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Abstract 
Due to the influence of processing technology and environmental factors, 
there are errors in attitude measurement with the three-axis magnetometer, 
and the change of parameters during the operation of the magnetometer in 
orbit will have a great impact on the measurement accuracy. This paper studies 
the calibration method of magnetometer based on BP neural network, which 
reduces the influence of model error on calibration accuracy. Firstly, the error 
model of the magnetometer and the structural characteristics of the BP neural 
network are analyzed. Secondly, the number of hidden layers and hidden nodes 
is optimized. To avoid the problem of slow convergence and low accuracy of 
basic BP algorithm, this paper uses the Levenberg Marquardt backpropagation 
training method to improve the training speed and prediction accuracy and 
realizes the on-orbit calibration of magnetometer through online training of 
the neural network. Finally, the effectiveness of the method is verified by nu-
merical simulation. The results show that the neural network designed in this 
paper can effectively reduce the measurement error of magnetometer, while the 
online training can effectively reduce the error caused by the change of mag-
netometer parameters, and reduce the measurement error of magnetometer 
to less than 10 nT. 
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1. Introduction 

Three-axis magnetometer has the advantages of small size, lightweight and low 
power consumption, which is often used to determine the attitude of the earth 
observation satellite. However, there are many problems in the application of 
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magnetometer, such as the three axes are not orthogonal, the sensitivity of the 
three axes is not consistent, the constant value drift and the internal remanence, 
leading to a large error between the measured value and the actual value [1]. 
Therefore, it is necessary to calibrate the magnetometer to reduce the measure-
ment error. At the same time, due to the influence of emission vibration, temper-
ature alternation, particle radiation, and device aging and other factors, the mag-
netometer will drift or change the installation matrix when it is in orbit, resulting 
in time-varying error. If the model parameters calibrated by the ground are still 
used, the measurement error will be large, and the on-orbit training method can 
eliminate the influence of time-varying factors on the measurement accuracy.  

At present, the calibration methods of magnetometer mainly include the least 
square method [1] [2], pseudo-inverse method [3], LM algorithm [4], neural net-
work method [5], etc. At present, the calibration method of the magnetometer is 
to establish an error model first, and then identify model parameters [1] [2] [3] 
[6]. This method cannot eliminate the influence of unknown factors, there are 
model errors. The algorithm based on the neural network [5] does not introduce 
model error and has high accuracy. 

BP neural network has good model learning ability, a three-layer BP neural 
network can fit any continuous function [7]. In orbit calibration of the magneto-
meter needs to improve the online performance of the network, so the network 
training speed is the main factor affecting the online performance. At present, 
the commonly used training methods include momentum method, gradient des-
cent method, adaptive learning rate method, Levenberg Marquardt (LM) method, 
etc. for the network with small structure, the LM algorithm can obtain the fastest 
training speed [8]. 

In reference [5], a neural network is designed based on the stochastic gradient 
descent training method, and the magnetometer is calibrated by on-orbit data. 
However, the stochastic gradient descent algorithm is inefficient, slow in con-
vergence, and easy to converge to the local optimal solution. Compared with the 
stochastic gradient descent algorithm, the Levenberg Marquardt backpropagation 
(LMBP) training algorithm has faster convergence speed. To improve the train-
ing speed and convergence of neural networks, LMBP neural network is designed 
to calibrate the magnetometer. 

The rest of this paper is organized as follows. Firstly, the structure of the BP 
neural network is designed according to the error characteristics of the magne-
tometer. Then the LM method is used to improve the speed of network training, 
and the convergence is verified by simulation. After that, the periodic training 
method is proposed to calibrate the magnetometer and the effectiveness of the 
proposed method is verified by numerical simulation. Finally, the concluding 
remarks of the present investigation are noted. 

2. Error Correction Model of Magnetometer 

The measurement errors of magnetometer mainly include the nonorthogonal er-
rors caused by the three-axis nonorthogonal, the nonorthogonal errors caused by 
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the inconsistent sensitivity, the drift, and noise caused by the circuit characteris-
tics. The magnetometer error model can be expressed by the following formula.  

0mB B B AB= + ∆ +                         (1) 

where mB  is the output data of magnetometer, B  is the constant drift, B∆  is 
the measurement noise, A  is the coefficient matrix generated by nonorthogonal 
error, and B  is the actual magnetic field data. 

3. BP Neural Network 

According to Kolmogorov’s theorem [7], there exist three-layer BP neural net-
work which can realize the mapping from any n-dimension to m-dimension. 
Thus, BP neural network usually adopts the structure of single hidden layer as it 
can approach any continuous function. And the number of hidden nodes is the 
main parameter of BP network structure optimization. 

