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Abstract 
In this work, we have obtained numerical solutions of the generalized Korte-
weg-de Vries (GKdV) equation by using septic B-spline collocation finite 
element method. The suggested numerical algorithm is controlled by apply-
ing test problems including; single soliton wave. Our numerical algorithm, 
attributed to a Crank Nicolson approximation in time, is unconditionally sta-
ble. To control the performance of the newly applied method, the error 
norms, 2L  and L∞  and invariants 1I , 2I  and 3I  have been calculated. 
Our numerical results are compared with some of those available in the lite-
rature. 
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1. Introduction 

Several physical processes for example dispersion of long waves in shallow water 
waves under gravity, bubble-liquid mixtures, ion acoustic plasma waves, fluid 
mechanics, nonlinear optics and wave phenomena in enharmonic crystals can be 
expressed by the KdV equation which was first introduced by Korteweg and de 
Vries [1]. The equation was solved analytically by Zabusky, Fornberg and Whi-
tham, [2] [3]. Zabusky and Kruskal [4] were first obtained numerical solutions 
of the equation with finite difference method. Gardner et al. [5] demonstrated 
existence and uniqueness of solutions of the KdV equation. Several scientists 
have used various numerical methods including pseudospectral method [4], fi-
nite difference method [6] [7], finite element method [8]-[15] and heat balance 
integral method [15] to solve the equation. Numerical solutions of the KdV equ-
ation were obtained using differential quadrature method based on cosine ex-
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pansion by B. Saka [16]. Like the KdV equation, in recent years, various numer-
ical methods have been improved for the solution of the MKdV equation. Kaya 
[17] calculated the explicit solutions of the higher order modified Korteweg 
de-Vries equation by Adomian decomposition method. MKdV equation has 
been solved by using Galerkins’ method with quadratic B-spline finite ele-
ments by Biswas et al. [18]. Raslan and Baghdady [19] [20] indicated the accu-
racy and stability of the difference solution of the MKdV equation and they 
obtained the numerical aspects of the dynamics of shallow water waves along 
lakes’ shores and beaches modeled by the MKdV equation. A new variety of (3 + 
1)-dimensional MKdV equations and multiple soliton solutions for each new 
equation were established by Wazwaz [21] [22]. Lumped Petrov-Galerkin and 
Galerkin methods were practiced to the MKdV equation by Ak et al. [23] [24]. 
GKdV equation has received much less attention, presumably because of its 
higher nonlinearity for 2p > . The symmetry group was calculated for the equ-
ation and several classes of solutions were obtained in [25]. Liu and Yi [26] de-
veloped and analyzed a Hamiltonian preserving DG method for solving the ge-
neralized KdV equation. The initial value problem of a kind of GKdV equations 
is considered by using Sobolev space theory and finite element method by Lai et 
al. [27]. Alvarado and Omel’yanov [28] create a finite differences scheme to si-
mulate the solution of the Cauchy problem and present some numerical results 
for the problem of the solitary waves interaction. A class of fully discrete scheme 
for the generalized Korteweg-de Vries equation in a bounded domain ( )0, L  
has studied by Sepulveda and Villagran [29]. Collocation finite element method 
based on quintic B-spline functions is applied to the generalized KdV equation 
by Ak et al. [30]. Solitary wave solution for the GKdV equation by using ADM 
has been obtained by Ismail et al. [31]. 

In this article, we will take in consideration for the following GKdV equation 
2 0,t x xxxU U U Uε µ+ + =                     (1) 

with the homogeneous boundary conditions 

( ) ( )
( ) ( )

, 0, , 0,

, 0, , 0, 0x x

U a t U b t

U a t U b t t

= =

= = >
                 (2) 

and an initial condition 

( ) ( )0,0 ,    ,U x U x a x b= ≤ ≤                   (3) 

where t is time, x is the space coordinate, ε  and µ  are positive parameters. 
One of the primary mathematical models for describing the theory of water waves 
in shallow channels is the following Korteweg de-Vries (KdV) equation: 

0.t x xxxU UU Uε µ+ + =                     (4) 

The terms xUU  and xxxU  in the Equation (4) stand for the nonlinear con-
vection and dispersion, respectively. In this paper, we have numerically solved 
the GKdV equation using collocation method with septic B-spline finite ele-
ments. We have investigated the motion of a single soliton wave to show the 
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performance and profiency of the proposed method. Also we have showed the 
suggested method is unconditionally stable applying the von-Neumann stabil-
ity analysis. 

