
Journal of Computer and Communications, 2020, 8, 1-13
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2020.87001 Jun. 30, 2020 1 Journal of Computer and Communications

An Intelligent Bi-Directional Parallel B*
Routing Algorithm

Xueyu Zhang*, Caihong Li

School of Computer Science and Technology, Shandong University of Technology, Zibo, China

Abstract
Pathfinding is a kind of problem widely used in daily life. It is widely used in
network games, map navigation and other fields. However, the traditional A*
algorithm has some shortcomings, such as heuristic function needs to be de-
signed according to different problems, path has many inflection points, and
algorithm stability is poor. B* algorithm also has the shortcoming of inaccu-
rate pathfinding. In order to solve the problems existing in A* and B* algo-
rithms, obstacle avoidance regeneration mechanism, pre-exploration mechan-
ism and equivalent waiting strategy are proposed. It adds a bidirectional pa-
rallel search mechanism to form an IBP-B* algorithm (Intelligent bi-directional
parallel B* routing algorithm). The simulation results show that the speed of
IBP-B* algorithm is 182% higher than that of A* algorithm and 366% higher
than that of BFS algorithm. Meanwhile, compared with B* algorithm, IBP-B*
algorithm improves the pathfinding accuracy of the algorithm.

Keywords
B* Algorithm, Path Planing, Parallel

1. Introduction

The problem of pathfinding is a key issue in graph theory, and it is widely used
in many fields such as intelligent transportation [1] and online games [2]. Regard-
ing this problem, common pathfinding methods include BFS algorithm, Dijkstra
algorithm, and A* algorithm. Among them, BFS algorithm and Dijkstra algo-
rithm belong to blind search [3]. BFS algorithm is based on queue implementa-
tion, adding all feasible points to the queue. A lot of memory space is wasted [4].
Dijkstra updates according to the shortest path from the starting point to other
points, which is a waste of time for the problem of finding a path between two
points. The A* algorithm is an improved heuristic algorithm based on the BFS

How to cite this paper: Zhang, X.Y. and
Li, C.H. (2020) An Intelligent Bi-Directional
Parallel B* Routing Algorithm. Journal of
Computer and Communications, 8, 1-13.
https://doi.org/10.4236/jcc.2020.87001

Received: June 13, 2020
Accepted: June 27, 2020
Published: June 30, 2020

Copyright © 2020 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2020.87001
https://www.scirp.org/
https://doi.org/10.4236/jcc.2020.87001
http://creativecommons.org/licenses/by/4.0/

X. Y. Zhang, C. H. Li

DOI: 10.4236/jcc.2020.87001 2 Journal of Computer and Communications

algorithm [5]. Compared with other algorithms, it is currently the most widely
used algorithm and can basically meet the requirements of pathfinding, but also
has many obvious disadvantages, such as heuristic The function needs to be de-
signed according to different situations [6] [7]. The path searched by the algo-
rithm is often tortuous, which is inconsistent with the actual situation [8], and
the dynamic programming effect is poor [9].

In recent years, scholars at home and abroad have conducted in-depth re-
search on this problem. In view of the shortcomings of the A* algorithm, there
are currently two solutions. One is to improve based on the characteristics of the
A* algorithm heuristic function or optimize it in conjunction with the parallel
mechanism, such as Xiaoyan Guo and Xun Luo explored the influence of differ-
ent heuristic functions on the algorithm [10], Vahid Rahmani and Nuria Pele-
chan proposed a multi-objective hierarchical parallel A* algorithm [11]; Li Wen-
cong proposed a searchable infinite neighbor based on steering restrictions Bi-
directional heuristic algorithm in the domain [12]. Qin Feng et al. adopted a bi-
directional preprocessing structure to reduce the number of redundant nodes in
the A* algorithm [13]. Wang Zhongyu et al. optimized the path by improving
the weight ratio of the evaluation function [14]. The other is the targeted im-
provement of the algorithm based on the characteristics of the problem to be
solved. For example, Pan Changan studied the urban traffic routing problem based
on the A* algorithm [15], using a binary fork structure and adjusting the heuris-
tic function in the valuation function. Xue Shuangfei used the A* algorithm for
optimization research on the obstacle avoidance problem of ships at sea [16].
The A* algorithm was used to extract each inflection point and then tested, and
the redundant points were removed. In addition, some scholars correspondingly
improved other algorithms for specific problems. For example, Yang Weidong
and others solved the dynamic pathfinding problem based on the genetic algo-
rithm of niche immunity [17]. Yu Lingjie and Gu Peng combined neural net-
work and Q-learning to propose In addition to the DQN algorithm [18], Liu
Xiaotao and others used support vector machines to optimize the D* algorithm
to solve the problem of unmanned vehicle pathfinding [19], and so on.

