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ABSTRACT 
Recently, the life of worldwide human beings has been endangering by the spreading of pneu- 
monia-causing virus, such as Coronavirus, COVID-19, and H1N1. To develop effective drugs 
against Coronavirus, knowledge of protein subcellular localization is prerequisite. In 2019, a 
predictor called “pLoc_bal-mEuk” was developed for identifying the subcellular localization 
of eukaryotic proteins. Its predicted results are significantly better than its counterparts, 
particularly for those proteins that may simultaneously occur or move between two or more 
subcellular location sites. However, more efforts are definitely needed to further improve its 
power since pLoc_bal-mEuk was still not trained by a “deep learning”, a very powerful 
technique developed recently. The present study was devoted to incorporating the “deep- 
learning” technique and developed a new predictor called “pLoc_Deep-mEuk”. The global 
absolute true rate achieved by the new predictor is over 81% and its local accuracy is over 
90%. Both are overwhelmingly superior to its counterparts. Moreover, a user-friendly web- 
server for the new predictor has been well established at  
http://www.jci-bioinfo.cn/pLoc_Deep-mEuk/, by which the majority of experimental scien-
tists can easily get their desired data. 

 

1. INTRODUCTION 
Knowledge of the subcellular localization of proteins is crucially important for fulfilling the following 

two important goals: 1) revealing the intricate pathways that regulate biological processes at the cellular 
level [1, 2]. 2) selecting the right targets [3] for developing new drugs. 

With the avalanche of protein sequences in the post-genomic age, we are challenged to develop com-
putational tools for effectively identifying their subcellular localization purely based on the sequence in-
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formation. 
In 2019, a very powerful predictor, called “pLoc_bal-mEuk” [4], was developed for predicting the 

subcellular localization of eukaryotic proteins based on their sequence information alone. It has the fol-
lowing remarkable advantages. 1) Most existing protein subcellular location prediction methods were de-
veloped based on the single-label system in which it was assumed that each constituent protein had one, 
and only one, subcellular location (see, e.g., [5-7] and a long list of references cited in a review papers [8]). 
With more experimental data uncovered, however, the localization of proteins in a cell is actually a mul-
ti-label system, where some proteins may simultaneously occur in two or more different location sites. 
This kind of multiplex proteins often bears some exceptional functions worthy of our special notice [2]. 
And the pLoc_bal-mEuk predictor [4] can cover this kind of important information missed by most other 
methods since it was established based on the multi-label benchmark dataset and theory. 2) Although 
there are a few methods (see, e.g., [9, 10]) that can be used to deal with multi-label subcellular localization 
for eukaryotic proteins, the prediction quality achieved by pLoc_bal-mEuk [4] is overwhelmingly higher, 
particularly in the absolute true rate. 3) Although the pLoc_bal-mEuk predictor [4] has the aforemen-
tioned merits, it has not been trained at a deeper level yet [11-14].  

The present study was initiated in an attempt to address this problem. As done in pLoc_bal-mEuk [4] 
as well as many other recent publications in developing new prediction methods (see, e.g., [12-57]), the 
guidelines of the 5-step rule [58] are followed. They are about the detailed procedures for 1) benchmark 
dataset, 2) sample formulation, 3) operation engine or algorithm, 4) cross-validation, and 5) web-server. 
But here our attentions are focused on the procedures that significantly differ from those in developing the 
predictor pLoc_bal-mEuk [4]. 

2. MATERIALS AND METHODS 
2.1. Benchmark Dataset 

The benchmark dataset used in this study is exactly the same as that in pLoc_bal-mEuk [4]; i.e.,  

1 2 21 22u=                                     (1) 

where 1  only contains the protein samples from the “Acrosome” location, 2  only contains those 
from the “Cell membrane” location, and so forth;   denotes the symbol for “union” in the set theory. 
For readers’ convenience, their detailed sequences and accession numbers (or ID codes) are given in Sup-
porting Information S1 that is also available at http://www.jci-bioinfo.cn/pLoc_bal-mEuk/Supp1.pdf, 
where none of proteins included has ≥25% sequence identity to any other in the same subset (subcellular 
location). 