2. Septic B-Spline Collocation Method 
We think of a mesh 0 1 Na x x x b= < < < =  as a uniform divide of the solu-

tion area a x b≤ ≤  by the points mx  with 1m m
b ah x x

N +
−

= = − . The septic 

B-splines ( )m xφ , ( 3, 2, , 3m N= − − + ) at the knots mx  are given by [32] 

( )

( ) [ ]
( ) ( ) [ ]
( ) ( ) ( ) [ ]
( ) ( ) ( ) ( ) [ ]
( ) ( ) ( ) ( ) [ ]
( ) ( ) ( )

7
4 4 3

7 7
4 3 3 2

7 7 7
4 3 2 2 1

7 7 7 7
4 3 2 1 1

7 7 7 7
7 4 3 2 1 1

7 7 7
4 3 2 1

,

8 ,

8 28 ,

8 28 56 ,
1

8 28 56 ,

8 28 ,

m m m

m m m m

m m m m m

m m m m m m

m m m m m m m

m m m m

x x x x

x x x x x x

x x x x x x x x

x x x x x x x x x x
x x x x x x x x x x xh

x x x x x x x

φ

− − −

− − − −

− − − − −

− − − − −

+ + + + +

+ + + +

−

− − −

− − − + −

− − − + − − −
= − − − + − − −

− − − + − [ ]
( ) ( ) [ ]
( ) [ ]

2
7 7

4 3 2 3
7

4 3 4

8 ,

,
0 otherwise

m

m m m m

m m m

x

x x x x x x

x x x x

+

+ + + +

+ + +














− − −


−

  

(5) 

The set of septic B-spline functions ( ) ( ) ( ) ( ){ }3 2 2 3, , , ,N Nx x x xφ φ φ φ− − + +  
forms a basis for the problem region of solution [ ],a b . The approximate solu-
tion ( ),NU x t  to the exact solution ( ),U x t  in the form: 

( ) ( ) ( )
3

3
,

N

N m m
m

U x t x tφ δ
+

=−

= ∑                   (6) 

where ( )m xφ  are septic B-splines and ( )m tδ  are time dependent parameters 
to be identified from the boundary and collocation conditions. A characteristic 
finite interval [ ]1,m mx x +  is turn into the interval [ ]0,1  by a domestic coordi-
nate conversion described by mh x xξ = − , 0 1ξ≤ ≤ . So septic B-splines (5) in 
terms of ξ  over [ ]0,1  can be written as 

2 3 4 5 6 7
3

2 3 5 6 7
2

2 3 4 5 6 7
1

4 6 7

1 7 21 35 35 21 7 ,

120 392 504 280 84 42 7 ,

1191 1715 315 665 315 105 105 21 ,

2416 1680 560 140 35 ,

m

m

m

m

φ ξ ξ ξ ξ ξ ξ ξ

φ ξ ξ ξ ξ ξ ξ

φ ξ ξ ξ ξ ξ ξ ξ

φ ξ ξ ξ ξ

−

−

−

= − + − + − + −

= − + − + − +

= − + + − − + −

= − + − +

 

2 3 4 5 6 7
1

2 3 5 6 7
2

2 3 4 5 6 7
3

7
4

1191 1715 315 665 315 105 105 35 ,

120 392 504 280 84 42 21 ,

1 7 21 35 35 21 7 ,

.

m

m

m

m

φ ξ ξ ξ ξ ξ ξ ξ

φ ξ ξ ξ ξ ξ ξ

φ ξ ξ ξ ξ ξ ξ ξ

φ ξ

+

+

+

+

= + + − − + + −

= + + + − − +

= + + + + + + −

=

   (7) 

Using Equation (5) and Equation (6), the nodal values of , , ,m m m mU U U U′ ′′ ′′′  
and iv

mU  at the knots mx  are obtained as the following:  
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( )

( )

( )

