing relation 

( ) ( ) ( ) ( )0

2 2 2

0 01 e 1 e 1 e ,az cz bz
totV z D D U− − −′= − + − + −         (13) 

where 2
0 2eqD θ′ =  is the depth also, and c Kβ= , this parameter is homoge-

neous to the inverse of a length. For a temperature 320 KT = , we can estimate 
the values of the depth, and the range respectively, 0

35.03 10 eVD −′ ×  and 
10.12 nmc −

 . This potential is plotted in Figure 3, this potential reflects stan-
dard expression for chemical bonds and, moreover, it has the appropriate qua-
litative shape: 1) it includes a strong repulsive part for 0z <  corresponding to 
the steric hindrance 2) it has a minimum at the equilibrium position 0z = , 3) it 
becomes flat for large z, giving a force between the bases that tends to vanish, as 
expected when the bases are very far apart, this feature allows a complete dissoc-
iation of the base pair, which would be forbidden if we had chosen a simple 
harmonic potential. 

The shape of this potential is more adapted to our problem because it ensures 
the phenomenon of breathing of the DNA-molecule near its minimum has a 
harmonic form. So, this potential can be well fitted to the Morse potential, we 
can be rewritten as follows 

( ) ( )( )2
1 exp .totV z D zα= − −                   (14) 

Using the relation (13), to find the zero and minimum of this potential 
( ( )0 0totV z = ), then we can find the expression of the depth and the minimum 
( ( )d d 0tot mV z z = ). All the parameters depend on the six pertinent parameters, 
we find 

0 00 ,D D D U′= + +                       (15) 

is the depth of the Morse potential, and α  defines the range parameter given 
by 
 

 
Figure 3. Reduced Morse potential, versus distance, with the ranges parameters, are 

10.12 nmc −= , and the depths 0 0.15 eVD = , 0
35 10 eVD −′ = × , 2

0 5 10 eVU −= × . 

https://doi.org/10.4236/ojbiphy.2020.103011


R. El Kinani et al. 
 

 

DOI: 10.4236/ojbiphy.2020.103011 138 Open Journal of Biophysics 
 

( )

0
2 2

0

0

0

0

0
0

1
,

11

U Db b
a D a D

a
U D

D

α

′   + +   
   =

′+ +
                (15b) 

according to the values of the parameters, we notice that this last parameter is 
lower than a, so the width of the potential decreases. On the other hand, the dis-
sociation energy of the pair D (the depth of potential) increases. Note this po-
tential describes not only the hydrogen bonds and the repulsive interactions of 
phosphate groups in DNA but all interactions in the system [14]. Let comment 
on this form of potential: the value 0z =  corresponds to a closed base pair as 
in the Ising model, but now z can increase continuously to infinity if the two 
bases separate completely as in DNA denaturation. The variable z can even take 
negative values, corresponding to a compression of the bond linking the bases 
with respect to its equilibrium length. Large negative values will be forbidden by 
steric hindrance, which is introduced in the model by the potential linking the 
bases in a pair [15]. 

Now we determine the free energy. The calculation is similar to the one per-
formed by Krumhansl and Schrieffer [23] for the statistical mechanics of the 4φ  
field. It yields ( )0expz Nβ= −   where 0  is the lowest eigenvalue of the op-
erator. Therefore, we can then compute the free energy of our model as the sum 
of the different contribution in  , 

( )0 0ln ln 2 ,
2

B
B B

Nk Tk T mk T N= − = − π +               (16) 

where 0 0lnBk T Z= − , is the free energy of the free membrane, with, 
( ) ( ) 1 21 2 4 2

0 2 Bq k T q qκ σ
−

= π + . 
The following step is to determine 0 . The presence of the membrane and 

thermal fluctuations affects the eigenfunctions and eigenvalues of DNA mole-
cules, so, ( )0 0 h=   and ( )0 0 ,r hϕ ϕ= . [20] The ground state energy 0 , as is 
well-known in quantum mechanics, is alternatively obtained by a variational 
method, by varying a variational function ( )( )0 ,r hϕ ρ , 0  is given the follow-
ing relation 

