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Abstract 
Generalized method of moments based on probability generating function is 
considered. Estimation and model testing are unified using this approach 
which also leads to distribution free chi-square tests. The estimation methods 
developed are also related to estimation methods based on generalized esti-
mating equations but with the advantage of having statistics for model test-
ing. The methods proposed overcome numerical problems often encountered 
when the probability mass functions have no closed forms which prevent the 
use of maximum likelihood (ML) procedures and in general, ML procedures 
do not lead to distribution free model testing statistics. 
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1. Introduction 

Count data are often encountered in many fields of applications which include 
actuarial sciences and fitting discrete count models are of interests. Classical 
methods such as maximum likelihood (ML) procedures often require the proba-
bility function of the model to have closed-form and furthermore the inferences 
techniques do not lead to distribution free statistics when using the Pearson sta-
tistics. In fact, if a model does not fit the data, better models can be created using 
compound procedure, stop sum procedure or mixing procedure and the new 
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models might provide a better fit as they can take into account modeling 
processes which were omitted earlier.  

For discussions on these procedures see the books by Johnson et al. [1], 
Klugman et al. [2] but for these better models often they do not have closed- 
form probability mass functions but their probability generating functions often 
remain simple and have closed-form expressions. 

For example, if count data display long tailed behavior so that the Poisson 
model with probability generating function ( ) ( )1 , 0sP s eθθ θ−= >  does not pro-
vide a good fit, the positive discrete stable (DPS) distribution can be created and 
be used as an alternative to the Poisson distribution. The discrete positive stable 
distribution (DPS) does not have closed-form or simple form for probability 
mass function but its probability generating function is simple and given by 

( ) ( ) ( ) ( ]1e , , , 0,1 , 0sP s
αθ θ α α θ− ′= = ∈ >δ δ  

see Christoph and Schreiber [3] for this distribution. In their paper, expression 
(6) gives the representation of the probability mass function of the DPS distribu-
tion using series, 

 ( ) ( ) ( )
0; 1 , 0,1,

!

j
k

j

j
p x k k

k j
θα∞

=

− 
= = − = 

 
∑ δ  

and expression (8) gives the recursive formula to compute ( );p x k= δ  using 
the previous terms 

( ) ( )0; , , 1;p x p x k= = −δ δ   

with 

( ) ( ) ( )( )( )01 1; ; 1 1 , 0,1,
1

mk
mk p x k p x k m m k

m
α

θ
=

 
+ = + = = − + − = + 

∑ δ δ  

The probability mass function appears to be complicated and for model vali-
dation there is a need for a statistic for model testing. By having these issues, it 
will make maximum likelihood (ML) procedures difficult to implement. 

GMM procedures based on probability generating function appear to be a 
natural way to introduce alternatives to ML procedures, bypassing the use of the 
probability mass function explicitly and focus uniquely on the probability gene-
rating function. In this vein, the procedures proposed in this paper make use of 
GMM and generalized estimating equation theory and they are less simulation 
intensive oriented than inference techniques given by the paper by Luong et al. 
[4]. 

We shall use general GMM methodology but adapted it to situations where 
moment conditions are based on probability generating function so that estima-
tion and model testing can be carried out in a unified way for discrete count 
models. The choice of moments of the developed GMM procedures makes use of 
estimating function theory which allows us the use a number of points based on 
probability generating which tends to infinity as the sample size n →∞ . Fur-
thermore, we also related GMM estimation with the approach using generalized 
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estimating equations (GEE) based on a set of elementary or basic unbiased esti-
mating function but unlike GEE procedures, GMM procedures also provide dis-
tribution free chi-square statistics for model testing but the theory of estimating 
function is useful as it provides insight on the choice of sample moments for 
GMM estimation. In another word, the proposed methods blend classical GMM 
procedures and inference techniques based on estimating equation which in 
general will allow flexibility, efficiency and model testing yet being relatively 
simple to implement and might be of interests for practitioners. Consequently, 
the new methods differ from proposed GMM procedures in the literature from 
the following points: 

1) GMM procedures as proposed by Doray et al. [5] only make use of a finite 
number of points of the probability generating function, our methods aim at 
achieving higher efficiency yet remain simple to implement and it is done by 
linking to the theory of estimating function, it can accommodate the use of a 
number of points from the probability generating function instead of being fixed, 
it goes to infinity as n →∞ . 

2) The new GMM procedures remain simpler to implement than GMM pro-
cedures using a continuum moment conditions in general as proposed by Car-
rasco and Florens [6] or methods on adapting GMM procedures using a conti-
nuum of moment conditions for characteristic function proposed by Carrasco 
and Kotchoni [7] to probability generating function. Practitioners might find the 
sophisticated methods based on a continuum moment conditions difficult to 
implement. 

The paper is organized as follows. In Section 2, we review available results 
from general GMM theory, despite the results are not new once the moment 
conditions are defined but they make the paper more self-contained as these re-
sults will be adapted subsequently with moments conditions extracted from the 
probability generating function when count models are considered. In Section 3, 
GMM estimation and related GEE estimation for count models are considered. 
The chi-square statistics are also given in Section 3.2.2. In Section 3.2.3, we con-
sider GMM procedures based on optimum orthogonal estimating functions. In 
Section 4 we illustrate the implementation of the GMM methodology and pre-
liminary results show that the methods are simple to implement and have the 
potentials of being very efficient. The new methods display flexibility as they can 
accommodate the changes to the sample moments for better efficiencies if needed 
and it can be done within the framework of the inference methods developed. 

2. Generalized Method of Moments (GMM) Methodology 

The inferences techniques based on probability generating functions developed 
in this paper make use of results of Generalized Method of Moments (GMM) 
theory which are well established once the moment conditions are specified, see 
Martin et al. [8] (p 352-384, also see Hamilton [9]. In this section, we shall brief-
ly review GMM methodology for estimation and moment restrictions testing to 
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make the paper easier to follow and connect to the problem on how to select 
moment conditions for discrete distributions based on probability generating 
functions for applying GMM methods.  

The estimating equations of GMM methods will also be linked to the theory of 
estimating equations and generalized estimating equations (GEE) as developed 
by Godambe and Thompson [10], Morton [11], Liang and Zeger [12]. 

2.1. Generalized Estimating Equations (GEE) and GMM Estimation 

For data, we shall assume that we have n independent observations 1, , ny y , 
these observations need not be identically distributed but each iy  will follow a 
distribution which depends on the same vector of parameters ( )1, , pθ θ ′= θ , 
∈Ωθ , Ω  is compact and pR∈ . The true vector of parameters is denoted by 

0θ . 
For the time being, assume that we have identified n unbiased basic estimating 

functions or elementary estimating functions denoted by ( ); , 1, ,i i ih h y i n= = θ  
with the property 

 ( )( ); 0i iE h yθ =θ  for 1, ,i n=  .                   (1) 

The optimum estimating functions based on linear combinations of  

( ){ }; , 1, ,i ih y i n= θ  for estimating 0θ  is given by 

( ) ( ) ( )
( )( )1 2

; , 1, ,

i

nr r
i ii

i

hE
g h y r p

E h

θ
=

 ∂
 ∂ = =∑ 

θ

θ

θ θ               (2) 

and ( )( )2
iE hθ  is the variance of ( );i ih y θ . 