2.2. Proteins Sample Formulation 

Now let us consider the 2nd step of the 5-step rule [58]; i.e., how to formulate the biological sequence 
samples with an effective mathematical expression that can truly reflect their essential correlation with the 
target concerned. Given a protein sequence P, its most straightforward expression is 

1 2 3 4 5 6 7R R R R R R R R L= P                              (2) 

where L denotes the protein’s length or the number of its constituent amino acid residues, 1R  is the 1st 
residue, 2R  the 2nd residue, 3R  the 3rd residue, and so forth. Since all the existing machine-learning al-
gorithms} can only handle vectors as elaborated in [3], one has to convert a protein sample from its se-
quential expression (Equation (2)) to a vector. But a vector defined in a discrete model might completely 
miss all the sequence-order or pattern information. To deal with this problem, the Pseudo Amino Acid 
Composition [59] or PseAAC [60]. Ever since then, the concept of “Pseudo Amino Acid Composition” has 
been widely used in nearly all the areas of computational proteomics with the aim to grasp various differ-
ent sequence patterns that are essential to the targets investigated (see, e.g., [4, 10, 23, 24, 61-227]). Because 
it has been widely and increasingly used, recently three powerful open access soft-wares, called “PseAAC- 
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Builder” [93], “propy” [181], and “PseAAC-General” [120], were established: the former two are for gene-
rating various modes of special PseAAC [228]; while the 3rd one for those of general PseAAC [58], in-
cluding not only all the special modes of feature vectors for proteins but also the higher level feature vec-
tors such as “Functional Domain” mode, “Gene Ontology” mode, and “Sequential Evolution” or “PSSM” 
mode. Encouraged by the successes of using PseAAC to deal with protein/peptide sequences, its idea and 
approach were extended to PseKNC (Pseudo K-tuple Nucleotide Composition) to generate various feature 
vectors for DNA/RNA sequences [229] that have proved very successful as well [141, 146, 147, 230-238]. 
According to the concept of general PseAAC [58], any protein sequence can be formulated as a PseAAC 
vector given by 

[ ]1 2 u Ω= Ψ Ψ Ψ Ψ 

TP                                  (3) 

where T is a transpose operator, while the integer Ω  is a parameter and its value as well as the compo-
nents ( )1,2, ,u uΨ = Ω  will depend on how to extract the desired information from the amino acid se-
quence of P, as elaborated in [4]. Thus, by following exactly the same procedures as described in the Sec-
tion 2.2 of [4], each of the protein samples in the benchmark dataset can be uniquely defined as a 22-D 
numerical vector as given in columns 3 - 24 of Supporting Information S2, which can also be directly 
downloaded at http://www.jci-bioinfo.cn/pLoc_bal-mEuk/Supp2.pdf. 

2.3. Installing Deep-Learning for Three Deeper Levels 

In this study, a dense neural network with 3 fully connected layers was used to predict subcellular lo-
calization of multi-label eukaryotic proteins, as illustrated in Figure 1. The predicted results were decided 
by the output of the threshold θ. If the output is greater than 0.5, the outcome was true; otherwise, false. 
For more information about this, see [11], where the details have been clearly elaborated and hence there 
is no need to repeat here.  

The new predictor developed via the above procedures is called “pLoc_Deep-mEuk”, where 
“pLoc_Deep” stands for “predict subcellular localization by deep learning”, and “mEuk” for “multi-label 
eukaryotic proteins”. 
 

 
Figure 1. An illustration to show a dense neural network with 3 fully connected layers. Adapted from 
[11] with permission. 
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3. RESULTS AND DISCUSSION 
According to the 5-step rules [58], one of the important procedures in developing a new predictor is 

how to properly evaluate its anticipated accuracy. To deal with that, two issues need to be considered. 1) 
What metrics should be used to quantitatively reflect the predictor’s quality? 2) What test method should 
be applied to score the metrics? 

3.1. A Set of Five Metrics for Multi-Label Systems 

Different from the metrics used to measure the prediction quality of single-label systems, the metrics 
for the multi-label systems are much more complicated. To make them more intuitive and easier to un-
derstand for most experimental scientists, here we use the following intuitive Chou’s five metrics [239] 
that have recently been widely used for studying various multi-label systems (see, e.g., [240, 241]): 

[ ]

[ ]

[ ]

( ) [ ]

q

q

q

q

*

q 1 *

*

q 1

*

q 1 *

*
q 1

* *

q 1

1Aiming , 0,1

1Coverage , 0,1

1Accuracy , 0,1

1Absolute true Δ , , 0,1

1Absolute false

k kN
k

k

k kN
k

k

k kN
k

k k

N
k kk

k k k kN
k

N

N

N

N

MN

=

=

=

=

=

 
 ↑ =
 
 
 
 ↑ =
 
 
 
 ↑ =
 
 

↑ =

 −
 ↓ =
 
 

∑

∑

∑

∑









 

 



 


 

 

 

   
[ ]

q
, 1,0





















∑

               (4) 

where qN  is the total number of query proteins or tested proteins, M is the total number of different la-
bels for the investigated system (for the current study it is cell 22L = ),  means the operator acting on 
the set therein to count the number of its elements,   means the symbol for the “union” in the set 
theory,   denotes the symbol for the “intersection”, k  denotes the subset that contains all the labels 
observed by experiments for the k-th tested sample, *

k  represents the subset that contains all the labels 
predicted for the k-th sample, and 

( )
*

* 1, if all the labels in are identical to those in
Δ ,

0, otherwise
k k

k k
= 


                 (5) 

In Equation (4), the first four metrics with an upper arrow ↑ are called positive metrics, meaning 
that the larger the rate is the better the prediction quality will be; the 5th metrics with a down arrow ↓ is 
called negative metrics, implying just the opposite meaning.  