Zhao Qingsong proposed a new B* algorithm based on mimicking nature
animal pathfinding in 2010 [20]. This algorithm is mainly used to solve the prob-
lem that a large number of pathfinding requests need to be completed quickly in
the game server, and the efficiency can reach dozens of times of the traditional
A* algorithm. Compared with the A* algorithm, the algorithm is simple in prin-
ciple and does not require complex heuristic function design for different prob-
lems. However, the algorithm is prone to inaccurate pathfinding, and sacrifices
the accuracy of pathfinding in pursuit of efficiency. On the basis of this, this pa-
per improves the problem that the original algorithm cannot find the correct path
in some cases through the cooperation of pre-detection mechanism, obstacle
avoidance mechanism and the same-level waiting strategy. Then, by adding pa-
rallel search mechanism, an intelligent bidirectional B* pathfinding algorithm is
proposed. Experimental results show that the new algorithm is more practical,

https://doi.org/10.4236/jcc.2020.87001

X. Y. Zhang, C. H. Li

DOI: 10.4236/jcc.2020.87001 3 Journal of Computer and Communications

with higher stability, faster speed and less path turns than the traditional A* al-
gorithm.

2. Problem Description

For the convenience of research, the problems studied in this paper are expressed
as follows: given a grid map T, it is represented by N * M squares of the same
size, and each square is represented by ijN .

[] []; 1, , 1,ijT N i N j M= ∈ ∈∑ (1)

The information of each square in the figure is specifically expressed as

0, No obstacles
1, There are obstaclesijN 

= 


 (2)

When the value is 0, it indicates that there is no obstacle in the current square,
and it can move freely. When the value is 1, it indicates that there is an obstacle
in the current square, which is impassable. This article selects four connection
methods for research, that is, there are four directions to choose from when
walking, which are up, down, left and right. In the grid map T, let S be the start-
ing point, E is the end point, P is a road from S to E in the grid map T, and de-
fine the weight of the road P as the sum of the weights of all the edges in the
road, denoted as. The problem required in this paper can be described as finding
the path with the smallest weight from all the paths from S to E. That is to find a
way from S to E, so that

() (){ }0 min ,W P W P P D= ∈ (3)

3. B* Pathfinding Algorithm
3.1. Algorithm Introduction

B* pathfinding algorithm is an efficient pathfinding algorithm invented by Zhao
Qingsong in 2010 inspired by the pathfinding process of real animals in nature.
It combines the greedy algorithm and the breadth-first search algorithm, and se-
lectively adds points to the search queue through the greedy strategy, which ef-
fectively reduces the space waste of the breadth-first search algorithm and im-
proves the search speed. Moreover, because the algorithm is based on a greedy
strategy, its search path is more in line with the law of natural biological path-
finding than the A* algorithm, and there are fewer inflection points.

3.2. Algorithm Principle

The B* algorithm is inspired by the pathfinding process of real animals in na-
ture, and is improved to solve various blocking problems. During the pathfind-
ing process, the exploration nodes are divided into two states: free exploration
nodes and crawling exploration nodes. The initial exploration node is free, and
moves from the origin to the goal. When encountering an obstacle, it branches
along the obstacle into left and right. Each branch constitutes a crawling explo-

https://doi.org/10.4236/jcc.2020.87001

X. Y. Zhang, C. H. Li

DOI: 10.4236/jcc.2020.87001 4 Journal of Computer and Communications

ration node, and attempts to bypass the obstacle. After the obstacle is bypassed,
the crawling node becomes a free node and advances to the target. This process
iterates until the path finding success or exploration is reached. The disappear-
ance of the node indicates that there is no reachable path.

