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Abstract 
Whale Optimization Algorithm (WOA) is a meta-heuristic algorithm. It is a 
new algorithm, it simulates the behavior of Humpback Whales in their search 
for food and migration. In this paper, a modified conjugate gradient algo-
rithm is proposed by deriving new conjugate coefficient. The sufficient des-
cent and the global convergence properties for the proposed algorithm proved. 
Novel hybrid algorithm of the Whale Optimization Algorithm (WOA) pro-
posed with modified conjugate gradient Algorithm develops the elementary 
society that randomly generated as the primary society for the Whales opti-
mization algorithm using the characteristics of the modified conjugate gra-
dient algorithm. The efficiency of the hybrid algorithm measured by applying 
it to (10) of the optimization functions of high measurement with different 
dimensions and the results of the hybrid algorithm were very good in com-
parison with the original algorithm. 
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1. Introduction 

Optimization can be defined as one of the branches of knowledge dealing with 
discovering or arriving at the optimal solutions to a specific issue within a set of 
alternatives. 
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The methods of solving optimization problems divided into two types of algo-
rithms: Deterministic Algorithms and Stochastic Algorithms. 

Most of classical algorithms are specific algorithms. For example, the Simplex 
method in linear programming is a specific algorithm, and some specific algo-
rithms use tilt information (Gradient), which called slope-based algorithms. For 
example, Newton-Raphson algorithm) is an algorithm based on slope or deriva-
tive [1]. 

As for random algorithms, they have two types of algorithms, although the 
difference between them is small: Heuristic Algorithms and Meta-Heuristic Al-
gorithms [2]. 

The Whale Optimization Algorithm (WOA) is an algorithm inspired by the 
humpback whale search behavior for its food and hunting method and was first 
proposed by Lewis and Mirjalili (2016) [3]. 

In the same year, WOA improved by Trivedi and others by incorporating a 
new technology called WOA Adaptive Technology (WOA) [4]. 

In the same year, Touma studied the economic transmission problem on the 
IEEE Bus-30 system using a whale optimization algorithm, which gives good re-
sults compared to other algorithms [5]. 

In 2017, Hu and others proposed an improved algorithm of whale optimiza-
tion by adding its inertia weights called (WOAs). The new algorithm tested us-
ing 27 functions and applied to predict the daily air quality index. The proposed 
algorithm showed efficiency compared to other algorithms [6]. 

This algorithm used in the same year by researchers Prakash and Lakshmina-
rayana in determining the optimal location of the capacitors and determining 
their size in the radial distribution network, in order to reduce the losses of the 
distribution network line as the positioning of the capacitors in optimal loca-
tions will improve system performance, stability and reliability [7]. 

In the same year, the researcher Desuky used a whale optimization algorithm 
to improve two levels of male fertility classification. Recently, diseases and health 
problems that were common among the elderly only became common among 
young people, and some of the causes of these medical problems are behavioral, 
environmental and lifestyle factors. The whale optimization algorithm then 
combined with the Pegasos algorithm to enhance the male fertility rating at both 
levels. This integration improved the results by 90% [8]. 

The algorithm of the whale optimization was also used in the same year by 
Reddy and others to optimize renewable resources to reduce losses in electricity 
distribution systems [9]. 

In the same year, Mafarja and Mirjalili crossed the whale optimization algo-
rithm with Simulated Annealing Algorithm and used in the classification process. 
The results confirm the efficiency of the hybrid algorithm in improving classifi-
cation accuracy [10]. 

The aim of the research is to propose a new hybrid algorithm consisting of a 
Whale optimization algorithm (WOA) with Modified traditional Conjugate 
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Gradient Directional Methods (WOA-MCG). Table 1 represents a definition of 
the variables used in this study. 