The vector of estimators ôpθ  based on the optimum estimating equations are 
given as solutions of the system of equations ( ) ( ) 0, 1, ,rg r p= = θ . This result 
is given by Godambe and Thompson [10] (page 4) and Morton [11] (page 
229-230).  

In applications, often we restrict our attention to ( );i ih y θ  with some common 
functional form so that we also use the notations ( ) ( ); ; , 1, ,i i ih y h y i n= = θ θ  
and more precisely ( ) ( ); ; ,i i ih y h y s=θ θ , is  is a constant. 

With this notation which is commonly used in the literature, notice that the 
random variables given by ( ); , 1, ,ih y i n= θ  need not be identically distri-
buted. 

Also, since estimating equations are defined up to a constant which does not 
depend on θ , the related estimating functions used can be re-expressed equiva-
lently as 

   ( ) ( ) ( )

( )

( )( )( )1 2

;

1 ; , 1, ,
;

i

n rr
ii

i

h y
E

g h y r p
n E h y

θ

θ

θ
=

 ∂
 ∂ = =∑ 

θ

θ θ
θ

          (3) 

and the vector of estimators based on the optimum equations are given as solu-
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tions of the system of equations ( ) ( ) 0, 1, ,rg r p= = θ , using expression (3). 
Using vector notations, the vector of optimum estimating functions based on  

expression (3) can be expressed as ( )
( )

( )

1

r

g
g

g

 
 =  
 
 



θ
θ

θ
,  

( ) ( )

( )

( )( )( )1 2

;

1 ;
;

i

n
ii

i

h y
E

g h y
n E h y

θ

θ

θ
=

 ∂
 ∂ = ∑

θ

θ θ
θ

 and the vector of estimators ôpθ  based 

on ( )g θ  are solutions of ( )g = 0θ  and from this observation it is clear that 

the factor 
1
n

 can be omitted when defining estimating functions or equations. 

Now suppose that we have vector ( )
( )

( )

1 ;
;

;

i

i

k i

m y
y

m y

 
 =  
 
 

m 

θ
θ

θ
 with the property 

( )( )
( )( )

( )( )

1 ;

;
;

i

i

k i

E m y

E y
E m y

θ

θ

θ

 
 

= = 
  
 

m  0

θ

θ
θ

 for 1, 2,i =  , 

the optimum estimating functions for estimating θ  based on linear combina-
tions of the elements of the set ( ){ }; , 1, ,im y i n= θ  are also called generalized 
optimum estimating functions, see Morton [11] (p 229-230), also see expression 
(6) as given by Liang and Zeger [12] (page 15) are given by 

  ( ) ( ) ( )1
1 ;n

i iii y−
=

′∑ C V mθ θ θ                       (4) 

and the estimators are given by the vector ôpθ  obtained by solving  

  ( ) ( ) ( )1
1 ;n

ii ii y−
=

′ =∑ C V m 0θ θ θ                     (5) 

where ( )iV θ  is the covariance matrix of ( );iym θ  under θ  and its inverse 
( )1

i
−V θ , ( )iV θ  is also referred to as a working matrix in the literature of esti-  

mating equation theory and ( )

( ) ( )

( ) ( )

1

1 1

1

, ,

, ,

i i

i

p

k

ik

p

i

m y m y
E E

m y m y
E E

θ θ

θ θ

    ∂ ∂
       ∂ ∂    
 ′ =  
    ∂ ∂        ∂ ∂    

C



  



θ θ

θ θ

θ θ

θ

θ θ

 

which is a p by k matrix. 
Clearly expression (4) is more general than expression (3) and is reduced to 

expression (3) when ( );iym θ  is a scalar instead of a vector. 
For the studies of estimating functions, Godambe and Thompson [10] em-

phasized efficiency of estimating equations rather efficiency of the vector of op-
timum estimators ôpθ  obtained by solving estimating equations.  

For applications, often we need the asymptotic covariance matrix of ôpθ . For 
this purpose, we use the set up for the study of generalized estimating equations 
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(GEE) as considered by Liang and Zeger [12] (p 15-16). Using a Taylor’s expan-
sion and results of their Theorem 2 (p 16) we can obtain the asymptotic cova-
riance matrix of ôpθ . 

( ) ( )0
ˆ ,L
opn N− → 0 Σθ θ  

with 

( ) ( ) ( )( ) 1
1

0 0 01lim n
n i iiin

−
−

→∞ =
′= ∑ C V CΣ θ θ θ , 

with convergence in probability denoted by p→  and convergence in distri-
bution denoted by L→ . 

Therefore, the asymptotic covariance for ôpθ  is simply  
( ) ( ) ( )( ) 1

1
0 0 01lim n

n i iii

−
−

→∞ =
′∑ C V Cθ θ θ  which can be estimated. A Fisher scoring 

algorithm as given by expression (6) as described by Liang and Zeger [12] (p 16) 
can be used to obtain the estimators numerically ôpθ . The algorithm gives the j 
+ 1-th iteration based on the previous j-th iteration as 

( ) ( ) ( )( ) ( )( ) ( )( )( ) ( )( )1
1 1

1
ˆ ˆ ˆ ˆ ˆ ˆ;nj j j j j j
op op op i op i op i opi i y

−
+ −

=
′= − ∑ C V C mθ θ θ θ θ θ . 

Other numerical techniques to obtain ôpθ  can be used. For example, we can 
consider solving the system of equations given by expression (4) and expression 
(5) as ( ) ( ) 0, 1, ,rg r p= = θ  and ôpθ  can be obtained by minimizing  

( ) ( )( )2

1
p r
r g
=∑ θ , techniques for minimization can be used to obtain ôpθ  nu-

merically.     
Now we turn our attention to GMM estimation methodology and we observe 

that the set of estimating equations using expression (2) can be reobtained using 
a GMM estimation set up. GMM estimation is based on the use of a k moment 
conditions specified by a vector function 

( )
( )

( )

1 ;
;

;

i

i

k i

m y
y

m y

 
 =  
 
 

m 

θ
θ

θ
 

with its expectation with the property 

( )( )
( )( )

( )( )

1 ;

; 0
;

i

i

k i

E m y

E m y
E m y

 
 

= = 
  
 



θ

θ

θ

θ

θ
θ

 for 1, 2,i =             (6) 

The sample moments being the counterparts of  

( )( )

( )( )

1 ;

;

i

k i

E m y

E m y

 
 
 
  
 



θ

θ

θ

θ
 

are defined as ( ) ( ) ( )1

1 ; , 1, ,nr
r iig m y r k

n =
= =∑ θ θ  and define the vector of 

sample moments as 

https://doi.org/10.4236/ojs.2020.103031


A. Luong 
 

 

DOI: 10.4236/ojs.2020.103031 522 Open Journal of Statistics 
 

( )

( ) ( )

( ) ( )
( )

1

1

1 ;n
ii

k

g
y

n
g

=

 
 

= = 
  
 

∑g m

θ
θ θ

θ

.                (7) 

Now we need a positive definite symmetric matrix or a positive definite matrix 
symmetric with probability one which is denoted by 1ˆ −S  to define a quadratic 
form using ( ) ( ) , 1, ,rg r k= θ , 1ˆ −S  will be defined subsequently and this al-
lows the objective function 

( ) ( ) ( )1ˆQ −′= Sg gθ θ θ  

to be formed for GMM estimation and the GMM estimators are given by the 
vector θ̂  which minimizes ( )Q θ . 