3 2 1

1 2 3

3 2 1 1 2 3

3 2 1 1 2 32

3 2 1 13

, 120 1191 2416
1191 120 ,

7 56 245 245 56 ,

42 24 15 80 15 24 ,

210 8 19 19 8

N m m m m m m

m m m

m m m m m m m

m m m m m m m m

m m m m m m

U x t U

U
h

U
h

U
h

δ δ δ δ

δ δ δ

δ δ δ δ δ δ

δ δ δ δ δ δ δ

δ δ δ δ δ

− − −

+ + +

− − − + + +

− − − + + +

− − − +

= = + + +

+ + +

′ = − − − + + +

′′ = + + − + + +

′′′ = − − + − +( )

( )

2 3

3 1 1 34

,

840 9 16 9

m

iv
m m m m m mU

h

δ

δ δ δ δ δ

+ +

− − + +

+

= − + − +

    (8) 

where the symbols , ,' '' '''  symbolize differentiation according to x, respectively. 
Using (5) and (8) in the Equation (1) this guides to a set of ordinary differential 
equations of the form 

( )

( )

3 2 1 1 2 3

3 2 1 1 2 3

3 2 1 1 2 33

120 1191 2416 1191 120
7

56 245 245 56

210 8 19 19 8 0,

m m m m m m m

m
m m m m m m

m m m m m m

Z
h

h

δ δ δ δ δ δ δ
ε

δ δ δ δ δ δ

µ δ δ δ δ δ δ

− − − + + +

− − − + + +

− − − + + +

+ + + + + +

+ − − − + + +

+ − − + − + + =

      

     (9) 

where 

( )2
3 2 1 1 2 3120 1191 2416 1191 120 .m m m m m m m mZ δ δ δ δ δ δ δ− − − + + += + + + + + +  

If time parameters iδ  and its time derivatives iδ  in Equation (9) are sepa-
rated by the Crank-Nicolson form and finite difference approach, respectively: 

1

,
2

n n
i i

i
δ δ

δ
+ +

=                         (10) 

and usual finite difference approximation 
1n n

i i
i t

δ δ
δ

+ −
=

∆
                         (11) 

we acquired a repetition relationship between two time levels n and 1n +  re-
lating two unknown parameters 1,n n

i iδ δ+  for 3, 2, , 2, 3i m m m m= − − + +  
1 1 1 1 1 1 1

1 3 2 2 3 1 4 5 1 6 2 7 3

7 3 6 2 5 1 4 3 1 2 2 1 3 ,

n n n n n n n
m m m m m m m

n n n n n n n
m m m m m m m

γ δ γ δ γ δ γ δ γ δ γ δ γ δ

γ δ γ δ γ δ γ δ γ δ γ δ γ δ

+ + + + + + +
− − − + + +

− − − + + +

+ + + + + +

= + + + + + +
      (12) 

where  

[ ]
[ ]
[ ]
[ ]

1

2

3

4

1 ,

120 56 8 ,

1191 245 19 ,

2416 ,

m

m

m

EZ M

EZ M

EZ M

γ

γ

γ

γ

= − −

= − −

= − +

=

 

[ ]
[ ]
[ ]

5

6

7

3

1191 245 19 ,

120 56 8 ,

1 ,
7 1050,1, , , , .
2

m

m

m

EZ M

EZ M

EZ M

m N E t M t
h h

γ

γ

γ

ε µ

= + −

= + +

= + +

= = ∆ = ∆

             (13) 
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The system (12) contains of ( )1N +  linear equations containing ( )7N +  
unknown coefficients ( )T

3 2 1 1 2 3, , , , , ,N N Nδ δ δ δ δ δ− − − + + + . To acquire a solution 
of this system, we require six additional restrictions. These are obtained from the 
boundary conditions (2) and can be used to remove 3 2 1, ,δ δ δ− − −  and 

1 2 3, ,N N Nδ δ δ+ + +  from the systems (12) which occurs a matrix equation for the 
1N +  unknowns ( )T