The algorithm process is shown below.
Step 1. Initially, the exploration node is a free non-climbing node, starting

from the origin and moving towards the self-marking point.
Step 2. Determine whether the front is an obstacle: it is not an obstacle, move

forward one step to the target, and it is still a free non-climbing node; it is an
obstacle, bifurcating into two branches along the obstacle, trying to bypass the
obstacle from two directions, this two branch nodes become the crawl around
exploration nodes.

Step 3. After crawling around the exploration node to bypass the obstacle, it
becomes a free non-climbing node again, and return to 2.

Step 4. After the exploration node advances, determine whether the current
map grid is the target grid, if so, the pathfinding is successful, and a complete
path is constructed according to the pathfinding process. .

Step 5. During the pathfinding process, if the search node is gone, the path-
finding ends and the target grid is unreachable.

4. IBP-B* Algorithm Introduction

The B* algorithm loses some accuracy while improving speed. Based on this, this
paper adopts new strategies, pre-exploration mechanism and obstacle avoidance
rebirth mechanism to improve the accuracy of its algorithm. At the same time, it
adds a parallel mechanism and proposes an intelligent two-way parallel B* path-
finding algorithm.

4.1. Greedy Strategy

The core part of the B* algorithm is a greedy strategy that imitates animals in
nature. The strategy is as follows: Assume that the current point position is point
F and the end point position is point E.

When there is no obstacle in front of the current movement direction of point
F, the difference between the horizontal and vertical and the end point is com-
pared, and the judgment is made according to the relative position between the
current position F and the end position E, thereby determining the next direc-
tion of movement, according to the greedy strategy, if the absolute value of the
lateral difference between the current position and the end position is greater
than the absolute value of the longitudinal difference, then the relative position
between the two points will be judged, and it will move laterally.

When an obstacle appears in front of the current movement direction of point
F, it is divided into two cases. The first is the first encounter with the obstacle,
and then it is extended in the other directions except the direction of travel. If it
is encountered multiple times, the judgment Whether there is still an obstacle in

https://doi.org/10.4236/jcc.2020.87001

X. Y. Zhang, C. H. Li

DOI: 10.4236/jcc.2020.87001 5 Journal of Computer and Communications

the original collision direction, if it does not exist, it will expand in the direction
of the original obstacle, if it exists, it will continue to expand in the current di-
rection, especially if there is an obstacle in the current direction, it will proceed
in the opposite direction of the original obstacle Expand accordingly.

4.2. Obstacle Avoidance Rebirth Mechanism

As shown in Figure 1, the center of the grid in the upper left corner of the figure
is the coordinate origin (1, 1), the positive x-axis is downward, and the positive
y-axis is right. Grid map. Then the starting point S is located at (3, 1), and the
point E is located at (3, 7). According to the greedy strategy algorithm in 2.2, the
correct path cannot be found. In order to solve this problem, this paper proposes
an obstacle avoidance rebirth mechanism. Let the current movement point be A
and the current movement direction be D during the algorithm. When point A
moves along direction D to point B, first determine whether there are obstacles
on the left and right of the direction D of point B. If there are obstacles, add
point A to the queue while adding A to the queue. The point after the point
moves in that direction.

4.3. Pre-Exploration Mechanism

As shown in Figure 2, with the center of the grid in the upper left corner of the
figure as the coordinate origin (1, 1), the downward x-axis is positive, and the
right is the y-axis positive, to construct a plane rectangular coordinate system
and build the corresponding Grid map. Then point S is at (3, 1) and point E is at
(3, 7). It can be found that when the S point expands to the right to the position
(3, 3), because there are no obstacles above and below, the algorithm will enter a
“trap”, and the obstacle avoidance rebirth mechanism has no effect on this situa-
tion. Therefore, this paper proposes a pre-exploration mechanism based on the
idea of reconnaissance and detection, and pre-judgment at the current point po-
sition. If the current point next entry position is a concave glyph, it will expand
in other directions at the same time.