From Equation (4) we can see the following: 1) the “Aiming” defined by the 1st sub-equation is for 
checking the rate or percentage of the correctly predicted labels over the practically predicted labels; 2) the 
“Coverage” defined in the 2nd sub-equation is for checking the rate of the correctly predicted labels over 
the actual labels in the system concerned; 3) the “Accuracy” in the 3rd sub-equation is for checking the av-
erage ratio of correctly predicted labels over the total labels including correctly and incorrectly predicted 
labels as well as those real labels but are missed in the prediction; 4) the “Absolute true” in the 4th 
sub-equation is for checking the ratio of the perfectly or completely correct prediction events over the total 
prediction events; 5) the “Absolute false” in the 5th sub-equation is for checking the ratio of the completely 
wrong prediction over the total prediction events. 
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3.2. Comparison with the State-of-the-Art Predictor 

Listed in Table 1 are the rates achieved by the current pLoc_Deep-mEuk predictor via the cross vali-
dations on the same experiment-confirmed dataset as used in [4]. For facilitating comparison, listed there 
are also the corresponding results obtained by the pLoc_bal-mEuk [4], the existing most powerful predic-
tor for identifying the subcellular localization of eukaryotic proteins with both single and multiple location 
sites. As shown in Table 1, the newly proposed predictor pLoc_Deep-mEuk is remarkably superior to the 
existing state-of-the-art predictor pLoc_bal-mEuk in all the five metrics. Particularly, it can be seen from 
the table that the absolute true rate achieved by the new predictor is over 81%, which is far beyond the 
reach of any other existing methods. This is because it is extremely difficult to enhance the absolute true 
rate of a prediction method for a multi-label system as clearly elucidated in [4]. Actually, to avoid embar-
rassment, many investigators even chose not to mention the metrics of absolute true rate in dealing with 
multi-label systems (see, e.g., [91, 178, 184]). 

Moreover, to in-depth examine the prediction quality of the new predictor for the proteins in each of 
the subcellular locations concerned (cf. Table 2), we used a set of four intuitive metrics that were derived 
in [242] based on the Chou’s symbols introduced for studying protein signal peptides [243] and that have 
ever since been widely concurred or justified (see, e.g., [242, 244]). For the current study, the set of metrics 
can be formulated as: 
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Table 1. Comparison with the state-of-the-art method in predicting eukaryotic protein subcellular 
localizationa. 

Predictor 
Aiming 
(↑)a 

Coverage 
(↑)a 

Accuracy 
(↑)a 

Absolute true 
(↑)a 

Absolute false 
(↓)a 

pLoc_bal-mEukb 88.31% 85.06% 84.34% 78.78% 0.07% 

pLoc_Deep-Eukc 89.31% 90.82% 87.28% 81.71% 0.00% 

aSee Equation (4) for the definition of the metrics. bSee [4], where the reported metrics rates were obtained 
by the jackknife test on the benchmark dataset of Supporting Information S1 that contains experi-
ment-confirmed proteins only. cThe proposed predictor; to assure that the test was performed on exactly 
the same experimental data as reported in [4] for pLoc_bal-mEuk. 
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Table 2. Performanceof pLoc_Deep-mEukfor each of the 22 subcellular locations. 

i Locationa Sn(i)b Sp(i)b Acc(i)b MCC(i)b 

1 Acrosome 0.9000 1.000 0.9997 0.9463 

2 Cell membrane 0.9977 0.9950 0.9891 0.9492 

3 Cell wall 0.9460 0.9993 0.9988 0.9333 

4 Centrosome 0.8880 0.9983 0.9964 0.8932 

5 Chloroplast 0.9847 0.9995 0.9985 0.9879 

6 Cyanelle 1.0000 1.0000 1.0000 1.0000 

7 Cytoplasm 0.8808 0.9627 0.9462 0.8340 

8 Cytoskeleton 0.8718 0.9979 0.9945 0.8923 

9 Endoplasmic reticulum 0.9687 0.9976 0.9953 0.9679 

10 Endosome 0.8640 0.9997 0.9986 0.9105 

11 Extracell 0.9818 0.9955 0.9931 0.9758 

12 Golgi apparatus 0.9213 0.9971 0.9935 0.9276 

13 Hydrogenosome 1.0000 1.0000 1.0000 1.0000 

14 Lysosome 0.9505 0.9998 0.9993 0.9675 

15 Melanosome 0.9449 0.9998 0.9993 0.9632 

16 Microsome 0.8114 0.9997 0.9991 0.8451 

17 Mitochondrion 0.9622 0.9967 0.9932 0.9627 

18 Nucleus 0.9085 0.9722 0.9590 0.9515 

19 Peroxisome 0.9470 0.9992 0.9982 0.9515 

20 Spindle pole body 0.9500 0.9995 0.9989 0.9530 

21 Synapse 0.9423 0.9995 0.9989 0.9458 

22 Vacuole 0.9510 0.9994 0.9980 0.9649 
aSee Table 1 and the relevant context for further explanation. bSee Equation (6) for the metrics definition. 
 