We shall define the matrix S  first then its estimate is Ŝ  from which we 
can obtain its inverse 1ˆ −S . In fact S  can be viewed as the limit as n →∞  of  

the covariance matrix of the vector ( ) ( )0 01

1 ;n
ii y ng

n =
=∑ m θ θ  and the co-

variance matrix of ( )01

1 ;n
ii y

n =∑ m θ  can be seen as given by  

( ) ( )
0 0 01

1 ; ;n
i ii E m y m y

n =
 ′        

∑ θ θ θ , then S  and its estimate Ŝ  can be de-

fined respectively as 

( ) ( )
0 0 01

1lim ; ;n
n i ii E m y m y

n→∞ =
 ′   =      

∑S θ θ θ  

and with a preliminary consistent estimate ( )0θ̂  for 0θ  then we can define 

( )
( )( ) ( )( )0
0 0

ˆ1

1 ˆ ˆ; ;ˆ n
i ii E m y m y

n =

 ′   =      
∑S

θ
θ θ  or 

( )( ) ( )( )0 0
1

1 ˆ ˆ;ˆ ;n
i ii m y m y

n =

′   =    ∑S θ θ  

and Ŝ  is positive definite with probability one and clearly Ŝ  is symmetric, its 
inverse is 1ˆ −S  which exists with probability one. Despite that these two expres-
sions for Ŝ  are asymptotically equivalent but for numerical implementations 
of the methods in finite samples, the matrix  

( )
( )( ) ( )( )0
0 0

ˆ1

1 ˆ ˆ; ;ˆ n
i ii E m y m y

n =

 ′   =      
∑S

θ
θ θ  has more chance to be invertible. 

Under suitable differentiability assumptions imposed on the vector function 
( )g θ , the GMM estimators given by θ̂  is consistent and has an asymptotic 

multivariate normal distribution, i.e.,  

0
ˆ p→θ θ  

and  

( ) ( )0
ˆ , .Ln N− → V0θ θ  

The asymptotic covariance of θ̂  is simply ( ) 1ˆAcov
n

= Vθ  and V  depends on 

https://doi.org/10.4236/ojs.2020.103031


A. Luong 
 

 

DOI: 10.4236/ojs.2020.103031 523 Open Journal of Statistics 
 

0θ  so we also use the notation, ( )0=V V θ  and ( ) ( )( ) 11
0 0

−−′=V D S Dθ θ  with 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0

0 0

1
0 0

1 1

0

1
0 0

lim

k

n

k

p p

g g
E E

g g
E E

θ θ

θ θ

→∞

    ∂ ∂
    

   ∂ ∂     
′ =  

    ∂ ∂        ∂ ∂    

D



  



θ θ

θ θ

θ θ

θ

θ θ

 and ( )0′D θ  is a p by 

k matrix, its transpose is ( )0D θ . Since ( )0=V V θ , an estimate of ( )0V θ  is  

( ) ( )( ) ( ) ( )ˆˆ ˆ ˆˆ ˆ,′= =
′

1
1

g
DV S D D

θ
θ θ θ

θ

−
−

∂

∂
.  

Using V̂ , the asymptotic covariance matrix of θ̂  can be estimated.  
We also notice that we can recover optimum estimating equations estimators 

using the following GMM estimation set-up by letting k p= , i.e., the number 
of sample moments is equal to the number of parameters to be estimated and  

 ( ) ( ) ( )1

1 ; , 1, ,nt
r iig m y r p

n =
= =∑ θ θ   

with  

( ) ( )

( )

( )( )( )2

;

; ;
;

i

r
r i i

i

h y
E

m y h y
E h y

θ
 ∂
 ∂ =

θ

θ

θ

θ θ
θ

. 

Minimizing the corresponding GMM objective function yields the vector of 
GMM estimators which are given by the following system of equations since 

1ˆ −S  is positive definite with probability one, 

  ( ) ( ) ( )

( )

( )( )( )1 2

;

1 ; 0, 1, ,
;

i

n rr
ii

i

h y
E

g h y r p
n E h y

θ
=

 ∂
 ∂ = = =∑ 

θ

θ

θ

θ θ
θ

      (8) 

which is the same system of equations for obtaining the optimum estimating 
equations estimators as discussed. Using vector notations, the vector of optimum  

estimating functions is simply ( ) ( )

( )

( )( )( )1 2

;

1 ;
;

i

n
ii

i

h y
E

h y
n E h y

θ
=

 ∂
 ∂ = ∑g

θ

θ

θ
θ

θ
θ

 and the 

related estimators are obtained by solving ( ) =g 0θ . 

The estimating equations based on of GMM procedures are based on partial 
derivatives of ( )Q θ  and can be seen as equivalent to  

  ( ) ( )1
1 ; 0ˆn

ii y−
=

′ =∑ D mSθ θ .                    (9) 

Observe that the vector of estimating functions is also formed based on linear 
combinations of elements of ( ){ }; , 1, ,iy i n=m θ  which is similar to the vector 
of optimum estimating functions but it might not be optimum as the matrix ( )D θ  
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and the matrix S , 1ˆ −S  no longer depends on i. With ( ); , 1, ,iy i n=m θ  not 
only being independent but they are also identically distributed then we have the 
equivalence of the two methods. We also notice that Ŝ  used for GMM estima-
tion plays a similar role as the working matrix ( )iV θ  for GEE estimation but it 
is often simpler to obtain Ŝ  than ( )iV θ . Often, more derivations are needed 
to obtain ( )iV θ . 

Based on expression (7) and the observation just made concerning expression 
(8), we shall define ( );iym θ  for GMM slightly different than ( );iym θ  used 
for generalized estimating functions (GEE) by letting for GMM estimation 

 ( ) ( ) ( ) ( )

( )

( )( )( )1 2

;

1; ; , 1, ,
;

i

n rr
r i ii

i

h y
E

m y g h y r p
n E h y

θ

θ

θ
=

 ∂
 ∂ = = =∑ 

θ

θ θ θ
θ

  

for the first p components of the vector ( );iym θ  depending on the models 
being studied.  