2. Conjugate Gradient Method 

In unconstrained optimization, we minimize an objective function depends on 
real variables with no restrictions on the values of these variables. The uncon-
strained optimization problem is: 

( )min : nf x x R∈ ,                           (1) 

where : nf R R→  is a continuously differentiable function, bounded from be-
low. A nonlinear conjugate gradient method generates a sequence { }kx , k: in-
teger number, 0k ≥ . Starting from an initial point 0x , the value of kx  calcu-
late by the following equation: 

1k k k kx x dλ+ = + ,                             (2) 

where the positive step size 0kλ >  is obtained by a line search, and the direc-
tions kd are generated as: 

1 1k k k kd g dβ+ += − + ,                           (3) 

where 0 0d g= − , the value of kβ  is determined according to the algorithm of 
Conjugate Gradient (CG), and its known as a conjugate gradient parameter, 

1k k ks x x+= −  and ( ) ( )k k kg f x f x′= ∇ = , consider .  is the Euclidean norm 
and 1k k ky g g+= − . The termination conditions for the conjugate gradient line 
search are often based on some version of the Wolfe conditions. The standard 
Wolfe conditions: 

( ) ( ) T
k k k k k k kf x d f x g dλ ρλ+ − ≤ ,                    (4) 

( )T T
k k k k k kg x d d g dλ σ+ ≥ ,                      (5) 

 
Table 1. Represents a definition of the variables used. 

Variables provide 

.  The standard for any vector 

ε  Small positive value 

x Local minimum point of function ( )f x  

kλ  Positive parameter to minimize the function ( )f x  

∇  Directional derivative 

G Gradient vector of pattern 1n×  

Gk Hessian matrix n n×  

dk Vector search pattern 1n×  

f Target function 

yk Vector is the difference between two consecutive gradients of the pattern 1n×  

https://doi.org/10.4236/oalib.1106459


L. R. Khaleel, B. A. Mitras 
 

 

DOI: 10.4236/oalib.1106459 4 Open Access Library Journal 
 

where kd  is a descent search direction and 0 1ρ σ< ≤ < , where kβ  is de-
fined by one of the following formulas: 

( ) ( ) ( )
T T T

1 1 1 1
T T T;HS FR PRPk k k k k k

k k k
k k k k k k

y g g g y g
y d g g g g

β β β+ + + += = =            (6) 

( ) ( ) ( )
T T T

1 1 1 1 1
T T T; ;CD LS DYk k k k k k

k k k
k k k k k k

g g y g g g
g d g d y s

β β β+ + + + += − = − =          (7) 

Al-Bayati and Al-Assady (1986) proposed three forms for the scalar kβ  de-
fined by: 

2 2 2
1 2 3

2 T T; ;k k kAB AB AB
k k k

k k k kk

y y y
d g d yg

β β β= = − =          (8) [11] 

3. Proposed a New Conjugacy Coefficient 

We have the quasi-Newton condition 

k k ky G s=                               (9) 

We multiply both sides of Equation (9) by ks  and we get 

[ ] T T*k k k k k k k ky G s s y s Gs s= ⇒ =  

T

2
k k

n n
k

y s
G I

s
×= ⋅                           (10) 

Let 1
1 1

N
k k kd G gλ −
+ += −                                            (11) 

T

1 12
N k k
k k

k

y s
d g

s
λ+ += −                         (12) 

Multiply both sides of Equation (12) by ky  and we get 

T
T T

1 12
N k k

k k k k
k

y s
y d y g

s
λ+ +

 
 = −
  

                     (13) 

T T T
1 1

CG
k k k k k k ky d y g d yβ+ +⇒ = − +                     (14) 

From (13) and (14) we have 

T
T T T

1 12
k k

k k k k k k k
k

y s
y g d y y g

s
β λ+ +

 
 − + = −
  

               (15) 

We assume that ( )
T

1 1
T

DY k k
k k

k k

g g
y d

β β + += =
 

Then we have 

T
T T T

1 12
DY k k

k k k k k k k
k

y s
y g d y y g

s
β λ+ +

 
 − + = −
  

              (16) 