0 1, , ,n
Nd δ δ δ=   of the form  

1 .n nAd Bd+ =                         (14) 
The resulting system is effectively solved with a version of the Thomas algo-

rithm and we implement an inner iteration ( )11
2

n n n nδ δ δ δ∗ −= + −  at each 

time step to overcome the non-linearity caused by mZ . Before the beginning of 

the solution procedure, initial parameters 0d  are established by using the ini-
tial condition and following derivatives at the boundaries;  

( ) ( ),0 ,0 ; 0,1,2, ,N mU x U x m N= =               (15) 

( ) ( ) ( ) ( ),0 0, ,0 0,N Nx x
U a U b= =               (16) 

( ) ( ) ( ) ( ),0 0, ,0 0,N Nxx xx
U a U b= =               (17) 

( ) ( ) ( ) ( ),0 0, ,0 0.N Nxxx xxx
U a U b= =              (18) 

So, by taking account (18), we obtain the following matrix form for the initial 
vector 0d ;  

0 ,Wd b=  

where  

1536 2712 768 24
82731 210568.5 104796 10063.5 1

81 81 81 81
9600 96597 195768 96474 120 1

81 81 81 81

1 120 1191 2416 1191 120 1
96474 195768 96597 96001 120

81 81 81 81
10063.5 104796 210568.5 827311

81 81 81 81
24 768 2712 1536

W











= 




























 
 



 

( )T0
0 1 2 2 1, , , , , ,N N Nd δ δ δ δ δ δ− −=    

and 

( ) ( ) ( ) ( )( )T
0 1 1,0 , ,0 , , ,0 , ,0N Nb U x U x U x U x−=  . 

3. Stability Analysis 

To implement the von Neumann stability analysis, GKdV equation is linearized 
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by thinking about the quantity pU  in the nonlinear term p
xU U  is locally in-

variable. Substituting the Fourier mode en n imkh
mδ ξ= , ( 1i = − ) in which k is a 

mode number and h is the element size, into the Equation (12) gives the growth 
factor ξ  of the form 

A iB
A iB

ξ −
=

+
                         (19) 

where 

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

2cos 3 240cos 2 2382cos 2416

2 sin 3 2 56 8 sin 2

2 245 19 sin
m m

m

A kh kh kh

B EZ M kh EZ M kh

EZ M kh

= + + +

= + + +

+ −

      (20) 

The modulus of the (19) is found 1, hence the linearized algorithm is uncon-
ditionally stable. 

4. Test Problems 

In this section, we introduce some numerical examples including: motion of 
single soliton wave whose exact solution is known to test validity of our algo-
rithm for solving GKdV equation. The initial boundary value problem (1)-(2) 
possesses following conservative quantities;  

( )

( )

( ) ( )( ) ( )

1

2
2

2 2
3

, d ,

, d ,

1 2
, , d

2
p

x

I U x t x

I U x t x

p p
I U x t U x t x

µ
ε

∞

−∞

∞

−∞

∞ +

−∞

=

=

+ + 
= − 

 

∫

∫

∫

         (21) 

which correspond to the mass, momentum and energy of the shallow water 
waves, respectively [33] [34]. To compare the numerical solution with the exact 
solution we use the following error norms:  

( )
2

2 2 0
,

N
exact exact

N j N j
j

L U U h U U
=

= − −∑  

and  

( )max .exact exact
N j N jj

L U U U U∞ ∞
= − −  

The Motion of Single Solitary Wave 

For this test problem, Equation (1) is examined with the boundary conditions 

0U →  as x → ±∞  and the initial condition ( ) ( )
2

0,0 sech pU x A k x x = −   

where 
( )( )

1

1 2
2

pc p p
A

ε
+ + 

=  
 

 is amplitude and 
2
p ck

µ
=  is width of the 

single soliton. The exact soliton solution of the GKdV equation is 

( ) ( )
2

0, sech ,pU x t A k x x ct = − −   
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where c and 0x  are arbitrary constants. In order to exemplify the validity of our 
numerical algorithm, we conceive the first case of a single soliton solution for 
the parameters 1p = , 1ε = , 44.84 10µ −= × , 0.01h = , 0.005t∆ = , 0.3c =  
and 3ε = , 1µ = , 0.1h = , 0.01t∆ =  through the interval [ ]0,80  to com-
pare with that of previous papers [8] [10] [14] [16] [30]. All parameters are given 
in all refarans. For these parameters, the single solitary wave has the amplitude 
0.9 and 0.3, respectively. The three invariants 1 2,I I  and 3I  together with the 

2L , L∞  error norms for the problem are documented and compared in Table 
1 for times up to 1t = . As seen from the table that 2L  and L∞  error norms 
are found small enough and the conservation of the invariants can be seen to be 
almost constant. 