( ) ( )3
0 0 0min d , , .h hϕ ϕ =  ∫ r r r                   (17) 

Since we have interested, by the distance of separation of the base pair of the 
DNA molecule, one stands in space united dimensional, to facilitate our devel-
opment further, we use the relation [20] 

( ) ( )( )1, ,h z h
L

ϕ ϕ= −r ρ                      (18) 

where ( )zϕ  is the ground state variational function of the 1D free energy op-
erator, 

( ) ( )
2

2

1 d .
2 d totz V z

K z
β

β
′= −

′
                    (19) 
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where ( ) ( )2e 2en nz z
tot iV z D s Dα α ε− − ′ = − − − −  . With necessary ingredients, 

the expression of the minimum free energy 0  can be written as follows 

( )( )
0

22
0

1min d ,m h K
ϕ

 = ∇ +  ∫ 
 ρρ ρ           (20) 

where the pure DNA-molecule contribution is 

( )
0 0

0 ,totK V z
ϕ ϕ

β ′= +                 (21a) 

With 

( ) ( )
0

2
0

0 20

d1 d ,
2 d

z
K z z

K zϕ

ϕ
ϕ

β
+∞

= ∫              (21b 

( ) ( ) ( )
0

0 00

1 d .
2

W z z z V z
ϕ

β ϕ ϕ
+∞

= − ∫             (21c) 

Bay a Fourier transformation for ( ) ( ) ( )1 expqh L h q iρ −= ⋅∑ q ρ  one can re-
duce the partition function to another form 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0
22 4 2

1 22 1 2 4 2
0

2 e exp
2

2 exp 2 ,

N N
B

N
B B

mk T h q q h
q

mk T N q k T q q

β κ σ

κ σ

−

−

 
= π − 


× +

= π × − π



+

q q



 



   (22) 

Here 

0
,

2
N K
S ϕ

σ σ
β

= +                      (23) 

is the renormalized surface tension at the state 0ϕ ϕ=  corresponding to the 
minimum of ( )0 h , given by the Equation (20). From the partition function, we 
obtain the total free energy base per pair induced by its interaction with mem-
brane 

( )0 min ,F f f
N

β∆
= =                      (24) 

where 

0ln lnB B
f k T k T
N
= − +                   (25a) 

With 

( ) ( ) 1 21 2 4 2
0 e 2  ,m

B
q

Tr k T q qβ κ σ
−−= = π +∑          (25b) 

is the partition function of the nude membrane. Thus, we have the following ex-
pression of the free energy 

( )
( )

4 2

04 2

1 1ln ln 2 ,
2 2 B

B q

q qf mk T
Nk T N q q

κ σ

κ σ

 +
 = − +

+  



         (26) 

where the first term is the membrane contribution. The condition that f is the 
minimum for 0ϕ ϕ=  leads to the new following Schrödinger-like equation 
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( )
2

20
0 0 02 2

d1 e 2e ,
2 d

z z

Reff

D s D
K z

α αϕ
ϕ ϕ

β
− − − + − = − −           (27) 

this equation for 0ϕ  minimizing ( )0 h , Equation (21), where RK  is the re-
normalized spring constant given by 

2

4 2

1 1 11  ,
2

B

R q

q k T
K K S q qκ σ

 
= +  ′ + 

                 (28) 

it is easy to find 

( ) 11  .RK K τ −′= +                      (28a) 

where τ  is given by the following equation 

( ) ( )
( ) ( )

4 2

4 2ln 1,
16

B l lk T
L L

κ σ
τ

κ κ σ

 π + π
= < 

π π + π  





             (28b) 

here l and L are the microscopic and macroscopic lengths that define the upper 
and lower wave number cutoffs. From the relationship (28a) we conclude that 
there is a supplementary force added to its previous 0= + ∆f f f  such as 

( )1R n nK z z −= −f n , ( )0 1n nK z z −′= −f n  and ( )1n nK z zτ −′∆ = − −f n , ( n  
unit vector), the sign (-) signifies that this force is the inverse of the longitudinal 
force. These later have two different effects, one pulling the nucleotide, and the 
other returning it to its balanced position (similar to the nucleotide in each 
strand a mass attached by two springs). One deducts that the undulation of the 
membrane, decreases the elasticity constant K, so every strand in the double he-
lix becomes more elastic. 