Figure 1. Example of obstacle avoidance rebirth mechanism.

https://doi.org/10.4236/jcc.2020.87001

X. Y. Zhang, C. H. Li

DOI: 10.4236/jcc.2020.87001 6 Journal of Computer and Communications

Figure 2. Example of pre-exploration mechanism.

4.4. Two-Way Parallel Search

In order to make up for the time overhead caused by the obstacle avoidance re-
birth mechanism and the pre-exploration mechanism, and at the same time im-
prove the efficiency of the algorithm, this algorithm implements a two-way pa-
rallel search. The specific operations are as follows: first, the starting point S is
added to the queue Q1, and the ending point E is added to the queue at the same
time. Q2, each time the head of the queue is taken from queue Q1 and queue Q2
at the same time. The search strategy adopted by forward search and reverse
search is exactly the same. When the search reaches the end point in the search
process, the search ends, that is, the search ends when the forward search reach-
es the end point E, and the search ends when the reverse search reaches the start
point S. When queue Q1 and queue Q2 are both empty or the forward and re-
verse search ends at the same time, the algorithm ends.

4.5. Peer Waiting Strategy

First, let the point where the end position is encountered for the first time in the
search process be point H. Due to obstacle avoidance rebirth and the setting
queue of the pre-exploration mechanism, some points that are not optimal are
added to the queue. Secondly, in the queue, the best and other non-best advan-
tages cannot be prioritized. Therefore, at the end of the algorithm, it is not easy
to determine that the result obtained after a certain point reaches the end point
is the final result. You need to wait for point H to pop up the queue one by one
in the queue with the same search level before you can judge the result obtained
at this time. The result is the final result.

Secondly, in the process of running the algorithm, there is also a situation that
may produce errors. As shown in Figure 3, when the algorithm is in this situa-
tion, since the algorithm has no priority difference between the four directions
when expanding the multiple directions, an error of 2 will be generated. In order
to make up for this error, it is mandatory to wait for all points that differ from
the search depth of point H by 2 to pop out of the queue before terminating the
operation of the algorithm.

https://doi.org/10.4236/jcc.2020.87001

X. Y. Zhang, C. H. Li

DOI: 10.4236/jcc.2020.87001 7 Journal of Computer and Communications

Figure 3. Example of peer waiting strategy.

4.6. Algorithm Structure

The intelligent two-way parallel B* pathfinding algorithm is based on two queues
when searching for paths. One is used to store the search queue starting from the
start point, and one is used to store the search queue starting from the end point.
During the running of the algorithm, the first points of the two queues are taken
from the two queues for expansion. First, it is judged whether they can move di-
rectly according to the greedy strategy. Secondly, if an obstacle is touched during
the movement, it will be discussed in different situations. The first time the ob-
stacle is touched. The object expands in other directions. If the obstacle has been
touched before, it is judged whether the obstacle in the direction before the cur-
rent point exists and expands according to the state of the obstacle. When both
the forward and reverse search have ended, the algorithm ends and the output,
the best results found during the search. The overall structure of the algorithm is
shown in Figure 4.

The specific steps of the algorithm are as follows:
Step 1. Create queues Q1 and Q2, add the start point to queue Q1, and the

end point to queue Q2.
Step 2. Check whether the queues Q1 and Q2 are empty, or both the forward

and reverse searches have found the results and ended. If both are empty or both
ends, skip to step 7, otherwise go to step 3.

Step 3. First, perform a forward search. If queue Q1 is not empty, then take
point F1 from the head of queue Q1 and pop it from the queue, go to step 4,
otherwise go to step 5.

Step 4. Then determine whether the point F1 can move in accordance with
the greedy strategy, whether it is the first time it has encountered an obstacle, or
whether it has been encountered multiple times. If the F1 point can move di-
rectly according to the greedy strategy, the point after the F1 point moves is cal-
culated according to the greedy strategy; if the F1 point encounters an obstacle
for the first time, the state of the obstacle is recorded, and it expands in the re-
maining movement direction; In order to encounter the obstacle many times,

https://doi.org/10.4236/jcc.2020.87001

X. Y. Zhang, C. H. Li

DOI: 10.4236/jcc.2020.87001 8 Journal of Computer and Communications

Figure 4. Algorithm flowchart.

the state of the obstacle in the current moving direction is judged, and the cor-
responding movement is made according to its state. If there is an obstacle in the
original direction, it moves in the opposite direction of the obstacle. Finally, the
points calculated according to different strategies are re-added to the queue Q1.