2 T
1T T T

1 1T 2
k k k

k k k k k k
k k k

g y s
y g d y y g

d y s
λ+

+ +

 
 − + = −
  

             (17) 
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From Equation (17) we get: 

T
T T

1 12
k k

k k k k k k
k

y s
y g y g

s
β τ λ+ +

 
 − + = −
  

                   (18) 

Then, we have 
2 T

T T
1 12T

1 12
k k k

k k k k
k k k k k

k
k

s y s y g y g
f f g s s

β
τ

+ +
+ +

   
 − + 

 − +       =            (19) 

( )
T

T T
1 1T

1 12
k k

k k k k
k k k k

k
k

y s y g y g
f f g s

β
τ

+ +
+ +

 
 − +
 − + =               (20) 

( )
T

T
1T

1 1

1
2

k k
k k

k k k k
k

k

y s y g
f f g s

β
τ

+
+ +

 
 −
 − + =                     (21) 

Since 1 0kτ + >  then we suppose: 2
k kgτ =  then: 

( )
T

T
1T

1 1

2

1
2

k k
k k

k k k k
k

k

y s y g
f f g s

g
β

+
+ +

 
 −
 − + = .                  (22) 

3.1. Outlines of the Proposed Algorithm 

Step (1): The initial step: We select the starting point 0
nx R∈ , and we select 

the accuracy solution 0ε >  is a small positive real number and we find  

k kd g= − , ( )0 0Minary gλ = , and we set 0k = . 
Step (2): The convergence test: If kg ε≤  then stop and set the optimal so-

lution is kx . Else, go to step (3). 
Step (3): The line search: We compute the value of kλ  by Cubic method and 

that satisfy the Wolfe conditions in Equations (4), (5) and go to step (4). 
Step (4): Update the variables: 1k k k kx x dλ+ = +  and compute ( )1 1,k kf x g+ +  

and 1k k ks x x+= − , 1k k ky g g+= − . 
Step (5): Check: if 1kg ε+ ≤  then stop. Else continue. 
Step (6): The search direction: We compute the scalar ( )New

kβ  by using the 
Equation (22) and set 1k k= + , and go to step (4). 

3.2. Flowchart of Conjugated Gradient Algorithm 

Figure 1 shows the flowchart of the standard conjugated gradient method. 

3.3. Theoretical Properties for the New CG-Method. 

In this section, we focus on the convergence behavior on the New
kβ  method 

with exact line searches. Hence, we make the following basic assumptions on the 
objective function. 
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Figure 1. Flowchart of the standard conjugated gradient method. 

 
Assumption (1): 
f is bounded below in the level set ( ) ( ){ }0 0

n
xL x R f x f x= ∈ ≤ ; in some 

neighborhood U of the level set 
0xL , f is continuously differentiable and its gra-

dient f∇  is Lipschitz continuous in the level set 
0xL , namely, there exists a 

constant L > 0 such that: 

( ) ( )f x f y L x y∇ −∇ ≤ −   for all 
0

, xx y L∈ .            (23) 

3.3.1. Sufficient Descent Property 
We will show that in this section the proposed algorithm defined in the equa-
tions (22) and (3) satisfy the sufficient descent property which satisfies the con-
vergence property. 

Theorem (1): 
The search direction kd  that generated by the proposed algorithm of mod-

ified CG satisfies the descent property for all k, when the step size kλ  satisfied 
the Wolfe conditions (4), (5). 

Proof: we will use the indication to prove the descent property, for 0k = , 
T

0 0 0 0 0 0d g d g g= − ⇒ = − < , then we proved that the theorem is true for 
0k = , we assume that ks η≤ ; 1kg + ≤ Γ  and 2kg η≤  and assume that 

the theorem is true for any k i.e. T 0k kd g <  or T 0k ks g <  since k k ks dλ= , now 
we will prove that the theorem is true for 1k +  then: 

( )
1 1

New
k k k kd g dβ+ += − +                       (24) 
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i.e. 
( )