Solitary wave profiles are demonstrated at 0,0.1,0.2, ,1t =   in Figure 1 in 
which the soliton moves to the right at a nearly unchanged speed and amplitude 
as time increases, as expected.  
 
Table 1. Comparisons of results for invariants and error norms with 1p = , 1ε = , 

44.84 10µ −= × , 0.3c = , 0.01h = , 0.005t∆ = , [ ]0,2x∈  and 3ε = , 1µ = , 0.3c = , 

0.1h = , 0.01t∆ = . 

Method Time 1I  2I  3I  3
2 10L ×  310L∞ ×  

44.84 10µ −= ×  
Present  
Method 

0.00 0.144598 0.086759 0.046850 0 0 

 0.25 0.144598 0.086759 0.046850 0.02315 0.06802 

 0.50 0.144598 0.086759 0.046850 0.04525 0.12487 

 0.75 0.144598 0.086759 0.046850 0.06683 0.18353 

 1.00 0.144593 0.086759 0.046850 0.09082 0.23617 

[16] 1.00 0.144598 0.086759 0.046850 0.13010 0.36895 

[8] 1.00 0.144592 0.086759 0.016870 22.2  

[14] MQ 1.00 0.144606 0.086759 0.046850 0.062 0.133 

[14] IMQ 1.00 0.144623 0.086765 0.046847 2.751 5.018 

[14] IQ 1.00 0.144598 0.086759 0.046849 1.013 2.090 

[14] TPS 1.00 0.144261 0.086762 0.046842 2.606 6.345 

[14] G 1.00 0.144601 0.086760 0.046850 0.046 0.136 

[30] 1.00 0.144599 0.086759 0.046850 0.079 0.238 

1µ =   
Present  
Method 

0.00 2.190844 0.438176 0.078871 0 0 

 0.25 2.190844 0.438176 0.078871 0.038 0.051 

 0.50 2.190858 0.438176 0.078871 0.040 0.048 

 0.75 2.190848 0.438176 0.078871 0.059 0.113 

 1.00 2.190873 0.438176 0.078863 0.083 0.155 

https://doi.org/10.4236/jamp.2020.86085


T. Geyikli 
 

 

DOI: 10.4236/jamp.2020.86085 1130 Journal of Applied Mathematics and Physics 
 

 
(a)                                       (b) 

Figure 1. Motion of single solitary wave for (a) 1p = , 1ε = , 44.84 10µ −= × , 0.3c = , 
0.01h = , 0.005t∆ =  and (b) 3ε = , 1µ = , 0.3c = , 0.1h = , 0.01t∆ = . 

 
For the second set, we choose the parameters 2p = , 3ε = , 1µ = , 0.1h = , 

0.01t∆ = , 0.845c =  and 0.3 throughout the interval [ ]0,80  just to be able to 
compare them with earlier papers [19] [23] [24]. These values yield the ampli-
tude 1.3416 and 0.7746 and the computations are done until time 20t =  and 

1t = . We calculate the values of the error norms 2L  and L∞  and invariants 

1 2,I I  and 3I  for different time levels and compare them with earlier papers in 
Table 2. This table indicates that the error norms obtained by our method are 
found much better than the others and the calculated values of invariants are in 
good conformity with the others. The motion of solitary wave using our scheme 
are plotted at times 0,5,10,15,20t =  and 0,0.1,0.2, ,1t =   in Figure 2 in 
which the soliton moves to the right at a nearly unchanged speed and amplitude 
as time increases, as expected.  