Step 5. Next, perform a reverse search. If queue Q2 is not empty, take point
F2 from the head of queue Q2 and pop it from the queue, go to step 6, otherwise
go to step 2.

Step 6. In turn, determine whether point F2 can move according to the greedy
strategy, whether it is the first time it has encountered an obstacle, whether it has
been encountered multiple times. The status moves accordingly, and finally the
points moved according to different strategies are added to the queue Q2 again,
and go to step 2.

Step 7. The operation of the program ends.

https://doi.org/10.4236/jcc.2020.87001

X. Y. Zhang, C. H. Li

DOI: 10.4236/jcc.2020.87001 9 Journal of Computer and Communications

5. Simulation

In order to verify the performance of the new algorithm, based on C++ pro-
gramming under the Windows operating system, this paper conducted experi-
ments on breadth-first search (BFS), A* algorithm, B* algorithm and intelligent
two-way parallel B* search algorithm. The experimental operating environment
is Windows 10 Professional Edition, the processor is Intel(R) Core i7-10710U
1.10 GHZ ten-core processor, 16 GB memory, 1T hard disk, and the compiler
version is GCC 5.1.0.

5.1. Experiment Procedure

First, according to the principle of the B* algorithm, five sets of test samples are
designed to test the correctness of the four algorithms. The five test samples are
shown in Figure 5. The path length results found by each algorithm are shown
in Table 1, where −1 indicates that the path cannot be found.

We imitate the examples in [15] and generate a set of test cases 6 of size 35 *
35 to explore the characteristics of the path generated by the A* algorithm and
the IBP-B* algorithm. The path searched by the A* algorithm is shown in Figure 6,
and the path generated by the IBP-B* algorithm is shown in Figure 7.

Then we randomly generate a set of sample 7 with a size of 1000 * 1000 that
does not exist, and test the four algorithms. The experimental results are shown
in Table 2.

Table 1. Running results of different algorithms.

Algorithm BFS A* B* IBP-B*

Sample 1 12 12 16 12

Sample 2 12 12 18 12

Sample 3 11 11 −1 11

Sample 4 12 12 14 12

Sample 5 12 12 −1 12

Table 2. Running time and number of search nodes.

Algorithm BFS A* B* IBP-B*

The elapsed time(s) 1.351 0.329 0.002 0.078

Number of search nodes 376,748 376,748 4619 136,641

Figure 5. Five groups of test cases.

https://doi.org/10.4236/jcc.2020.87001

X. Y. Zhang, C. H. Li

DOI: 10.4236/jcc.2020.87001 10 Journal of Computer and Communications

Figure 6. A* Algorithm pathfinding results.

Figure 7. IBP-B* algorithm pathfinding results.

Next, we test the efficiency of the four algorithms. In order to ensure the test

accuracy, we first generate a set of 1000 * 1000 sample 8 and use each algorithm
to run the sample ten times to explore the operating system under the same hard-
ware environment. The degree of influence of factors such as scheduling on the
running time of the algorithm. The results are shown in Figure 8.

From the experimental results, the running time of the algorithm under the
same hardware environment is slightly different at different times, but the over-
all gap is not large, so you can use the results of a certain run as the results of the
algorithm. We randomly generated 15 sets of samples with a size of 1000 * 1000,
and each algorithm was run once for each algorithm to explore the performance
of each algorithm in the case of random data. The experimental results are shown
in Table 3 and Figure 9.

https://doi.org/10.4236/jcc.2020.87001

X. Y. Zhang, C. H. Li

DOI: 10.4236/jcc.2020.87001 11 Journal of Computer and Communications

Figure 8. Running time of each algorithm.

Figure 9. Running time of different algorithms.

Table 3. Average running time and path-finding accuracy.