T
T

1T
1 1

1 1 2

1
2

k k
k k

k k k k
k k k

k

y s y g
f f g s

d g d
g

+
+ +

+ +

 
 −
 − + = − +                 (25) 

Multiply both sides of the Equation (25) by 1kg +  we get: 

( )
T

T
1T

1 12T T
1 1 1 12

1
2

k k
k k

k k k k
k k k k k

k

y s y g
f f g s

g d g g d
g

+
+ +

+ + + +

 
 −
 − + = − +        (26) 

Divided both side by 2
1kg + :

 

( )
T

T
1T2T T

1 11 1 1 1
2 2 2

1 1

1
2

k k
k k

k k k kk k k k k

k k k

y s y g
f f g sg d g g d

g g g

+
+ ++ + + +

+ +

 
 −
 − ++  =           (27) 

( )
T

1T2T
1 11 1 1 1

2 2 2
1 1

1
2

k k
k k

k k k kk k k k k

k k k

y s y g
f f g sg d g g d

g g g

+
+ ++ + + +

+ +

 
 −
 − ++  ≤      (28) 

( )
T

T2T
1 11 1 1

2 2
1

1
2

k k
k k

k k k kk k k

k k

y s y d
f f g sg d g

g g

+ ++ + +

+

 
 −
 − ++  ≤                (29) 

( )2T
1 11 1 1

2 2
1

1
2

k k
k k

k k k kk k k

k k

y s
y d

f f g sg d g

g g
+ ++ + +

+

 
− 

− ++   ≤             (30) 

2T
1 1 1

2 2
1

k k k k k

k k

g d g y d

g g
+ + +

+

+
≤                       (31) 

2 2
1

2T
1 1 1

1k k

k kk k k

g g
y dg d g

δ+

+ + +

≥ = >
+

                   (32) 

2T
1 1 1

2
1

1k k k

k

g d g

g δ
+ + +

+

+
≤                          (33) 

2 2T
1 1 1 1

1
k k k kg d g g

δ+ + + ++ ≤                        (34) 

2T
1 1 1

11k k kg d g
δ+ + +

 ≤ − − 
 

 

Let 11c
δ

= −                                                  (35) 

Then 2T
1 1 1k k kg d c g+ + +≤ −                                        (36) 

For some positive constant c > 0. This condition often has been used to ana-
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lyze the global convergence of conjugate gradient methods with inexact line 
search. 

3.3.2. Global Convergence Property 
The conclusion of the following lemma used to prove the global convergence of 
nonlinear conjugate gradient methods, under the general Wolfe line search. 

Lemma 1: 
Suppose assumptions (1) (i) and (ii) hold and consider any conjugate gradient 

method (22) and (3), where kd  is a descent direction and kλ  is obtained by 
the strong Wolfe line search. If 

2
1

1
k kd

α

α
≥

=∑                             (37) 

Then liminf 0kk
g

→∞
=                            (38) 

For uniformly convex functions which satisfy the above assumptions, we can 
prove that the norm of 1kd +  given by (25) is bounded above. Assume that the 
function f is a uniformly convex function, i.e. there exists a constant 0µ ≥  
such that for all ,x y S∈ , 

( ) ( )( ) ( )T 2 ,g x g y x y x yµ− − ≥ −                   (39) 

Using Lemma 1 the following result can be proved. 
Theorem 2: 
Suppose that the assumptions (i) and (ii) hold. Consider the algorithm (3), 

(22). If ks  tends to zero and there exists nonnegative constants 1η  and 2η  
such that: 

2 2 2
11 , 2k k k kg s g sη η+≥ ≥                 (40) 

and f is a uniformly convex function, then. 
liminf 0kk

g
→∞

=                           (41) 

Proof: From Equation (22) We have: 

( )
T

T
1T

1 1

2

1
2

k k
k k

k k k knew
k

k

y s y g
f f g s

g
β

+
+ +

 
 −
 − + =  

From Cuchy-Shwartz we get: 