3.1. Structure Design of BP Neural Network 

The structure of the BP neural network is one of the main factors affecting its 
performance. Too many hidden nodes in the network might cause over fitting, 
while too few hidden nodes in the network might affect the prediction ability of 
the network [9]. The number of hidden nodes of the BP neural network should 
be as small as possible under the condition of satisfying the requirements of net-
work accuracy. The number of hidden nodes of the BP neural network is usually 
designed based on empirical formula [10] [11], so it is difficult to ensure the op-
timal network structure. In this paper, the network structure is optimized by the 
pruning method. Firstly, a network with 7 hidden nodes is established. Then, if 
the network accuracy meets the requirements, the hidden nodes will be deleted. 
For magnetometer calibration using BP neural network, the regression coefficients 
of neural networks with different hidden nodes are shown in the table below. 

The data in Table 1 shows that the three hidden nodes are the most compact 
structure to meet the accuracy requirements. When the number of hidden nodes 
is less than 3, the network will diverge. Therefore, this paper adopts the BP neural 
network with three hidden nodes in a single hidden layer. The network structure 
is shown in Figure 1. 

 
Table 1. Regression coefficient of network with different hidden nodes. 

Hidden nodes 7 6 5 4 3 2 

regression 
coefficient 

0.9999 0.9999 0.9999 0.9999 0.9999 0.82121 

 

 
Figure 1. Structure of neural network. 
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3.2. Levenberg Marquardt Algorithm 

The basic BP algorithm has the problems of long training time, difficult to de-
termine the network structure and easy to fall into the local optimal solution. To 
avoid these problems, some improved BP algorithm were proposed. Compared 
with the basic BP algorithm, the LMBP training method has higher accuracy and 
stability and has a better training effect under the same network structure [8] [12] 
[13]. Therefore, LMBP algorithm is adopted in this paper. 

Set network input vector is ( )1 2, , , T
mx x x x=  , output vector is 

( )1 2, , , T
Ny y y y=   and weight vector is ( )1 2, , T

nω ω ω ω=  . 
The loss function is: 

( ) ( )2 2

1 1

1 1
2 2

N N

i i i
i i

E y O eω
= =

= − =∑ ∑                   (2) 

where iO  is the expected output of sample i , iy  is the network output, and 

ie  is the error of sample i . 
Neglecting the higher-order infinitesimal, the second-order Taylor expansion 

of the error function is carried out at the minimum point. 

( ) ( ) ( )( ) ( ) ( )( )21
2

T
k k k k k kE E Eϕ ω ω ω ω ω ω ω ω ω ω= +∇ − + − ∇ −     (3) 

where E∇  is gradient vector and 2E∇  is Hessian matrix. 
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                        (4) 

1 1 2 1

2
2 1 2 2 2

1 2

2 2 2

1 n
2 2 2

n

2 2 2

n n n n

E E E

E E E
E

E E E

ω ω ω ω ω ω

ω ω ω ω ω ω

ω ω ω ω ω ω

 ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂
 

∇ = ∂ ∂ ∂ ∂ ∂ ∂ 
 
 
 ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ 





  



                  (5) 

According to the necessary conditions of extreme value: 

( ) 0ϕ ω∇ =                                (6) 

Therefore: 

( ) 0k k kg H ω ω+ − =                           (7) 

where 2
kH = E∇  is Hessian matrix and kg E= ∇  is gradient vector. The weight 

updating formula of Newton method can be obtained when kH  is nonsingular. 
1

k kH gω −∆ = −                               (8) 

Hessian matrix can be transformed into the following form 

( ) ( ) ( )2 T
kH E J J Sω ω ω= ∇ = +                       (9) 

where ( ) ( ) ( )2

1

N

i i
i

S e eω ω ω
=

= ∇∑ , J  is Jacobian matrix. 
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                      (10) 

When the solution is near the extreme point ( ) 0S ω ≈  

( ) ( )T
kH J Jω ω=                          (11) 

The weight updating formula of Newton method is as follows: 

( ) ( )( ) ( ) ( )
1T TJ J J eω ω ω ω ω
−

∆ = −                 (12) 

Newton’s method needs to inverse the Hessian matrix kH  in every iteration, 
but in practice, kH  might be irreversible while LMBP algorithm can avoid this 
problem. 

Let: 

kG H Iµ= +                          (13) 

where 0µ > , I  is the unit matrix. 
It can be proved that G  and kH  have the same eigenvector, and the eigen-

value of G  is iλ µ+ . Properly choosing the value of µ  makes the matrix G  
invertible. 

The weight updating formula of LMBP algorithm is as follows. 