Algorithm BFS A* B* IBP-B*

Average running time(s) 1.443 0.876 0.001 0.309

Pathfinding accuracy 100% 66.7% 87% 100%

5.2. Analysis of Results

First of all, this paper uses the sample designed for the B* algorithm to test the
four algorithms. The results show that the IBP-B* algorithm, BFS algorithm, and

https://doi.org/10.4236/jcc.2020.87001

X. Y. Zhang, C. H. Li

DOI: 10.4236/jcc.2020.87001 12 Journal of Computer and Communications

A* algorithm can correctly calculate the results in the test and verify the IBP-B*.
The correctness of the algorithm. Then, through the test of sample 6, the test re-
sults are obtained in Figure 6 and Figure 7, and it can be clearly seen that the
path generated by the IBP-B* algorithm is smoother than the A* algorithm, and
the inflection point in the path less. This is because the principle of the IBP-B*
algorithm is based on a greedy strategy. From the test of Example 7, we find that
when there is no path, the BFS algorithm and the A* algorithm will traverse the
entire graph, and thus search for the most nodes. The B* algorithm and the
IBP-B* algorithm are based on the greedy strategy, which greatly reduces some
unnecessary expansion in the search process, so the number of search nodes is
relatively small. In order to ensure the accuracy of the results, the IBP-B* algo-
rithm adds some search branches to ensure the accuracy of the algorithm, so the
number of search nodes has increased compared to the B* algorithm. By analyz-
ing the results of 15 sets of random test samples, we can find that the A* algo-
rithm runs fast and slow in various tests and has poor stability. The running
time of each group of test cases of the IBP-B* algorithm is lower than that of the
A* algorithm and the BFS algorithm. The algorithm has good stability and fast
running speed. The experimental results show that the speed of the IBP-B* algo-
rithm is improved by 182% compared to the A* algorithm and 366% compared
to the BFS algorithm. At the same time, compared with the B* algorithm, the
IBP-B* algorithm improves the algorithm’s pathfinding accuracy.

6. Conclusion

The traditional A* algorithm is prone to redundant points and inflection points
during the pathfinding process, and the heuristic function needs to be designed
according to different problems. Zhao Qingsong proposed a B* algorithm based
on bionics, which is efficient and easy to implement and the planned path is
smooth, but it is prone to inaccurate pathfinding when planning the path. In this
paper, the accuracy of the original algorithm is improved by adding obstacle
avoidance rebirth mechanism, pre-exploration mechanism and sibling waiting
strategy. At the same time, bidirectional parallel mechanism is added, and an intel-
ligent bidirectional parallel B* pathfinding algorithm is proposed. Through expe-
rimental simulation, compared with other algorithms, the IBP-B* algorithm works
through a variety of mechanisms to maintain the advantages of the B* algorithm’s
smooth path generation, practicality and wide applicability, while improving the
accuracy of pathfinding. Compared with the BFS algorithm and the traditional A*
algorithm, the IBP-B* algorithm greatly shortens the pathfinding time and pro-
vides a new solution for the global path planning in various pathfinding problems.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References
[1] Jin, M.C. (2019) Research on Traffic Route Based on Hybrid Intelligent Algorithm.

https://doi.org/10.4236/jcc.2020.87001

X. Y. Zhang, C. H. Li

DOI: 10.4236/jcc.2020.87001 13 Journal of Computer and Communications

Inner Mongolia University of Technology, Hohhot.

[2] Han, Y.Z. (2017) Path-Finding Algorithm in Online Games. Electronic Technology
and Software Engineering, No. 24, 16.

[3] Cai, Z.X. (1996) Artificial Intelligence and Its Applications. Tsinghua University
Press, Beijing.

[4] Zhu, L. (2010) Research on the Way-finding Problem in the Game. The Science
Education Article Gallery, No. 2, 69, 83.

[5] Lian, Y., Wang, C.L, He, L., Zeng, X.M, Cui, T.J. and Chen, L. (2017) Solving the
Shortest Path Based on Improved Heuristic Ant Algorithm. Journal of Tianjin
Normal University (Natural Science), 37, 54-57.