( )
T

T
1T

1 1
1 2

1
2

k k
k k

k k k kNew
k

k

y s y g
f f g s

g
β

+
+ +

+

 
 −
 − + =              (42) 

( ) 1T
1 1

1 2

1
2

k k
k k

k k k kNew
k

k

y s
y g

f f g s

g
β

+
+ +

+

 
 −
 − + ≤             (43)
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But k ky L s≤ . Then 

( ) 1
1 1

1 2

1
2

k k
k k

k k k kNew
k

k

L s s
L s g

f f g s

g
β

+
+ +

+

 
− 

− +  ≤            (44) 

( ) 1
1 1

1 2

1
2

k k
k k

k k k kNew
k

k

L s s
L s g

f f g s

g
β

+
+ +

+

 
− 

− +  ≤            (45) 

From Equation (41) 

( )
2

1
1

1
2

1
k kNew

k
k

L L
f f

s

η η
η

β
η η

+
+

 
− Γ 

− + Γ  ≤                (46) 

Let from theorem (1): 

1k kA f f += −  then 
( )

2

1

1
2

1
New
k

k

L L
A

s

η η
η

β
η η+

 
− Γ 

+ Γ  ≤           (47) 

1 1
New
k

k

L
s

ηβ
η η+

Γ
≤                          (48) 

Hence, 

1 1
N

k k k kd g sβ+ +≤ +                        (49) 

1 1 1k k
k

L Ld s
s

η ηγ γ
η η η η+

Γ Γ
≤ + = +                (50) 

2
1 1

1
k kd≥ +

= ∞∑                           (51) 

2
1

1 1

1
kLηγ

η η
≥

= ∞
 Γ

+ 
 

∑ .                     (52) 

4. Whale Optimization Algorithm (WOA) 

Whales are the largest animals in the world where there are whales with a length 
of up to 30 meters and weighs 180 tons. There are major species in the world 
such as killer whales, humpback whales, blue whales. Whales are often predators 
and whales are sleepless because they breathe from the ocean surface. In fact, 
only half of the brain sleeps and the interesting thing about whales is that they 
are very smart animals to add to emotion [3]. 

The hunting technique used by these whales is one of the most interesting 
methods and is called the method of nutrition, the process of searching for food. 
Figure 2 represents the feeding behavior using the bubble trap in humpback 
whales. 
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Figure 2. Represents the feeding behavior using the bubble 
trap in humpback whales. 

 
The humpback whale dives about (12) meters down and then creates bubbles 

in the form of circles or spiral encircles the prey and then swim towards the sur-
face and this process consists of three different stages as follows: 

1: Coral loop. 
2: Lob tail. 
3: Capture loop. 
This style of food can be observed in the humpback whale only. 

4.1. Mathematical Model 

In this section, we will talk about how physically encircle the prey, which divided 
into maneuvering the spiral and how to get to the prey. We will also discuss 
Whale Optimization Algorithm (WOA). 

1) Encircling prey 
One of the characteristics of humpback whales is their knowledge of the loca-

tion of the prey and encircling them either in the research space. The optimal 
location can not be known in advance. But the whale algorithm assumes that the 
target prey is the best or near solution, then the rest of the other elements will 
update their positions according to the best location and is represented by the 
following equations: 

( ) ( )t t∗⋅= −XD C X                     (53) 

( ) ( )1t t∗+ = − ⋅X X A D                    (54) 

Since: 
t: represents instantaneous iteration (instantaneous). 
A, C: Indicates the vectors. 
X : means the position vector. 

∗X  represents the site vector for the best solution obtained and should occur in 
all iterations if the solution is not preferred 

To calculate the values of vectors A and C, we use the following formulas: 

2= ⋅ −A a r a                          (55) 

2= ⋅C r                            (56) 
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The value of a  decreases over the frequency range from 2 to 0 and r  
represents a vector that takes values in the period [0, 1] at random. 