( ) ( )( ) ( ) ( )
1T TJ J I J eω ω ω µ ω ω
−

∆ = − +                (14) 

where ( ) ( ) ( ) ( )( )1 2, , ,
T

Ne = e e eω ω ω ω  is the error vector. 

4. Simulation 

According to the error model of Formula (1), this paper uses the BP neural net-
work to calibrate magnetometer. The random error is the random noise with the 
mean value of 0 and the standard deviation of 2. The parameters of ground error 
model are set as follows. 

( )0 633.2 1281.7 455.5

0.9599 0.0209 0.0065
0.0020 0.9476 0.0040
0.0011 0.0561 0.9657

TB = nT

A



  
  
  
   

− −

= −



− −                (15) 

The actual magnetic field is as follows: 

sin( )
4000 100 cos( )

sin( )

t
B t nT

t

 
 = +  
 − 

                   (16) 
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Figure 2 shows that the maximum error of magnetometer before calibration 
is greater than 1000 nT. 

4.1. Magnetometer Calibration Simulation 

The trained BP neural network can predict the real magnetic field data according 
to the measured value of magnetometer. The training process is shown in Figure 3. 

The structure of the BP neural network is determined as three neurons in a 
single hidden layer. LMBP algorithm is used to train the network. After 26 times 
of training, the network error is reduced to less than 0.001. The mean square er-
ror is shown in Figure 4. 

The calibration results are shown in Figure 5. The results in Figure 5 show 
that the output error of the magnetometer can be effectively corrected by the BP 
neural network, and the accuracy of the magnetometer can be significantly im-
proved. 

The trained BP neural network can predict the real magnetic field data ac-
cording to the measured value of the magnetometer by calibrating the ground 
model. The maximum error of the neural network calibrated by the ground model 
is less than 10 nT. 
 

 
Figure 2. Simulation of uncalibrated magnetometer. 

 

 
Figure 3. Calibration process of BP neural network. 
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Figure 4. Error of neural network. 

 

 
Figure 5. Comparison of calibration value with actual magnetic field. 

4.2. On Orbit Calibration Simulation 

In the process of satellite on-orbit operation, due to the influence of environ-
mental factors, the installation matrix and sensor characteristics change, result-
ing in the actual performance of the sensor inconsistent with the results of ground 
calibration. Thus, on-orbit calibration is necessary. While doing on-orbit train-
ing, the data of accurate magnetic field intensity should be obtained. Fortunately, 
the position of the satellite is recorded during operation, combined with the geo-
magnetic field model, the accurate magnetic field can be obtained, which makes 
the on-orbit training possible. 

Assuming that the satellite is affected by the space environment in t = 15 s, the 
constant drift of magnetometer and the coefficient matrix change to Formula (17) 
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[ ]652.7 1266.4 444.49

0.9579 0.0209 0.0065
0.0020 0.9456 0.0040
0.0011 0.0561 0.9637

, 15

T nT

t s

B

A



   >  
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= − −

− −
= −

 

          (17) 

As shown in Figure 6, if the ground training model is still used for measure-
ment, there will be errors between the real and measured data. 

And the calibration error of the ground error model will reach 30 nT (as shown 
in Figure 6(b)). In order to reduce the influence of hourly variation on the mea-
surement accuracy, the BP neural network is trained on-orbit by using the peri-
odic training method. The training period of the BP neural network is set to 10 
seconds, that is, BP neural network is trained every 10 seconds, and the magne-
tometer is recalibrated. The training process is shown in Figure 7. 

Figure 8(b) shows that the calibration error increases due to the change of 
magnetometer performance, and the on-orbit calibration using BP neural net-
work can effectively reduce the calibration error in a training period. The error 
after calibration is less than 10 nT, which can significantly increase the accuracy 
compared to ground calibration parameters. 

 

 
(a) 

 
(b) 

Figure 6. Calibration result of ground model. (a) Magnetic 
field intensity; (b) Error. 
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Figure 7. Simulation flow chat. 

 

 
(a) 

 
(b) 

Figure 8. Calibrated value and real value comparison. (a) 
Magnetic field intensity; (b) Error. 

5. Conclusion 

In this paper, LMBP neural network is designed for magnetometer calibration to 
avoid calibration error caused by the model error. The structure of the neural 
network is designed, and the LMBP algorithm is used to improve the training 
speed and convergence of the network. A periodic training method is designed 
to calibrate the magnetometer in orbit by collecting online data. The calibration 
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effect of the LMBP neural network is verified by simulation. The results show that 
the BP neural network can improve the measurement accuracy of the magneto-
meter when the error model of the magnetometer is unknown. And it can effec-
tively reduce the error caused by the change of magnetometer parameters caused 
by the change of space environment, and the measurement error of magneto-
meter can be less than 10 nT. 
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