[6] Jiang, Y.Q., Li, Z.Y., Guan, Q.X. and Guan, S.J. (2020) Research on UAV Path Plan-
ning Based on Improved A* Algorithm. Journal of Ordnance Equipment Engineer-
ing, 1-5. http://kns.cnki.net/kcms/detail/50.1213.TJ.20191227.1324.004.html

[7] Wan, B.W., Chen, J., Zhu, R.C., Zhu, D.W. and Pan, Z.Y. (2019) Application and
Research of Advanced A~* Algorithm in Game Pathfinding Function. Information
Research, 45, 51-55.

[8] Yang, K.X. (2009) Artificial Intelligence Path-Finding Algorithm and Its Applica-
tion in Games. Central South University, Changsha.

[9] Zang, C. and Sun, Q.Q. (2018) Dynamically Adjustable A~* Path Optimization Al-
gorithm Based on Path State. Industrial Control Computer, 31, 101-102.

[10] Guo, X.Y. (2018) Global Path Search Based on A~* Algorithm. Proceedings of the
2018 International Conference on Transportation & Logistics, Information & Com-
munication, Smart City (TLICSC 2018). Wuhan Zhicheng Times Cultural Devel-
opment Co., Ltd., Wuhan, 380-385.

[11] Rahmani, V. and Pelechano, N. (2020) Multi-Agent Parallel Hierarchical Path
Finding in Navigation Meshes (MA-HNA*). Computers & Graphics, 86, 1-14.
https://doi.org/10.1016/j.cag.2019.10.006

[12] Qin, F., Wu, J., Zhang, X.F. and Zhao, J.L. (2019) Improved Search Algorithm Based
on A~* Bidirectional Preprocessing. Computer System Application, 28, 95-101.

[13] Yu, L.J. and Gu, P. (2019) Labyrinth Pathfinding Based on DQN Algorithm. Infor-
mation and Computer (Theoretical Edition), No. 11, 31-32, 36.

[14] Li, W.Y., Gao, Z.Z., Wu, D.F. and Li, S.G. (2019) Improved Bidirectional Heuristic
Shortest Path Algorithm Based on Turn Limit. Science Technology and Engineer-
ing, 19, 169-174.

[15] Wang, Z.Y., Zeng, G.H., Huang, B. and Fang, Z.J. (2019) Global Optimal Path Planning
of Robot Based on Improved A~* Algorithm. Computer Application, 39, 2517-2522.

[16] Pan, C.A. (2015) Research on Urban Traffic Routing Based on Improved A Star Al-
gorithm. Huaqiao University, Xiamen.

[17] Xue, S.F., Xie, L., Wang, S.W., Xia, W.T. and Bao, Z. (2018) Ship A~* Collision
Avoidance Algorithm for Offshore Wind Farms. China Navigation, 41, 21-25.

[18] Yang, W.D. (2009) Genetic Algorithm Based on Niche Immunity to Solve the
Path-finding Problem of Dynamic Obstacle Avoidance Maze. South China Finan-
cial Computer, 17, 34-36.

[19] Liu, X.T., Cai, Y.F. and Wang, T.C. (2017) Application of Constrained D* Algo-
rithm Based on SVM in Unmanned Vehicle Path-Finding. Computer and Digital
Engineering, 45, 1748-1754.

[20] Zhao, Q.S. (2010) A New Efficient Path-Finding Algorithm in Game Develop-
ment—B~*Pathfinding Algorithm. Programmer, No. 8, 110-111.

https://doi.org/10.4236/jcc.2020.87001
http://kns.cnki.net/kcms/detail/50.1213.TJ.20191227.1324.004.html
https://doi.org/10.1016/j.cag.2019.10.006

	An Intelligent Bi-Directional Parallel B* Routing Algorithm
	Abstract
	Keywords
	1. Introduction
	2. Problem Description
	3. B* Pathfinding Algorithm
	3.1. Algorithm Introduction
	3.2. Algorithm Principle

	4. IBP-B* Algorithm Introduction
	4.1. Greedy Strategy
	4.2. Obstacle Avoidance Rebirth Mechanism
	4.3. Pre-Exploration Mechanism
	4.4. Two-Way Parallel Search
	4.5. Peer Waiting Strategy
	4.6. Algorithm Structure

	5. Simulation
	5.1. Experiment Procedure
	5.2. Analysis of Results

	6. Conclusion
	Conflicts of Interest
	References