2) Bubble-net attacking method (Exploitation phase) 
Where the humpback whale style of food Bubble trap was divided mathemat-

ically into two parts are: 
a. Shrinking encircling mechanism 
This process carried out by the value of a  where its value decreases as in 

Equation (5) which leads to decreasing A  as well. 
The value of a  can found from the following formula: 

22 t
Maxlter

= −a                        (57) 

where 
t: means the current iteration. 
Maxlter: Maximum number of iterations allowed [10]. 

From this, we conclude that the value of A  falls between [−a, a] which is a 
random value and that over all iterations the value of (a) decreases from 2 to 0 
by placing values of A  in [−1, 1] randomly. 

The new location of the researched element can be considered in any position 
between the best element currently and the original position of the element. 
Figure 3 shows the possible position of (X, Y) in the direction of (X*, Y*) where 
this can be achieved in the space of the two axes by setting 0 1A≤ ≤  as follows 
It also explains the reduction of the encircling mechanism: 

b. Spiral updating position 
In this method, we will calculate the distance between the whale in (X, Y) and 

the prey in (X*, Y*) as shown in Figure 4 and then create an equation that is a 
spiral equation between the position of the prey and the whale that represents 
the movement of the snail movement Humpback whales are as follows: 

( ) ( ) ( )*1 e cos 2blX t D l X t′+ = ⋅ π +                 (58) 

 

 
Figure 3. Represents the reduction of the encircling mechanism. 
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Figure 4. Represents the spiral updated location. 
 

where 
( ) ( )*D X t X t′ = −                     (59) 

Also, D′  represents the best distance between the whale and its prey ob-
tained to the present moment, (b) is a constant number to determine the shape 
of the logarithmic spiral, l is a number belonging to the period [−1, 1] randomly. 

Humpback whales run around their prey in a shrinking circle and are in the 
form of a spiral. To express this technique, we will impose a 50% probability of 
selection to reduce the cord or spiral pattern to improve the position of the 
whales. It shall be mathematically as follows: 

( )
( )

( ) ( )

*

*

0.5
1

e cos 2 0.5bl

X t A D P
X t

D l X t P

 − ⋅ <+ = 
′ π + ≥

          (60) 

where P: number represents belong to the period [0, 1] at randomly [6]. 
3) Search for prey: 
The same method based on the variation in vector A  can be used to search 

for prey. Humpback whales randomly search for their prey depending on the 
position of each one. Therefore, we will use the vector A  with values greater 
than 1 or less than −1 randomly as this process will force the search element to 
search away from the reference whale, and in contrast to the exploitation stage. 
We will improve the position of the search element randomly in the exploration 
phase rather than better Element obtained so far, this method and 1< A . It 
emphasizes the exploration process and allows the WOA algorithm to do a full 
research and the mathematical representation is: 

D C Xrand X= ⋅ −                         (61) 

( )1X t Xrand A D+ = − ⋅                       (62) 

Since rand 𝑋𝑋: represents the selection of a random whale from the communi-
ty currently, we have developed some possible placements about any solution 
with 1 A<  in Figure 5 [10]. 

4.2. Whale Optimization Algorithm 

The WOA algorithm relies on a set of random solutions that begin with each 
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Figure 5. Represents the exploration mechanism in the WOA algorithm. 

 
process. The search elements optimize their position based on the randomly se-
lected search element or based on the best solution found to date. To facilitate 
the properties of exploration and exploitation, where the random element is 
found when 1A > , when 1A <  is the best solution, because the position of 
the search element is improved [3]. 

The WOA algorithm is able to change the movements between the motion of 
the helix or circular motion based on the value of P and the algorithm will ter-
minate if the stop condition is met. 

If we take the WOA algorithm in theory, we can say that it is an integrated 
optimization algorithm because it has the ability to explore and exploit. On this 
basis, the proposed method defines the process of research on the best solutions 
and allows the rest of the other research elements to take the best obtained so 
far. 