Finally, we have taken the parameters 3p = , 1ε = , 44.84 10µ −= × , 
0.01h = , 0.005t∆ = , 0.3c =  and 6ε = , 1µ = , 0.1h = , 0.01t∆ = , 
0.6c =  over the region [ ]0,80 . Thereby, solitary wave has amplitude 1.44 and 

1.0, respectively. Simulations are executed to time 1t =  to invent the error 
norms 2L  and L∞  and the numerical invariants 1 2,I I  and 3I . The calcu-
lated values are presented in Table 3. As can be seen in Table 3, the error norms 

2L  and L∞  are sensibly small and the quantities of the invariants remain al-
most constant during the computer run. The behaviors of solutions for values of 

0.125h t= =  at times 0,20t =  and 40 are depicted in Figure 3. 

5. Conclusion 

In this paper, a septic B-spline collocation method has been successfully applied 
to the GKdV equation to examine the motion of a single solitary wave whose 
analytical solution is known. To show how good and accurate the numerical so-
lutions of the test problems, we have computed the error norms 2L  and L∞  
and conserved quantities 1 2,I I  and 3I . According to the tables in the paper, 
one can have easily seen that our error norms are enough small and the inva-
riants are well conserved. Stability analysis has been done and the linearized 
numerical scheme has been obtained unconditionally stable. Thus, we can say  
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(a)                                       (b) 

Figure 2. Motion of single solitary wave for (a) 2p = , 3ε = , 1µ = , 0.1h = , 
0.01t∆ = , 0.845c =  and (b) 0.3c = , 0.1h = , 0.01t∆ = . 

 

 
(a)                                        (b) 

Figure 3. Motion of single solitary wave for (a) 3p = , 3ε = , 1µ = , 0.01h = , 
0.005t∆ = , 0.845c =  and (b) 0.3c = , 0.1h = , 0.01t∆ = . 

 
Table 2. Comparisons of results for invariants and error norms with 2p = , 3ε = , 

1µ = , 0.1h = , 0.01t∆ = , 0.845c =  and 0.3c = , 0.1h = , 0.01t∆ = .  

Method Time 1I  2I  3I  3
2 10L ×  310L∞ ×  

0.845c =  
Present Method 

0 4.442865 3.676941 2.071335 0 0 

 5 4.442865 3.676941 2.073758 0.917706 0.562852 

 10 4.442865 3.676941 2.073900 1.265494 0.850150 

 15 4.442865 3.676941 2.073930 1.638275 1.096426 

 20 4.442865 3.676941 2.073948 1.983089 1.309575 

[24] 20 4.442866 3.676941 2.073841 3.656694 2.294197 

[23] 20 4.442866 3.676941 2.073846 3.641638 2.285638 

0.3c =  Present 
Method 

0.00 4.442815 2.190881 0.438173 0 0 

 0.25 4.442818 2.190881 0.438179 0.046 0.030 

 0.50 4.442818 2.190881 0.438191 0.073 0.042 

 0.75 4.442818 2.190881 0.438202 0.091 0.048 

 1.00 4.442818 2.190881 0.438213 0.105 0.051 

[19] First Scheme 1.00 4.44192 2.18994 0.437763 - 0.310 

[19] Second 
Scheme 

1.00 4.44198 2.18974 0.437642 - 0.325 
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Table 3. Values of the invariants and error norms for 3p = , 3ε = , 1µ = , 0.01h = , 
0.005t∆ = , 0.845c =  and 0.3c = , 0.1h = , 0.01t∆ = .  

Method Time 1I  2I  3I  3
2 10L ×  310L∞ ×  

0.845c =  
Present Method 

0 0.162456 0.144101 0.061758 0 0 

 0.25 0.162456 0.144100 0.061756 0.443 1.541 

 0.5 0.162458 0.144100 0.061755 0.926 3.062 

 0.75 0.162456 0.144099 0.061753 1.456 4.867 

 1.00 0.162450 0.144099 0.061752 2.008 6.645 

0.3c =  Present 
Method 

0.00 3.620369 2.226620 0.318081 0 0 

 0.25 3.620352 2.226620 0.318081 0.026 0.034 

 0.50 3.620352 2.226620 0.318080 0.029 0.031 

 0.75 3.620334 2.226620 0.318079 0.043 0.076 

 1.00 3.620342 2.226620 0.318075 0.062 0.111 

 
that our numerical scheme is useful to obtain the numerical solutions of other 
important nonlinear problems in various fields. 
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