4. Exact Study of Denaturation Transition 
4.1. Eigenvalue and Ground State 

Equation (27) is formally identical to the Schrödinger equation for a particle in a 
Morse potential so that it can be solved exactly [25]. So, the melting temperature 
of DNA adsorbed on a fluctuating membrane is given by 

( )0 1 ,d dT T η= +                        (29) 

where 0
02 2d BT KD ak=  is the denaturation temperature in the absence of 

membrane [14], and the quantity η  is given by the following equation: 

( )
( )

2 2 2 2 2
0 0

2
0 0

2 22
2 20 0 0

2 2
0 0 00

0

0 0

1 1
2 8 16 2 8 16 2 2

1 .
2 2 22

eq eq eq eqD U U b
D D a

D bU D U cUc b c
D aD aDa aD

θ θ θ θτ τη τ τ
 ′  +

= − − + + − + − + −       

′ ′    
+ − + + + −    

     

 (29a) 

According to the values of the parameters 0.30871η = , it is deduced that the 
presence of the membrane increases the denaturation temperature of the DNA 
molecule. Also, this temperature depends on all the parameters of the problem. 

Let's comment this result: like a set of external factors, the presence of the cell 
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membrane leads to a change in the melting temperature of DNA, the presence of 
the membrane fluctuations increasing the melting temperature denaturation 
temperature. According to the parameters, this temperature increases by ~30%. 
Therefore, when the temperature increasing, the fluctuations of membrane in-
creasing also, which implies that the membrane undergoes a phase transition 
from a flat phase to a crumpled phase, i.e. its orientations in different points of 
the membrane are decorrelated, where the persistence length  

( )exp 4 3P l k Tβξ κπ , is above the linear size L, [26]. A very recent work [27], 
show a good agreement between experience and numeric study, that the tem-
perature change affects the DNA twist, and suggest that the untwisting of DNA 
with temperature is predominantly due to changes in DNA structure for defined 
backbone substates. 

The eigenfunction of this system is given by 

( ) ( ) ( )1 2 1 2 e
0 0 2 e ,

zzz A
αδ α δ δϕ δ

−− − − −=                  (30) 

where ( ) 2 effDKδ β α= , and ( )0 1 2A δ= Γ  it is the normalization con-
stant, this equation can be rewritten according to the wave function of the DNA 
in the absence of the membrane we obtain 

( ) ( ) ( )0 0 ,z z F zϕ φ=                       (30a) 

where ( ) ( ) ( )0 0 01 2 1 2 e
0 0 2 e

azzz A δ α δ δφ δ
−− − − −=  is the eigenfunction of DNA with 

( )0 01 2A δ= Γ , and ( )F z  is the function given by the following relation 

( ) ( )0 0 0 0

0 0 0

1 exp e

exp ,
2

azF z az az

az

η δ η δ η δ µ δ ηµ

µδ µ δ η δ ηµ

− = + − − − 
  × − − + +    

      (30b) 

with ( )0 02a D Kδ β= , is a constant for a free DNA, and µ , is given by 

( )
( )

22 2
0 0

2 2
0 0 0

2
2 20

2
00

0

0 0

1 1
2 2 2

.
22

U D bUb c
D D aDa a

D U cD
b c

aDaD

µ
′     

= − + − −     
     

′ ′ 
− + −  

 

           (30c) 

We notice the eigenfunction is amplified, by a factor ( ) 1F z η∼ + . The ei-
genvalue of the associated ground state 

00 0 ,′= + ∆                            (31) 

where 0′ , it is the eigenvalue of free DNA given by 

0
20

22 1 ln ,
2 22

Da a K
K K

β
β ββ

 ′ = − +  π 
             (31a) 

and 0∆ , is the excess energy of ground state its expression is 
22 20

0 0 0 0 00 00 02
d B

d d

T k T b c TD D U D U D
a aT T

        ′ ′∆ = − + − − + +        
         

  (31b) 