In the WOA algorithm, the search vector (A) can be allowed to update for the 
better by the easy passage between exploration and exploitation. For exploitation 
at ( 1A ≥ ), it should be noted that the WOA algorithm has only two internal 
key parameters to be modified, A, C. [3]. 

4.3. Whale Optimization Algorithm Features 

1. Algorithms are easy to implement. 
2. This algorithm is highly flexible. 
3. Do not need many parameters. 
4. You can easily navigate through exploration and exploitation based on one 
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parameter. 
5. Due to the simplicity of this algorithm and its lack of many parameters, it is 

used to solve the logarithmic spiral function, it covers the boundary area in the 
research space. 

6. The position of the elements (solutions) in the exploration phase is im-
proved based on randomly selected solutions rather than the best solution ob-
tained so far [10]. 

4.4. Proposed Hybrid Algorithm 

In this paragraph, a new hybrid method proposed to solve the optimization is-
sues called WOA-CG, a proposed hybrid algorithm that links the evolutionary 
ideas of the WOA algorithm with the classical optimization of Conjugate Gra-
dient Algorithm, called WOA-CG. Figure 6 represents the proposed algorithm  
 

 
Figure 6. Represents the proposed algorithm (WOA-CG). 
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(WOA-CG). In this algorithm, the process in each iteration divided into two 
phases. In the first stage, the random community and the initial velocity of the 
WOA are generated, and in the second stage, the HS-CG algorithm is used. The 
steps of the proposed hybrid algorithm (WOA-CG) can be summarized as follows: 

Step 1: Create a primary community by generating a primary community and 
configuring parameters A, C. 

Step 2: The random community then entered into the classic conjugate gra-
dient algorithm to improve the community and get the best solution. 

Step 3: Calculate the fitness function of the resulting new community (from 
the traditional conjugate gradient algorithm as the primary community of the 
whale optimization algorithm) for each search element that represents the dis-
tance between the whale and its prey. 

Step 4: Calculate the best position in the search elements. With this feature 
can produce a new generation of children. 

Step 5: Update the location of each search element using the algorithm attributes: 
prey search, prey encirclement, hunting and attacking prey. 

Step 6: Update the new generation position using numbered Equations (6) 
and (7). 

Step 7: The WOA algorithm performs a number of iterative steps until the 
stop condition is met. 

5. Practical Aspect 

For the purpose of evaluating the performance of the proposed algorithms in 
solving optimization problems, the proposed WOA-CG algorithm was tested, 
using (10) standard functions to compare with the algorithm of the whale opti-
mization themselves. The minimum and upper limits of each function used 
when the function reaches the minimum value and the highest frequency of all 
programs equals (500) iterations (Table 2). 

Tables 3-5 show the results of the WOA-MCG algorithm compared with the 
results of the WOA algorithm. The proposed WOA-MCG algorithm shown to 
be successful by improving the results of most high-standard test functions. This 
confirms the success of the hybridization process. 

The test was carried out by a laptop with the following characteristics: CPU 
speed is 2.70, RAM is 8 GB, and Matlab R2014a runs on Windows 8. 

6. Conclusions 

1. Hybridization of post-intuitive algorithms with one of the classical algo-
rithms has contributed to improving its performance by increasing the speed of 
convergence. 

2. Hybridization of post-intuitive algorithms with one of the classical algo-
rithms has contributed to an improvement in the quality of the resulting solutions 
by increasing its exploratory and exploitative capabilities, as numerical results 
show the ability of hybrid algorithms to solve different optimization problems.  
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Table 2. Details of test functions. 

