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Abstract 
Motivated by their intrinsic interest and by applications to the study of nu-
meric palindromes and other sequences of integers, we discover a method for 
producing infinite sets of solutions and almost solutions of the equation 

( )N M reversal N M⋅ = ⋅ , our results are valid in a general numeration base 

2b > . 
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1. Introduction 

In this paper, motivated by their intrinsic interest and by applications to the 
study of numeric palindromes and other sequences of integers, we discover a 
method for producing infinite sets of solutions and almost solutions of the equa-
tion: 

( ).N M reversal N M⋅ = ⋅                     (1) 

where if N is an integer written in base b, which is understood from the context 
then reversal(N) is the base b integer obtained from N writing its digits in reverse 
order. 

An almost solution of (1) is a pair of integers ( ),M N  for which the equality 
(1) holds up to a few of digits for which we understand their position. Our re-
sults are valid in a general numeration base 2b >  and complement the results 
in [1]. Recently one of us showed in Nitica [2] that, in any numeration base b, 
for any integer N not divisible by b, the Equation (1) has an infinite set of solu-
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tions ( ),N M . Nevertheless, as one can see from [3], finding explicit values for M 
can be difficult from a computational point of view, even for small values of N, 
e.g. 81N = . We show in [1] for many numeration bases explicit infinite families 
of solutions of (1). This families of solutions here complement and are indepen-
dent of those shown in [1]. 

Another application of our results may appear in the study of the classes of 
b-multiplicative and b-additive Ramanujan-Hardy numbers, recently introduced 
in Nitica [4]. The first class consists of all integers N for which there exists an 
integer M such that ( )bS N , the sum of base b-digits of N, times M, multiplied 
by the reversal of the product, is equal to N. The second class consists of all 
integers N for which there exists an integer M such that ( )bS N , times M, 
added to the reversal of the product, is equal to N. As showed in Nitica [2] [4], 
the solutions of Equation (1) for which we can compute the sum of digits of 

( ) ( )( ) b bS N M reversal S N M⋅ + ⋅  or of ( ) ( )( )b bS N M reversal S N M⋅ ⋅ ⋅ , can be 
used to find infinite sets of above numbers. 

2. Statements of the Main Results 

The heuristics behind our results is that the product of a palindrome by a small 
integer still preserves some of the symmetric structure of the palindrome; if, in 
addition, the palindrome has many digits of 9, many times the results observed 
in base 10 can be carried over to an arbitrary numeration base b replacing 9 by 
b − 1. 

Let 2b ≥  be a numeration base. If x is a string of digits, let ( )^kx  denote 
the base b integer obtained by repeating x k-times. Let [ ]bx  denote the value of 
the string x in base b. 

Next theorem is one of our main results. 
Theorem 1. Let 2b ≥  be a numeration base. Let 0 , , ,A B c d b< ≤  integers 

such that [ ]bA B cd⋅ =  and c d A+ = . Then, 

1^ ^ .k k
b

A B cA d− ⋅ =    

Proof of Theorem 1 is covered in Section 3. Similar proof to that of Theorem 1 
gives also the somewhat stronger statement Theorem 3. 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢𝑘𝑘 𝐴𝐴^𝑘𝑘 𝐴𝐴^𝑘𝑘 ⋅ 𝐵𝐵 [𝑐𝑐𝐴𝐴^𝑘𝑘−1𝑑𝑑]𝑏𝑏
2 99 891 891
3 999 8991 8991
4 9999 89991 89991
5 99999 899991 899991
6 999999 8999991 8999991
7 9999999 89999991 89999991
8 99999999 899999991 899999991

 

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

 
The above table illustrates the result from Theorem 1 if 10b =  and  

( ) ( ), 9,9A B = , [ ] [ ]10
81bcd = , and { }2,3,4,5,6,7,8k ∈ . Note that 9 9 81× =  

and 8 1 9+ = . 
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Theorem 2. Let 2b >  numeration base and , 1k l >  integers then one has: 

( ) [ ]
[ ] [ ] ( ) ( )

^
1 2 3

1 2 3 1 2 3 1 2 3

1

1 1 ^

k
l b

l l lb b b
l

b a a a a

a a a a a a a a b k l b a a a a

⋅

 

−

= − − − − − 



  

   (2) 

in particular if b is odd and [ ] ( )1 2 3 1 2l
l

b
a a a a b −= . 