It is noted that the thermal fluctuations of the membrane disturb the eigenva-
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lue of the DNA molecule, as well as the associated wave function. According to 
the values of the parameters included in Equation (31a), the difference 0∆ , is 
very low, so the energy specter of 0 , stay near to that 0′ , we conclude that 
membrane undulations cause a small perturbation of molecule DNA 

4.2. Thermodynamic Magnitudes at the Critical Point 
4.2.1. Eigenvalue and Ground State 
We are recalled that to study of the denaturation transition of the DNA mole-
cule, the important quantity which gives a measure of the extent of denaturation 
of the molecule is the mean stretching of the hydrogen bonds, which given by 

( )2
0 d ,z z z zϕ= ∫                        (32) 

We take the results obtained in the case of unbinding transition from two in-
teracting manifolds (strings or bilayer membranes), we find that near the transi-
tion temperature (is the similar case) [28], this average distance scale exactly as 
follows 

1
1 , .d

d
d

T T
z T T

Tα

−
 −

= → 
 

                 (33) 

This average distance is plotted in Figure 4. One notices that the pace of the 
curve coincides with the one to find by the continuum approximation and the 
exact numerical calculation [14]. All methods show a divergence of the mean 
distance at dT T= , corresponding to the stretch of links hydrogens, from a giv-
en temperature. We concluded that, for the weak values of z , the DNA-molecules 
are closed and opened for the strong values. 

4.2.2. Surface Tension and Specific Heat 
A quantity that reflects the ability of the molecule of DNA adsorbed on a fluc-
tuating membrane to accumulate energy in thermal form, it is the specific heat. 
Before calculating the specific heat, we attempt to determine the expression of 
σ∆ . We consider below critical behaviors near dT . In terms of small reduced 

temperature ( ) 0d dt T T T= − > , we have all ingredients to find the expression 
of the surface tension depending on the temperature difference 
 

 

Figure 4. Variation of the reduced mean distance z  versus reduced temperature. 
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,σ σ σ= + ∆                          (34a) 

where 
2

2~
8

d

dR e
T TN

TSK
ασ
β

 −
∆  

 
                  (34b) 

this expression is according to the difference in the temperature. A simple di-
mensional analysis shows that [ ] 2j Lσ −∆ = ⋅ . It is necessary to note that 

0σ∆ =  at dT T= . 
From the relationship (26) we can derive the specific heat 

2

2 ,v T
T

∂
= −

∂


                          (35) 

This specific heat includes a regular part, which is continuous at a transition 
point, and a singular part, which behaves as a power law with an exponent. 

( ) ( ) ,si reg
v v vT T= +                      (35a) 

with regular part given by 

( )
2 2

0 0 00 00 .reg
v

d

T b cT N D U D U D
a aT

    ′ ′= − − + +    
     

       (35b) 

Our objective is to study the critical comportment of the specific heat at de-
naturation temperature (singular part), therefore we get the following expression 

( )
0

0~ ~ ,si d
v v

d

T T
T

T

α−
−

                    (36) 

with a factor, where 1α = , is a critical exponent. Our system is immersed in 
three-dimensional space ( 3d = ), but the study of the spherical model has expli-
citly showed the role of the space dimension on critical phenomena. This model 
allows calculating exactly the critical properties for an arbitrary space dimension. 
In this case ( ) ( )4 2d dα = − − , (in spherical model 2 4d< < ), since 3d =  
we have 1α = , it is a universal critical exponent, the specific heat plotted in 
Figure 5. 
 

 
Figure 5. The variation of the specific heat v , versus reduced temperature. 
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5. Conclusions and Remarks 

In this work, we have studied the influence of the thermal fluctuations mem-
brane on the properties thermodynamics of DNA molecule adsorbed on the flu-
id membrane. We formulated the problem in terms of a mesoscopic-level parti-
tion function and free energy, using the approach variational method, which re-
normalizes the elasticity constant of DNA. The undulations of the membrane, 
decrease the elasticity constant K. We deduce that nucleotides in each strand vi-
brate in the longitudinal direction. We can deduce that the modes of vibration 
also change. This is because the force induced by the membrane, tends to bring 
the nucleotide back to the equilibrium position. 