where Sn, Sp, Acc, and MCC represent the sensitivity, specificity, accuracy, and Mathew’s correlation coef-
ficient, respectively (Chen et al., 2007), and i denotes the i-th subcellular location (or subset) in the bench-
mark dataset. ( )N i+  is the total number of the samples investigated in the i-th subset, whereas ( )N i+

−  is 
the number of the samples in ( )N i+  that are incorrectly predicted to be of other locations; ( )N i−  is the 
total number of samples in any locations but not the i-th location, whereas ( )N i−

+  is the number of the 
samples in ( )N i−  that are incorrectly predicted to be of the i-th location. 

Listed in Table 2 are the results achieved by pLoc_Deep-mEuk for the eukaryotic proteins in each of 
22 subcellular locations. As we can see from the table, nearly all the success rates achieved by the new pre-
dictor for the eukaryotic proteins in each of the 22 subcellular locations are within the range of 90% - 
100%, which is once again far beyond the reach of any of its counterparts. 
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3.3. Web Server and User Guide 

As pointed out in [245], user-friendly and publicly accessible web-servers represent the future direc-
tion for developing practically more useful predictors. Actually, user-friendly web-servers as given in a 
series of recent publications (see, e.g., [219, 220, 234, 246-300]) will significantly enhance the impacts of 
theoretical work because they can attract the broad experimental scientists [301]. In view of this, the 
web-server of the current pLoc_Deep-mEuk predictor has also been established. Moreover, to maximize 
users’ convenience, a step-by-step guide is given below. 

Step 1. Click the link at http://www.jci-bioinfo.cn/pLoc_Deep-mEuk/, the top page of the pLoc_Deep- 
mEukweb-server will appear on your computer screen, as shown in Figure 2. Click on the Read Me button 
to see a brief introduction about the predictor. 

Step 2. Either type or copy/paste the sequences of query eukaryotic proteins into the input box at the 
center of Figure 2. The input sequence should be in the FASTA format. For the examples of sequences in 
FASTA format, click the Example button right above the input box. 

Step 3. Click on the Submit button to see the predicted result. For instance, if you use the four protein 
sequences in the Example window as the input, after 10 seconds or so, you will see a new screen (Figure 3) 
occurring. On its upper part are listed the names of the subcellular locations numbered from (1) to (22) 
covered by the current predictor. On its lower part are the predicted results: the query protein Q63564 of 
example-1 corresponds to “1,” meaning it belonging to “Acrosome” only; the query protein P23276 of 
example-2 corresponds to “2, 8” meaning it belonging to “Cell membrane” and “Cytoskeleton”; the query 
protein Q9VVV9 of example-3 corresponds to “2, 7, 18”, meaning it belonging to “Cell membrane”, “Cy-
toplasm”, and “Nucleus”; the query protein Q673G8 of example-4 corresponds to “2, 7, 10, 18”, meaning it 
belonging to “Cell membrane”, “Cytoplasm”, “Endosome”, and “Nucleus”. All these results are perfectly 
consistent with experimental observations. 

Step 4. As shown on the lower panel of Figure 2, you may also choose the batch prediction by enter-
ing your e-mail address and your desired batch input file (in FASTA format of course) via the Browse 
button. To see the sample of batch input file, click on the button Batch-example. After clicking the button 
Batch-submit, you will see “Your batch job is under computation; once the results are available, you will be 
notified by e-mail”. 
 

 
Figure 2. A semi screenshot for the top page of pLoc_Deep-mEuk. 
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Figure 3. A semi screenshot for the webpage obtained by following Step 2 of Section 3.3. 

 
Step 5. Click on the Citation button to find the papers that have played the key role in developing the 

current predictor of pLoc_Deep-mEuk. 
Step 6. Click the Supporting Information button to download the Supporting Informations men-

tioned in this paper. 

4. CONCLUSION 
It is anticipated that the pLoc_Deep-Euk predictor holds very high potential to become a useful high 

throughput tool in identifying the subcellular localization of eukaryotic proteins, particularly for finding 
multi-target drugs that is currently a very hot trend in drug development. 
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