Fmin Range Dim Function 

0 [−100, 100] 30 ( ) 2
1

1

n

i
i

F x x
=

= ∑  

0 [−10, 10] 30 ( )2
1 1

n n

i
i i

F x x x
= =

= +∑ ∏  

0 [−100, 100] 30 ( ) ( )2

3 1
1

n
n

ij
i

F x x
−

=

= ∑ ∑  

0 [−100, 100] 30 ( ) { }4 max ,1i iF x x i n= ≤ ≤  

0 [−30, 30] 30 ( ) ( ) ( )21 22
5 11

100 1n

i i ii
F x x x x−

+=
 = − + − ∑  

 [−5.12, 5.12] 30 ( ) ( )2
6 1

10cos 2 10n

i ii
F x x x

=
= − π +  ∑  

0 [−32, 32] 30 ( ) ( )2
7 1 1

1 120exp 0.2 exp cos 2 20n n

i ii i
F x x x e

n n= =

 
= − − − π + + 

 
 
  

 
∑ ∑  

0 [−600, 600] 30 ( ) 2
8 1 1

cos 1
nn i

ii i

xF x x
i= =

 = − + 
 

∑ ∏  

0.00030 [−5, 5] 4 ( ) ( ) 22
11 1 2

9 21
3 4

i i
ii

i i

x b b x
F x a

b b x x=

 +
= − 

+ +  
∑  

−1.0316 [−5, 5] 2 2 4 6 2 4
10 1 1 1 1 2 2 2

14 2.1 4 4
3

F x x x x x x x= − + + − +  

 
Table 3. Comparison of results between WOA and WOA-MCG using the number of 
elements consisting of 5 elements and the number of iterations 500. 

WOA-MCG WOA Functions 

1.095564774108044e−219 2.564031849964600e−24 F1 

5.888194531373766e−120 2.832824456010799e−21 F2 

1.152976000000000e−193 1.265179717100000e+05 F3 

7.360625000000001e−98 67.423509999999993 F4 

29 28.865160000000003 F5 

0 6.612310000000017 F6 

8.8818e−16 5.149836340000000e−12 F7 

0 1.110200000000000e−17 F8 

0.14841 0.002155848000000 F9 

4.933645298446245− e−63 −1.0316 F10 
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Table 4. Comparison of results between WOA and WOA-MCG using the number of 
elements consisting of 10 elements and the number of iterations 500. 

WOA-MCG WOA Functions 

5.730144657116025e−238 6.064980606729451e−43 F1 

2.391417877673390e−135 1.189940936720370e−35 F2 

9.460120000000001e−194 9.329087286249999e+04 F3 

6.984070000000001e−98 58.731710000000000 F4 

29 28.670350000000003 F5 

0 2.273700000000000e−14 F6 

8.8818e−16 3.019808000000000e−15 F7 

0 0.041301000000000 F8 

0.14841 0.002402970000000 F9 

0.721217700000000−  1.0316−  F10 

 
Table 5. (a) Comparison of results between AWO and AWO-MCG using the number of 
elements consisting of 15 elements and the number of iterations 500; (b) Comparison of 
results between AWO and AWO-MCG using the number of elements consisting of 30 
elements and the number of iterations 500. 

(a) 

WOA-MCG WOA Functions 

4.389922974837402e−245 8.652060084310580e−57 F1 

1.310898716422000e−139 8.334965781000000e−44 F2 

7.116550000000000e−194 6.250821902999999e+04 F3 

6.401950000000001e−98 70.443219999999982 F4 

29 28.532130000000002 F5 

0 1.136900000000000e−14 F6 

8.8818e−16 5.861976000000000e−15 F7 

0 0 F8 

0.14841 0.001559451000000 F9 

−1 1.0316−  F10 

(b) 

WOA-MCG WOA Functions 

1.278730856920000e−269 6.908449965597019e−73 F1 

9.284410409233333e−147 1.329530134275000e−51 F2 

4.233633333333334e−194 4.278456619000001e+04 F3 

6.726541000000001e−98 52.284220000000005 F4 

29 28.006639999999997 F5 

0 5.684300000000000e−15 F6 

8.8818e−16 4.440896000000000e−15 F7 

0 0 F8 

0.14841 7.288930000000001e−04 F9 

−1 1.0316−  F10 
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The results of the WOA-MCG algorithm compared with the WOA algorithm it-
self, which led to encouraging results as good solutions were obtained for most 
test functions. 
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