We might also want to consider including other ( );r im y θ  for r p>  de-
pending on the model being studied for the sake of efficiency, i.e., this leads to 
define  

( ) ( )
( )

1

2

 
=  
 

g
g

g
θ

θ
θ

  

with ( ) ( )

( )

( )( )( )1 1 2

;

1 ;
;

i

n
ii

i

h y
E

h y
n E h y

=

 ∂
 ∂ = ∑g

θ

θ

θ
θ

θ θ
θ

 which is the vector of optimum  

estimating function based on elements of the set ( ){ }; , 1, ,ih y i n= θ  and 
( )2g θ  with its components depend upon ( );r im y θ  for r p>  to be defined 

based on the model under investigation, and define the GMM objective function as 

( ) ( ) ( )1ˆQ −′= Sg gθ θ θ ,  

see Section 3 for more details for the choice of ( ) ( )
( )

1

2

 
=  
 

g
g

g
θ

θ
θ

 for GMM me-

thods with models based on probability generating functions.  
One advantage of the GMM approach over generalized estimating equations 

(GEE) approach is with GMM approach, we have an objective function to be 
minimized and it leads to construction of chi-square tests for moment restric-
tions meanwhile there is no such equivalent test statistic if we use the genera-
lized estimating equations approach. Furthermore, we shall see in Section 3 
when applied to discrete distributions with moment conditions extracted from 
probability generating function, testing for moment restrictions can be viewed as 
testing goodness-of-fit for the count model being used. Consequently, estima-
tion and model testing can be treated in a unified way using this approach.   

As mentioned earlier, the GMM objective function evaluated at θ̂  can be 
used to construct a test statistic which follows an asymptotic chi-square distribu-
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tion for testing the null hypothesis which specify the validity of the vector mo-
ment conditions, i.e., 

  ( )( )
( )( )

( )( )

1

0

;

: ; 0
;

i

i

k i

E m y

H E m y
E m y

 
 

= = 
  
 



θ

θ

θ

θ

θ
θ

 for 1,i =          (10) 

but we need k p> , i.e., the number of sample moments must exceed the num-
ber of parameters to be estimated. 

2.2. Testing the Validity of Moment Restrictions 

We notice that since ( )0
p→g 0θ  and the vector of GMM estimators is con-

sistent with 0
ˆ p→θ θ  and in general ( )ˆ 0p→g θ , the following statistics 

can be constructed and will have an asymptotic chi-square distributions. These 
statistics are also known as Hansen’s statistics after Hansen’s seminal works, see 
Hansen [13] and they can be used for testing the validity of moment restrictions. 

For testing the simple hypothesis ( )( )
( )( )

( )( )

0

0

0

1 0

0 0

0

;

: ;
;

i

i

k i

E m y

H E y
E m y

 
 

= = 
  
 

m  0
θ

θ

θ

θ

θ
θ

 

for 1, ,i k=  ; 0θ  is specified, the Hansen’s statistic is given as 

( ) ( ) ( )1
0 0 0

ˆnQ n −′= g S gθ θ θ   

and the asymptotic distribution of the statistic is chi-square with k degree of 
freedom, i.e., ( ) 2

0
L

knQ χ→θ  under 0H . 
For testing the composite hypothesis  

( )( )
( )( )

( )( )

1

0

;

: ; 0
;

i

i

k i

E m y

H E y
E m y

θ

 
 

= = 
  
 

m 

θ

θ

θ

θ
θ

 for 1, ,i k=  ; ∈Ωθ  

We need to obtain θ̂  first by minimizing ( )Q θ  then the Hansen’s statistic 
is given as 

( ) ( ) ( )1ˆ ˆ ˆ ˆnQ n −′= g gSθ θ θ   

and the asymptotic distribution of the statistic is chi-square with k p−  degree 
of freedom, i.e., ( ) 2

0
L

k pnQ χ −→θ  under 0H , assuming k p> . 
These statistics will be used subsequently with moment conditions extracted 

from the model probability generating function in Section 3. We shall show in 
the next sections that these statistics are consistent test statistics in general for 
model testing with the discrete model specified by its probability generating 
function. These statistics are also distribution free. The distribution free property 
is not enjoyed by goodness-of-fit test statistics for model testing based on the 
empirical probability function which is defined as 

( ) 1

1
in X

n iP s s
n =

= ∑                      (11) 
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with 1, , nX X  being independent and identically random variables from a 
discrete model specified by the model probability generating function  

( ) ( )XP s E s=θ θ  which are given by Rueda and O’Reilly [14], Marcheselli et al. 
[15] as the null distributions of the statistics depend on the unknown parameters. 
In addition, the procedures as proposed by Doray et al. [5] only make use of k 
fixed points 1, , ks s  to generate moment conditions regardless of the sample 
size n. 

The procedures proposed in this paper are different as the number of points 
selected from the probability generating function goes to infinity as n →∞ .     

3. GEE and GMM Methods with Moment Conditions from  
Probability Generating Function 

In this section, we shall give attention to count models and we shall assume that 
we have a random sample of n independent and identically distributed observa-
tions 1, , nX X  which follow the same distribution as X and X follows a non-
negative integer discrete distribution with probability mass function ( );p x θ  with 
no closed form but with model probability generating function ( ) ( )XP s E s=θ θ  
with closed form and relatively simple to handle, ( )P sθ  is well defined on the 
domain of [ ]1,1s∈ − .  

It is well known that in general, the probability mass function is uniquely 
characterized by its corresponding probability generating function. Subsequently, 
two versions of GMM objective functions will be introduced based on estimating 
function theory. The first version is based on using points of [ ]0,1s∈  to form 
moment conditions which are commonly used in the literature and it is given in 
Section 3.2.1 and Section 3.2.2, the second version is based on [ ]1,1s∈ −  and it 
is given in Section 3.2. 3. 

Optimum estimating functions can be used to obtain estimators but we em-
phasize here the GMM approach as tests for moment restrictions with asymp-
totic chi-square distribution free can also be obtained which can be interpreted 
as goodness-of-fit tests for the parametric family used. However, optimum esti-
mating functions theory is very useful for identifying sample moments for effi-
ciency of GMM procedures. 

3.1. Generalized Estimating Functions (GEE) 

First, we shall define the basic unbiased estimating functions ( ){ };ih x θ , i.e., 
with the property ( )( ); , 0i iE h x sθ =θ , then we shall form the optimum esti-
mating functions based on linear combination of these elementary estimating 
functions. Since the basic elementary estimating functions are unbiased estimat-
ing function, the optimum estimating functions will be unbiased. 

For each observation iX , we shall associate the value 

1 2
i

is
n
−

=  for 1, ,i n=  . 

As n →∞ , the set { }; 1, ,is i n=   will become dense in [ ]0,1  and define the 
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elementary estimating functions as 

( ) ( ) ( ); ; , ; 1, ,iX
i i i i ih x h x s s P s i n= = − = θθ θ   

and clearly ( )( ); , 0i iE h x s =θ θ . 
Since ( ); ,i ih x s θ  is independent of ( ); ,j jh x s θ  for i j≠ , we have the 

property  

( ) ( )( ); , ; , 0i i j jE h x s h x sθ =θ θ , for i j≠ .            (12) 

The elements of the set ( ){ }; , 1, ,ih x i n= θ  are said to be mutually ortho-
gonal if elements of the set have the property as defined by expression (12), see 
Godambe and Thompson [10] (page 139). Therefore, using Godambe and Thomp-
son [10] (page 139) optimality criteria the optimum estimating functions for es-
timating 0θ  based on linear combination of the basic estimating functions 
which are orthogonal are given by  

 ( ) ( ) ( )

( )

( ){ }( )( )1 2

; ,

1 ; , ,
; ,

i i

n rr
i ii

i i

h x s
E

g h x s
n E h x s

θ

θ

θ
=

 ∂
 ∂ = ∑

θ

θ θ
θ

          (13) 

and clearly ( ) ( )( ) 0, 1, ,rE g r p= = θ θ , the optimum estimating functions are 
also unbiased. 