Then (2) gives a solution of (1). 
The proof of Theorem 2 is done in Section 4. 
The following examples illustrate the statement of Theorem 2. 
Example: 

[ ]^130 ^1327
10 10

9 123 122 9 83 =  ⋅
 

[ ]^130 ^127
8 8

7 123 1227 489 =  ⋅
 

[ ]^130 ^127
10 8

9 123 122 9 389 =  ⋅
 

Theorem 3. let 2b >  umeration base. Let 0 , , , ,A B c d bα< ≤  integers such 
that [ ]bA B cd⋅ =  and c d α+ = . Then, 

^ ^ 1 ^k k k
b

A B c d ABα − = =   
Next theorem shows for all numeration bases examples of pairs ( ),A B  that 

satisfy the hypothesis of Theorem 1. 
Theorem 4. Let 2b ≥  be a numeration base. Then the pairs  

( ) ( )( )1 ,1
b

AB b b k k b= − − ≤ ≤    satisfy the hypothesis of Theorem 1. 
Proof: 

( )( )1
b

b b k− −    
( ) [ ]2 1 1 ,

b
b bk b k b b k k b k k − − + = − − + = − −   

1 1.b k k b⇒ − − + = −  
Corollary. Let 2b ≥  be numeration base. Then ( )( )1 2b b b− −   . 
Consequently, satisfies the hypothesis of Theorem 1, consequently 

( ) ( ) ( )( ) ( )^ 1 1 ^ 2 3 1 2 .kk

b
b b b b − − − = − −   

Proof: apply Theorem 4 to the pair ( ) ( )( )1 2AB b b= − − . 
 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢𝑘𝑘 𝐴𝐴^𝑘𝑘 [𝐴𝐴^𝑘𝑘 ⋅ 𝐵𝐵]𝑏𝑏 [𝑐𝑐𝐴𝐴^𝑘𝑘−1𝑑𝑑]𝑏𝑏
2 66 [462]7 [462]7
3 666 [4662]7 [4662]7
4 6666 [46662]7 [46662]7
5 66666 [466662]7 [466662]7
6 666666 [4666662]7 [4666662]7
7 6666666 [46666662]7 [46666662]7
8 66666666 [466666662]7 [466666662]7⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

 
The above table illustrates the result from Theorem 1 & Theorem 3 if 7b = , 

1 6b − = , 2 5b − = , [ ] [ ]7 42bcd = , thus 6, 5A B= =  and { }2,3,4,5,6,7,8k ∈ . 
Note that [ ] [ ]7 7

6 5 42⋅ =  and [ ]74 2 6+ = . 
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( )

( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

,
2
3 2, 2
4 2,3 , 3,2 , 3,3
5 2,3 , 2,4 , 3,2 , 3,4 , 4,2 , 4,3 , 4, 4
6 2,5 , 3,5 , 4,5 , 5,2 , 5,3 , 5,4 , 5,5
7 2,4 , 2,6 , 3,3 , 3,5 , 3,6 , 4,2 , 4,4 , 4,6 ,