Consequently, the Schrödinger-like equation which describes the state of the 
DNA molecule in the absence of the membrane becomes a function of the para-
meters of our problem. This equation is solved exactly. The resolution of this 
equation gives the bound state and the associated wave function. From the 
Schrödinger-like equation, we have determined the melting temperature. This 
latter depends also on all problem parameters. We have used the eigenfunction 
associated the ground state to compute the average separation z  between 
base pairs. This quantity diverges when dT T→ . Another physical quantity has 
been changed by the adsorption of DNA on the membrane; it is the surface ten-
sion σ σ σ= + ∆ , where σ∆  vanishes in the vicinity of the denaturation 
temperature dT . In this investigation, we have also found that the heat specific 
diverges at melting temperature with universal exponent 1α = . 

For the implementation of the denaturation transition of the DNA molecule 
adsorbed on a membrane, the experimental results concerning the absorption of 
ultraviolet (UV) by a pure membrane poly (acrylic) acid (PAA) doped with gra-
phite [29], these authors determine the absorbance as a function of the wave-
length. They ascended that the absorbance increases with the increase of the 
concentration of graphite (in the absence of graphite there is a weak absorption 
[29]). For our case it is necessary to use a pure membrane (absence of graphite 
and DNA) and UV with a fixed wavelength at 260 nm, and then determine the 
maximum absorbance for different temperature values, and then use a molecule 
of DNA adsorbed on a membrane (experiments have been performed on artifi-
cial DNAs, which are homopolymers, i.e. have only one type of base pairs [15]), 
and then measure the absorbance for each temperature value, in the case where 
the absorbent is maximizing for a certain temperature, that is called the melting 
or denaturation temperature. It should be noted that as the DNA becomes de-
natured, its ultraviolet light absorption increases. 

The relation (28a) raises interesting questions is the influence of the mem-
brane on the property’s DNA, especially the force-extension curve of a single 
DNA molecule. The first experience obtained in 1992 [30] and repeated with 
taller precision by several groups a few years ago [31] [32], can be repeated once 
again for different molecules of DNA with different values of the stiffness con-
stant K, and look at the melting hysteresis comportment. 
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Appendix 

In this appendix, we will try to develop the expression of following integral 

( )( )20 1 exp sin2
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To develop this integral we make the first variable change ( )exp sinn n nu az α= − , 
we find 
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we use also the second variable change as follow 1n nt u= − , we see that 1nt  , 
so the integral becomes [21] 
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     (A3) 

We are restricting to the first order 0k = , we find a simple development of 
our integral 

( )0exp 1 e .naz
nI Uβ −− −∑

                   (A4) 

The term ( )0 1 e na
n

zUβ −− −∑ , is as similar as Morse potential.  

Parameters and Nomenclature 

eqθ : Twist angle between each base pair. 

nα : Angle formed between each base pair and membrane. 

maxn : The maximal number of monomers adsorbed on the membrane. 

Gnz : The abscissa of the mass center of point nG . 

inz : The abscissa of nucleotide ( ,n ni A B= ). 

im : Mass of nucleotide ( ,n ni A B= ). 
m: The reduced mass. 
( ),h x y : Fluctuation amplitude of the membrane. 

r: Vector position. 
ρ : Projection of r in the reference plane. 
κ : Membrane bending rigidity. 
σ : Microscopic membrane surface tension. 
K: Harmonic stacking. 
D0: Dissociation energy. 
a: Inverse length. 
U0: Dissociation energy (DNA-membrane). 
b0: Inverse length. 
s: Entropy. 
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 : Partition function of system. 
 : Free energy. 

0 : Free energy of the free membrane. 

dT : Denaturation temperature. 
0

dT : Denaturation temperature in the absence of membrane. 
( )0 zϕ : Eigenfunction. 

0 : Eigenvalue of the associated ground state. 
z : Mean stretching of the hydrogen bonds. 

vC : Specific heat. 
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