We define the vector 

( )

( )

( ){ }( )( )2

; ,

; ,

i i

i

i i

h x s
E

E h x s

θ
 ∂
 ∂ =

θ

θ

θ

β θ
θ

. 

Since 
( ) ( ); ,i i i

r r

h x s P s
E

θ θ
 ∂ ∂

= −  ∂ ∂ 

θ
θ

θ
 and letting ( )( ); ,i iv h x sθ θ  be the va-

riance of ( ); ,i ih x s θ , so  

( ) ( )( ) ( )( ); , ; , ; ,i i i i i iE h x s h x s v h x s=θ θθ θ θ   

and 

( )( ) ( ) ( )( ) ( ) ( )( )
2 22; , .i i iX X X

i i i i i i iv h x s E s s E s P s P s= − = −θ θ θ θ θθ  

This implies  

  ( )

( )

( ){ }( )( )
( )

( ) ( )( )22 2

; ,

; ,

i i i

i

i ii i

h x s P sE

P s P sE h x s

 ∂ ∂  −∂  ∂= =
−

θθ

θ θθ

θ
θ θβ θ
θ

.        (15) 

Therefore, equivalently the vector of optimum estimating function is given by 

  ( ) ( )1

1 ; ,n
i i ii h x s

n =∑ θ β θ .                  (16) 

For GEE estimation as given by expression (4) and expression (5), we need to 
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specify the vector ( );ixm θ . Let us partition ( );ixm θ  into two components 
with 

  ( ) ( )
( )

1

2

;
;

;
i

i
i

m x
x

x
 

=   
 

m
m

θ
θ

θ
, ( ) ( )1 ; , 1, ,iX

i i im x s P s i n= − = θθ .   (17) 

We select two points 1t  and 2t , for example by letting 1 0.50t =  and 2 0.75t =  
and therefore we can form two sets of elementary basic unbiased estimating 
functions using these two points which are given by  

 ( ){ }1 1 , 1, ,iXt P t i n− = θ  and ( ){ }2 2 , 1, ,iXt P t i n− = θ .      (18) 

These two sets of elementary unbiased estimating function are selected be-
cause as we shall see when used to form moment conditions for the GMM objec-
tive function, they allow the construction of consistent chi-square tests. 

Furthermore, with the probability generating function we can derive the ex-
pectation of X which is denoted by ( ) ( )E Xµ = θθ  and another set of elemen-
tary unbiased estimating function can be created which is given by  

( ){ }, 1, ,iX i nµ− = θ  and since the sample mean if incorporated into esti-
mating equations in general might help to improve the efficiency of the estima-
tors, this set of estimating functions are also being considered and used for 
forming the vector of generalized estimating functions. By making use of these 
three sets of elementary unbiased estimating functions lead us to define  

  ( )
( )
( )
( )

1 1

2 2 2; , 1, ,

i

i

X

X
i

i

t P t
x t P t i n

X µ

 −
 

= − = 
 − 

m 

θ

θθ
θ

. 

provided for the model ( )µ θ  exists and note that ( )µ θ  can be obtained from 

the derivative of the probability generating function, in fact ( ) ( )1Pµ ′= θθ , 

( ) ( )d
d

P t
P s

t
′ = θ
θ . 

If ( )µ θ  does not exist, the last component of ( )2 ;ixm θ  is replaced by  
( )1

3 3
iX

iX t P t− ′− θ  with 3t  close to 1, say 3 0.95t =  for example and see section 
4 for an illustration and for finding the working matrix ( )iV θ . For estimators to 
have a multivariate asymptotic normal distribution, we also need the existence of 
the common variance of , 1, ,iX i n=   under the model. 

Having specified the vector 

( ) ( )
( )

1

2

;
;

;
i

i
i

m x
x

m x
 

=   
 

m
θ

θ
θ

,  

GEE estimation can be performed using results and procedures of Section 2.1, 
the vector of GEE estimators ôpθ  is obtained by solving the system of equations 
as given by expression (5). Observe that with the notations being introduced, 

( )1 ;im x θ  denote a function which also depends on is , i.e.,  
( ) ( )1 1; ; ,i i im x m x s=θ θ  and clearly ( )1 ; , 1, ,im x i n= θ  are not identically 

distributed but ( )2 ; , 1, ,im x i n= θ  are identically distributed vectors of ran-
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dom variables. Therefore, GEE estimators are no longer asymptotically equiva-
lent to GMM estimators using the same vectors ( );ixm θ . With the notations 
being used, GEE estimators and GMM estimators are asymptotically equivalent 
only if ( ); , 1, ,ix i n=m θ  have a common multivariate distribution. 

3.2. GMM Methodology  

Before defining the sample moment vector ( );iym θ  for GMM methods, let us 
for the time being turn our attention on how to obtain a preliminary consistent 
estimate ( )0θ̂  in general, Such a preliminary estimate ( )0θ̂  is needed for nu-
merical algorithms to implement GMM procedures and to define the matrix 

1ˆ −S  which is used to define the GMM objective function. The nonlinear least- 
squares (NLS) estimators can be used to obtain a preliminary consistent estimate 

( )0θ̂  with ( )0θ̂  being the vector which minimizes 

( )( )2

1

1 ; ,n
i ii h x s

n =∑ θ . 

Note that the estimating functions of the nonlinear least-squares methods are  

( ) ( )
1

; ,1 ; , , 1, ,n i i
i ii

r

h x s
h x s r p

n θ=

∂
=

∂∑ 

θ
θ , 

and they have some resemblance to the optimum ones as they are also based on 
linear combinations of ( ); , , 1, ,j jh x s j n= θ  but they are not optimum.  

3.2.1. GMM Objective Function 
Now we turn our attention to defining the vector 

( ) ( )
( )

1

2

;
;

;
i

i
i

x
x

x
 

=   
 

m
m

m
θ

θ
θ

. 

we have seen GMM estimators are no longer equivalent to GEE estimators if we 
define ( );ixm θ  as for GEE methods, some modifications appear to be neces-
sary and to ensure that GMM estimators have comparable efficiencies to the ones 
obtained by using optimum estimating functions based on ( ){ }; , 1, ,ih x i n= θ , 
we shall let 

( ) ( ) ( )1 ; ; , , 1, ,i i i ix h x s i n= =m θ θ β θ   

with the corresponding sample moment, ( ) ( ) ( )1 1

1 ; ,n
i i ii h x s

n =
= ∑g θ θ β θ ,  

( )1g θ  is the vector of optimum function based on  

( ){ }; , , 1, ,i ih x s i n= θ  

and keeping ( )2 ; , 1, ,ix i n=m θ  as for GEE estimation, so the corresponding 
sample moment vector for GMM estimation is 

   ( ) ( )
( )

1

2

 
=  
 

g
g

g
θ

θ
θ

                       (19) 

with ( )1g θ  being just defined and  
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( )

( )( )
( )( )
( )( )

1 11

2 2 21

1

1

i

i

n X
i

n X
i

n
ii

t P t

t P t
n

X µ

=

=

=

 −
 
 = − 
  − 

∑
∑
∑

g

θ

θθ

θ

  

if ( )µ θ  exists, otherwise let ( )

( )( )
( )( )
( )

1 11

2 2 21
1

3 3

1

i

i

i

n X
i

n X
i

X
i

t P t

t P t
n

X t P t

=

=

−

 −
 
 = − 
 ′− 
 

∑
∑g

θ

θ

θ

θ , 3t  is chosen to 

close to 1 but 3 1t < . The GMM objective function can be constructed and given 
by 

( ) ( ) ( )1ˆQ −′= Sg gθ θ θ . 