5,3 , 5,6 , 6, 2 , 6,3 , 6, 4 , 6,5 , 6,6
8 3,7 , 4,7 , 5,7 , 6,7 , 7, 2 , 7,3 , 7, 4 , 7,5 , 7,6 , 7,7
9 2,5 , 2,8 , 3, 4 , 3,8 , 4,3 , 4,

b A B

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

5 , 4,6 , 4,7 , 4,8 ,
5,2 , 5,4 , 5,6 , 5,8 , 6,4 , 6,5 , 6,8 , 7,4 , 7,8 ,

 8, 2 , 8,3 , 8, 4 , 8,5 , 8,6 , 8,7 , 8,8
10 2,9 , 3,4 , 3,7 , 3,9 , 4,6 , 4,9 , 5,9 , 6,4 , 6,7 ,

6,9 , 7,3 , 7,6 , 7,9 , 8,9 , 9, 2 , 9,3 , 9,4 , 9,5 ,
9,6 , 9,7 , 9,8 , 9,9

 
 
The above table shows all pairs ( ),A B  that satisfy the hypothesis of Theorem 1 

for small numeration bases. We observe that for 2b =  there are no pairs ( ),A B  
that satisfy the hypothesis of Theorem 1. 

3. Proof of Theorem 1 

( )

( )

( )

1

1 1 1 1 1
1 1

1

1 1
1

1

1
1

1 1

1
^

k k k k k
l l l l l

l l l l l
k k

k k

l l
k

k l k

l
k

k k k
b

l

Ab B A Bb cb d b c b d b

c b c b d b d b

c b c d b d b

c b A b d b c A d

+

= = = = =

− −
+

= =

−
+

=

−
+ −

=

⋅ = ⋅ = + = ⋅ + ⋅

= ⋅ + ⋅ + ⋅ + ⋅

= ⋅ + + ⋅ + ⋅

 = ⋅ + ⋅ + ⋅ =  

∑ ∑ ∑ ∑ ∑

∑ ∑

∑

∑
 

4. Proof of Theorem 2 

Using that ( )1 1k kb b− = −  and that ( )1 1k l k lb b− −− = − . 
One has that: 

( ) [ ] ( ) [ ]
[ ]

( )
( ) ( )

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1

1 1

1

1 1

^1

l lb b

k l
l l bb

k k l l
l b

k l k l l
l lb

k

l

k

b

l b

a a a a a a a a

b a a a a b a a a a

b a a a a b b b

b a a a a b b b a a a a

b k l b a

b b

a a a

−

⋅ = ⋅

 = + − 

 = + + − + + − 

   = + + − + − + −   

 = − − 

−

− −

−

−

 

 



 



 

5. Conclusion 

Motivated by possible applications to the study of palindromes and other sequences 
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of integers we discover a method for producing infinite families of integer solu-
tions and almost solutions of the equation ( )N M reversal N M⋅ = ⋅ . Our results 
complement the results in [1] and are valid in all numeration bases 2b > . 

Acknowledgements 

While working on this project C. E. was an undergraduate student at West Chester 
University of Pennsylvania. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Nitica, V. and Junius, P. (2019) Infinite Sets of Solutions and Almost Solutions of 

the Equation ( )N M reversal N M⋅ = ⋅ . Open Journal of Discrete Math, 9, 63-67. 
https://doi.org/10.4236/ojdm.2019.93007 

[2] Nitica, V. (2019) Infinite Sets of b-Additive and b-Multiplicative Ramanujan-Hardy 
Numbers. The Journal of Integer Sequences, 22, Article number: 9.4.3. 

[3] World of Numbers. http://www.worldofnumbers.com/em36.htm 

[4] Nitica, V. (2018) About Some Relatives of the Taxicab Number. The Journal of In-
teger Sequences, 21, Article number: 18.9.4. 

 
 

https://doi.org/10.4236/ojdm.2020.103007
https://doi.org/10.4236/ojdm.2019.93007
http://www.worldofnumbers.com/em36.htm

	Infinite Sets of Solutions and Almost Solutions of the Equation N∙M = reversal(N∙M) II
	Abstract
	Keywords
	1. Introduction
	2. Statements of the Main Results
	3. Proof of Theorem 1
	4. Proof of Theorem 2
	5. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