3.2.2. Model Testing Using GMM Objective Function 
Now we shall turn our attention to the problem of testing a model specified by 
its probability generating function. Let 1, , nX X  be the random sample drawn 
from the nonnegative integer discrete distribution with probability generating 
function ( )0P t  and we want to test the following simple null hypothesis which 
specifies ( ) ( )

00P t P t= θ , 0θ  is specified, i.e. 

( ) ( )
00 0:H P t P t= θ   

and clearly if ( ) ( )
00 0:H P t P t= θ  is true we have ( )( )0 0 0E g =θ θ . 

The following chi-square statistics 

( ) 2
0 r

LnQ χ→θ  with r k=   

For practical applications, the chi-square tests are in general consistent to 
detect common departure that we are interested as we shall see that if  

( ) ( )
00P t P t≠ θ , the test will allow us to reject ( ) ( )

00 0:H P t P t= θ  in general as 
n →∞ . Indeed, we have this property via the chi-square statistic, because if 
( ) ( )

00P t P t≠ θ  the chi-square statistic will converge to infinity.  
In order not to have this property, we must have 

( ) ( )
00P t P t≠ θ  but ( )0

p→g 0θ . 

If ( )0
p→g 0θ  then two of its components given by  

( )( ) ( )( )0 01 1 2 21 1

1 1,i in nX X
i it P t t P t

n n= =
− −∑ ∑θ θ  must simultaneously converge to 0 in 

probability, i.e., 

( )( )01 11

1 0in X p
i t P t

n =
− →∑ θ  and ( )( )02 21

1 0in X p
i t P t

n =
− →∑ θ .   (20) 

We shall show that in general for ( )0P t  encountered for applications it can-
not happen. 

Suppose that 

( )( )01 11

1 0in X p
i t P t

n =
− →∑ θ , this implies ( ) ( )

00 1 1P t P t= θ  
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and similarly  

( )( )02 21

1 0in X p
i t P t

n =
− →∑ θ , this implies ( ) ( )

00 2 2P t P t= θ . 

Observe that in general for probability generating function ( )P s  used for ap-
plications, the function ( )P s  is convex for 0 1s< <  and ( ) 1P t =  when 1t = , 
i.e., ( )1 1P = , see Resnick [16] (p 22-23).  

Furthermore, for ( ) ( )
00P t P t≠ θ  encountered in applications, we also have 

in general ( ) ( )
00P t P t≠ θ  for some ( )0,1t∈ . This also means in general, there 

is only one point a with 0 1a< <  at most where ( )0P t  crosses ( )
0

P tθ  since 
( )0P t  and ( )

0
P tθ  are both strictly convex functions and ( ) ( )

00 1 1 1P P= =θ . 
Therefore, we cannot have simultaneously convergence as given by expression 
(19) and the chi-square test is consistent in general as it can detect common de-
parture from ( ) ( )

00 0:H P t P t= θ  as n →∞ . 
For testing the composite ( ) ( ){ }0 0:H P t P t∈ θ , we need to estimate 0θ  by 

θ̂  by minimizing ( ) ( ) ( )1ˆQ −′= Sg gθ θ θ  first and subsequently use θ̂  to 
compute the following chi-square statistic ( )ˆnQ θ  and ( ) 2ˆ L

rnQ χ→θ  with 
3r = . 

These chi-square statistics are distribution free as there is no unknown para-
meter in these chi-square distributions for the statistics used. These good-
ness-of-fit tests are simpler to implement than the ones based on matching sam-
ple probability generating function with its model counterpart using a conti-
nuum of moment conditions as given by Theorem 10 of Carrasco and Florens [6] 
(p 812-813). Note that maximum likelihood estimators if used concomitantly 
with the common classical Pearson statistics often have complicated distribu-
tions and the statistics are no longer distribution free, see Chernoff and Leh-
mann [17], Luong and Thompson [18] and these classical Pearson’s test statistics 
are not consistent in general. 

3.2.3. Further Extensions: The Use of Orthogonal Estimating Functions 
Notice that beside the set of basic estimating functions 

( ) ( ){ }; , 1, ,iX
i i ih x s s P s i n= − = θ   

as defined earlier we also have another set of basic estimating functions given by 
( ){ }; , , 1, ,i il x s i n= θ  with ( ) ( ) ( ); , iX

i i i il x s s P s= − − −θθ .  
Consequently, if in addition of the first set of estimating functions, we also 

want to incorporate the second set of basic estimating functions for building 
( )g θ  then we can use optimum orthogonal estimating functions and instead of 

the first p components of the vector ( )g θ  are given by the vector 

( ) ( )1

1 ; ,n
i i ii h x s

n =∑ θ β θ   

which is the vector optimum estimating functions based on the set of basic esti-
mating functions ( ){ }; , , 1, ,i ih x s i n= θ , we shall use a more general vector of 
optimum estimating functions which can incorporate a larger set of basic esti-
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mating functions as described below.  
Observe that we also have another set of estimating functions given by  

( ){ }; , , 1, ,i il x s i n= θ  with ( ) ( ) ( ); , iX
i i i il x s s P s= − − θθ  and clearly  

( ){ }; , , 1, ,i il x s i n= θ  form a mutually orthogonal basic estimating function 
but together combining the two sets of basic estimating functions to form the set 

( ) ( ){ }; , , ; , , 1, ,i i i ih x s l x s i n= θ θ ,  

the basic estimating functions of the combined set are not mutually orthogonal 
because ( ) ( )( ); , ; ,i i i iE h x s l x sθ θ θ  is not equal to 0. Using Gram-Schmidt or-
thogonalizing procedure we can replace ( ); ,i il x s θ  by 

( ) ( ) ( ) ( )0 ; , ; , ; , , 1, ,i i i i i i il x s l x s h x s i nα= − = θ θ θ θ , 

( )
( ) ( )( )
( ) ( )( )

; , ; ,

; , ; ,
i i i i

i
i i i i

E h x s l x s

E h x s h x s
θ

θ

α =
θ θ

θ
θ θ

 

which can also be represented as  

  ( )
( ) ( ) ( )

( ) ( )( )

2

22

i i i
i

i i

P s P s P s

P s P s
α

− − −
=

−

θ θ θ

θ θ

θ                (21) 

Since 

( ) ( )( ) ( )( ) ( ) ( )( )
( ) ( ) ( )2

; , ; , i ii iX XX X
i i i i i i i i

i i i

E h x s l x s E s s E s E s

P s P s P s

= − − −

= − − −

θ θ θ θ

θ θ θ

θ θ
 

and ( ) ( )( ); , ; ,i i i iE h x s h x sθ θ θ  is simply the variance ( )( ); ,i iv h x sθ θ  of  
( ); ,i ih x s θ  since the basic estimating functions are unbiased,  

( )( ) ( ) ( )( )22; ,i i i iv h x s P s P s= −θ θ θθ . 

Now, it is easy to see that that set 

( ) ( ){ }0; , , ; , , 1, ,i i i ih x s l x s i n= θ θ   

is a set of mutually orthogonal of basic or elementary estimating functions, see 
Definition 2.2 and Theorem 2.1 as given by Godambe and Thompson [10] (p 
139-140).  

Li and Turtle [19] (p 177) also use a similar orthogonalization procedure and 
Theorem 2.1 for creating optimum estimating functions for ARCH model.  

The first p components of the vector of sample moment functions ( )g θ  are 
simply the optimum estimating functions based on linear combinations of basic 
estimating functions of the set ( ) ( ){ }0; , , ; , , 1, ,i i i ih x s l x s i n= θ θ  and again 
using Theorem 2.1 by Godambe and Thompson [10], the vector of optimum es-
timating functions is given by 

( ) ( ) ( ) ( )( )0
1

1 ; , ; ,n
i i i i i ii h x s l x s

n =
+∑ θ β θ θ γ θ              (22) 

with 
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 ( )

( )

( )( )( )

0

20

; ,

; ,

i i

i

i i

l x s
E

E l x s

θ
 ∂
  ∂ =

θ

θ

θ

γ θ
θ

  

and ( )iβ θ  is as defined by expression (15). 
Now we shall display the expression for ( )iγ θ , first note that  

( ) ( ) ( ) ( )0 ; ,i i i i
i

l x s P s P s
E θ θα θ

 ∂ ∂ − ∂
= − +  ∂ ∂ ∂ 

θ

θ
θ θ θ

 

and ( )( )( ) ( )( )20 0; , ; ,i i i iE l x s v l x s=θ θθ θ , so that  

( )( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( )

0 2; , ; , ; ,

2 ; , , ; ,

i i i i i i i

i i i i i

v l x s v l x s v h x s

cov h x s l x s

α

α

= +

−

θ θ θ

θ

θ θ θ θ

θ θ θ
 

with the variance 

( )( ) ( ) ( )( ) ( )( ) ( )( )
( ) ( )( )22

; , i i i iX X X X
i i i i i i

i i

v l x s E s s E s E s

P s P s

= − − − − −

= − −

θ θ θ θ

θ θ

θ
 

( )iα θ  is as given by expression (21) and the covariance 

( ) ( )( ) ( ) ( ) ( )2; , , ; ,i i i i i i icov h x s l x s P s P s P s= − − −θ θ θ θθ θ   

The expression for ( )iγ θ  can be displayed fully and it is given by 

( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )( )( ) ( ) ( ) ( ) ( )( )2 22 2 2 22

i i
i

i i i i i i i i i

P s P s

P s P s P s P s P s P s P s

α

α α

∂ − ∂
− +

∂ ∂
− − + − − − − −

θ θ

θ θ θ θ θ θ θ

θ
θ θ

θ θ
. 

with this vector of optimum estimating functions, the sample moments function 
( )g θ  for forming the corresponding GMM objective function can be defined 

and given below. 
Let  

( ) ( ) ( ) ( ) ( )( )0
1 1

1 ; , ; ,n
i i i i i ii h x s l x s

n
β

=

 = + 
 
∑g θ θ θ θ γ θ  

and keeping ( )2g θ  as the component vector of ( )g θ  as specified by expres-

sion (19), so ( ) ( )
( )

1

2

 
=  
 

g
g

g
θ

θ
θ

 and the choice of ( ) ( )
( )

1

2

 
=  
 

g
g

g
θ

θ
θ

 with the use  

of optimum orthogonal estimating functions constructed using two set of basic 
estimating functions for ( )1g θ  is to be preferred for improving the efficiency  

for estimation for some models if ( ) ( )
( )

1

2

 
=  
 

g
g

g
θ

θ
θ

 as defined by expression  

(19) in Section 3.1.1 does not give satisfactory results for efficiency for GMM es-
timation. Model testing procedures using this GMM objective function are iden-
tical to procedures for GMM objective function used earlier.  

We might also want to enlarge the vector of ( )2g θ  by adding more compo-
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nents but more components also tend to create numerical difficulties because the 
matrix Ŝ  will be nearly singular and the numerical inversion of such a matrix 
is often problematic. 

Finally, we note that the GMM methods developed although are primarily for 
discrete distributions, the methods can also accommodate nonnegative conti-
nuous defined using Laplace transforms as discussed in Luong [20] as Laplace 
transforms are related to probability generating functions.   

4. An Example and Numerical Illustrations  

We shall use an example to illustrate the procedures, let us consider a random 
sample of observations 1, , nX X  is drawn from the Poisson distribution with 
probability generating function ( ) ( )1e sP s θ

θ
−= , 0θ > . For this model θ  is 

scalar. We would like to use GMM methods here as despite that maximum like-
lihood estimator for θ  is available and given by ˆ

ML Xθ = , using ˆ
MLθ  does 

not lead to tractable distribution free goodness of fit test statistics with the use of 
Pearson type statistics as mentioned earlier. 

For this model, the coefficient 

( )

( )

( ){ }( )( )
( ) ( )

( ) ( )
2

1

2 1 2 1

; ,
1 e

; , e e

i

i i

i i
s

i
i s s

i i

h x s
E

s

E h x s

θ θ

θ θ
θ

θ
θ

β θ
θ

−

− −

 ∂
 ∂ − = =

−
,   

( ) ( ); , 1, ,iX
i i ih x s s P s i nθ= − =  . 

We consider the case with the sample moment vector given by 

( ) ( )
( )

1

2

g
g

g
θ

θ
θ

 
=  
 

, ( ) ( )( ) ( )1
1 1

1 e in s
i iig s

n
θθ β θ−

=
= −∑ , 

1 2
i

is
n
−

=  

( )

( )( )

( )( )

( )( )

( )

1 11

2 2 2 1 21

1

1

1 , , 0.5, 0.75

1

i

i

n X
i

n X
i

n
ii

t P t
n

g t P t t t
n

X
n

θ

θθ µ θ θ

µ θ

=

=

=

 − 
 
 = − = = = 
 
 − 
 

∑

∑

∑

 

The vector 

( )
( )

( )

1

4

; ,
; ,

; ,

i i

i i

i i

m x s
x s

m x s

θ
θ

θ

 
 =  
 
 

m    

will have four components with the components given respectively by 

( ) ( )( ) ( )1
1 ; , e ,ii sX

i i i im x s s θθ β θ−= −  

( ) ( )( )2 1 1; , ,iX
i im x s t P tθθ = −  

( ) ( )( )3 2 2; , ,iX
i im x s t P tθθ = −  
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( ) ( )( )4 ; , .i i im x s Xθ µ θ= −           

We can use ( )0ˆ ˆ
MLθ θ=  as ˆ

MLθ  is simple to obtain here and can be used as a 
preliminary consistent estimate. Now we can let 

   ( )( )( ) ( )( )( )0 0
1

ˆ 1 ˆ ˆ; , ; ,n
i i i ii x s x s

n
θ θ

=

′
= ∑ m mS              (23) 

or 

    ( )
( )( ) ( )( )0
0 0

ˆ1

1 ˆ ˆ; ;ˆ n
i ii E m y m y

n =

′ 
 

   =    ∑S

θ
θ θ .           (24) 

The elements of Ŝ  as given by expression (24) can be computed using only the 
probability generating function of the model since we have 

( ) ( )XE Xt tP tθ θ′=  and ( ) ( )1 2 1 2
X XE t t P t tθ θ= ,  

( ) ( ) ( )X XE Xt s t s P t sθ θ′= + + , 

the variance of X is 

( ) ( ) ( ) ( )( )2
1 1 1v X P P Pθ θ θ θ′′ ′ ′= + − , ( ) ( )2

2

d
d
P t

P t
t
θ

θ′′ = . 

For the Poisson model, 

( )v Xθ θ= .   

Ŝ  as given by expression (24) tends to be invertible with less numerical diffi-
culties. 

The GMM objective function is given by 

( ) ( ) ( )1ˆQ θ θ θ−′= Sg g ,  

minimizing it allows us to obtain the corresponding GMM estimators θ̂ . In 
order to obtain an estimated asymptotic variance for θ̂ , we can define 

( ) ( )1 4
1 1

; , ; ,1 1ˆ , ,n ni i i i
i i

m x s m x s
E E

n nθ θ

θ θ
θ θ= =

    ∂ ∂
=         ∂ ∂   
′


∑ ∑D    

evaluated at ˆθ θ= . 

The asymptotic variance for θ̂  can be estimated as 1ˆˆ ˆ1
n

−′D S D  and the chi-  

square statistic for testing the composite hypothesis ( ) ( ){ }0 0:H P s P sθ∈  is given 
by ( )ˆnQ θ  and ( ) 2

3
ˆ LnQ θ χ→ . 

For testing the feasibility of GMM methods with this example, limited simula-
tion studies are conducted. GMM methods can be implemented without numer-
ical difficulties for 10θ ≤ . 

For values of θ  with 10 100θ< ≤ , if expression (23) is used for Ŝ , the 
matrix Ŝ  tends to be nearly singular and the elements of Ŝ  need to be com-
puted with higher accuracies in order to be able to invert Ŝ . We found that 
software like Maple or Mathematica is more able to compute with higher accu-
racy than R. 
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Often by using a spectral decomposition of Ŝ , we can obtain 1ˆ −S  numeri-
cally although directly asking for the inverse using R, it might just give the mes-
sage, matrix is nearly singular and does not return the inverse. As can be seen by 
using the spectral representation of Ŝ , 

ˆ ′=S P PΛ   

with ′P  being an orthonormal matrix, ′ =P P I , 1−′ =P P  and Λ  is a di-
agonal matrix with diagonal elements consist of eigenvalues of Ŝ  and these ei-
genvalues need to be computed with high accuracies and they also must be posi-
tive numerically, so by keeping more digits to compute the eigenvalues of Ŝ  
then in general, 1−Λ  can be obtained and computed as 

1 1ˆ − −′= P PS Λ . 

if expression (24) is used instead of expression (23) for Ŝ  with software which 
keeps more accuracy on computing numbers then we encounter less numerical 
problems to invert Ŝ . For models which 1ˆ −S  is difficult to obtain, an empiri-
cal likelihood (EL) approach based on the same sample moments can be used 
and have the same efficiency as GMM methods but the numerical computations 
for implementing EL methods are also more involved, see Luong [20] on the use 
of penalty function for obtaining EL estimators. 

We simulate 100M =  samples of size 100n =  from the Poisson distribu-
tion with 1, 2,3, 4,5,10,100θ =  and obtain respectively the GMM estimate, the 
NLS estimate and the ML estimate. The NLS estimate is the non linear least- 
squares estimate as mentioned in the beginning of Section 3.2.  

For comparison of relative efficiencies of these methods we estimate the ratios  
( )
( )

MSE GMM
MSE ML

 and ( )
( )

MSE NLS
MSE ML

 where MSE(GMM), MSE(NLS), MSE(ML)  

are respectively the estimates of mean square error of GMM estimator, NLS es-
timator and ML estimator using simulated samples. The efficiency of GMM es-
timator is practically identical to the efficiency of ML estimator but the efficiency 
on NLS estimator is much lower and getting worse as θ  increases in compari-
son with ML estimator. The results are displayed in Table A1. 

In order to test whether the chi-square test has power to detect departure 
from the model used here we use the negative binomial with mean equals to θ   

and variance equals to 
2θθ
α

+  as departure from the Poisson model with  

1, 2,3, 4,5,10,100α =  and simulate 100M =  samples of size 100n =  and the 
model used is Poisson with mean θ . We can estimate the power of the tests at 
these alternative and results are displayed in Table A2. The level used for the 
chi-square tests is 0.05α =  with the critical point being the 0.95th percentile of 
a chi-square distribution with 3 degree of freedom, ( )2

0.95 3 7.814χ = . The results 
obtained are also encouraging and show that the chi-square tests have consider-
able power to detect departures. As n becomes large the estimate power also de-
creases as expected since as n →∞ , the negative binomial distribution also 
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tends to the Poisson distribution. Larger scale simulation studies with more pa-
rametric families are needed to confirm the efficiencies of the proposed me-
thods. 

5. Conclusion  

At this point, we can conclude that the methods appear to be relatively simple to 
implement and have the potentials to be efficient for some count models and 
have the advantage of only using of probability generating function instead of 
probability mass function, allowing inferences to be made for a much larger class 
of parametric families without relying on extensive use of simulations. The pro-
posed GMM methodology also combines traditional GMM methodology with 
generalized estimating function methodology and both of these methodologies 
are well-known alternatives to ML methodology. There is a lack of statistics for 
model testing when using generalized estimating function methodology and it is 
overcome by the proposed procedures.    
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Appendix 
Table A1. Estimate relative efficiency comparisons between GMM, NLS and ML estima-
tors. 

θ 1 2 3 4 5 10 100 

Estimate ( )
( )

MSE NLS
MSE ML

 0.989 0.999 1.000 1.000 1.000 1.000 1.000 

Estimate ( )
( )

MSE NLS
MSE ML

 1.477 2.193 1.803 1.913 2.481 3.975 454.200 

M = 100 simulated samples are used and each with sample size n = 100. 

 
Table A2. Estimate power of the chi-square tests using the Poisson model with parameter 
θ. 

α 1 2 3 4 5 10 100 

Estimate power 0.770 0.720 0.740 0.620 0.580 0.210 0.100 

M = 100 simulated samples of size n = 100 for each sample are drawn from a negative binomial distribution 

with mean = 5 and variance = 
25
α

. 
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