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Abstract 
A newly discovered Ballistic Principle of the Property Balance in the Space 
(BPPBS) occupied by the gas is introduced to simplify and reduce computa-
tions in applications dealing with modeling of fluid dynamics problems. The 
integro-differential balance equations for mass, momentum, and energy, 
which were formulated by applying the BPPBS, are derived. The inte-
gro-differential balance equations for mass and momentum were further ap-
proximated for the collision-dominated flow regime. Then they were reduced 
to the corresponding vector differential equations by the method of vector 
differentiation with subsequent elimination of the terms belonging to the 
original equation. It was shown that in the collision-dominated flow regime, 
the derived vector differential equations of mass and momentum balance are 
identical to the corresponding Navier-Stokes equations. This finding validates 
the BPPBS and suggests that, in the collision-dominated flow regime, the 
formulated integro-differential forms of the balance are exact implicit solu-
tions for corresponding Navier-Stokes equations. Six additional tests demon-
strating the feasibility of the proposed method and validity of the BPPBS are 
presented here. The BPPBS and the methodology discussed here will be high-
ly useful not only as the basis to solve the fluid dynamics problems, but also 
to model any dynamic system composed of presumably chaotically moving 
particles/elements, each carrying a specific amount of property/information. 
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1. Introduction 

Computational Fluid Dynamics (CFD) is widely used in many practical applica-
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tions ranging from basic hydrodynamic and kinematic to fundamental cosmo-
logical applications. The fundamental basis of any CFD tool is a solver, which 
solves the Navier-Stokes equations that are a set of second-order partial diffe-
rential equations. Navier-Stokes equations are based on the assumption that 
the fluid is a continuum, and they are formulated by considering the mass, 
momentum, and energy conservations for a control volume of any size. The 
flow is considered continuous and differentiable, allowing the mass, momentum, 
and energy balances to be expressed as partial differential equations. Scientists 
made further approximations and simplifications to the Navier-Stokes equation 
set until it can be solved [1]. However, this intentional simplification of a fluid 
model may diminish the usefulness of the results of the computations. Also, the 
theoretical understanding of the solutions to these equations is still inadequate. 
Specifically, for three-dimensional Navier-Stokes equations and given initial 
conditions, mathematicians have not yet proved that smooth solutions always 
exist, and the solutions have limited energy per unit mass.  

In the most general form, the Navier-Stokes equations of mass and momen-
tum conservation for compressible fluid are expressed as:  

( ) 0
t
ρ ρ∂
+ ⋅ =

∂
u∇                      (1) 

and  

( ) 1 1 Τ,p
t ρ ρ
∂

+ ⋅ + − = ⋅
∂

u u u g   

∇ ∇ ∇                (2) 

respectively, for 0t >  and 3∈r  . In the equations above, ρ  is the density 
of the fluid, u  is mass flow velocity, p∇  is the pressure gradient, Τ⋅∇  
represents stresses inside the fluid, and g  is the external force per unit mass. 
The right-hand term Τ⋅∇  has generally unknown functionality and contains 
too many unknowns and up to date does not apply to practical problems.  

The general major disadvantage of any existing “mathematical” approach in 
solving the fluid dynamics problem is based on using an infinitesimal fluid ele-
ment viewed as a continuous medium, to which fundamental physical principles 
are applied. This approach contradicts the molecular or particle nature, thus 
providing a source of significant uncertainty in interpreting the results of mod-
eling and calculations. In the flows at small-scale, when the characteristic hy-
drodynamic length scale approaches the fluid characteristic length scale, the 
Navier-Stokes description is expected to fail (see [2] and [3]). In rarefied gases, 
the mean free path or the average distance traveled between intermolecular col-
lisions is also considered a fail factor for the Navier-Stokes description [4]. Here 
we shall enumerate the most important properties of gases that often behave 
very close to ideal [5]:  

1) The ideal gas composed of a large number of identical particles (molecules 
or inert atoms). 

2) The volume occupied by gas particles themselves is negligible compared to 
the volume occupied by the gas. 
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3) The particles obey Newton’s laws of motion, and they move in random mo-
tion. 

4) The particles experience forces only during collisions; any collisions are 
wholly elastic and take a negligible amount of time. 

Mathematicians and physicists consider the recent advancement of the me-
thod of the lattice Boltzmann (LB) equation as a significant alternative to stan-
dard computational fluid dynamics [6]. This approach consists in modeling “the 
physical reality at a mesoscopic level: the generic features of microscopic 
processes can be expressed through simple rules, from which the desired ma-
croscopic behavior emerges as a collective effect of the interactions between the 
many elementary components [7].” Typical hydrodynamic quantities, such as 
mass, density, fluid velocity, and temperature, are not associated with individual 
particle movement and are quantified by simple moments of the particle distri-
bution function [8]. However, solving the LB equation represents a significant 
challenge because it involves a numerical evaluation of an integral-differential 
equation in position and velocity phase space. Fluid simulation of such com-
plexity can be implemented only by massively parallel data processors 
equipped with combinational logic for processing collision rules. This method 
is extremely complicated and restricted because of the limitation of the availa-
ble computational approaches for modeling real physical statistical systems. 
Besides, it is challenging for schemes developed for solving LB equations to 
consider the interaction between particles and boundary conditions [9]. On 
the other hand, molecular dynamics (MD) simulation can be a unique tool 
based on the first principles involving the analysis of the physical movements 
of atoms and molecules. However, because model systems for engineering applica-
tions require hundreds of thousands of particles, it is considered impossible to de-
termine the properties of such systems analytically [10]; the problem is solved by 
using numerical methods. The downside is that the MD simulation is hugely 
computationally intensive [11], and long MD simulations are mathematically 
ill-conditioned, generating cumulative errors in numerical integration [10].  

In this paper, we discuss a physical approach to solving fluid dynamics prob-
lems by a novel analytical molecular dynamics technique (NAMDT), which 
was initially presented in our patent [12] and PCT publication [13]. Our me-
thod consists of approximating fluid flow as a flow of a model gas, assigning to 
the model gas unique properties that differ from the properties of the ideal gas, 
and forming integro-differential balance equations for mass, momentum, and 
energy transport in any non-moving point in space occupied by the model gas. 
In the patent publications [12] and [13], we disclosed detailed steps of the 
one-dimensional simulation of the model gas flow in space between parallel 
plates, which support our method of modeling flows by the NAMDT. This paper 
aims the theoretical validation of the method.  

In the following, Section 2 describes the physical principles of the fluid model 
and the general physical approach of forming balancing equations. Here we also 
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introduce newly discovered Ballistic Principle of the Property Balance in the 
Space occupied by the gas, applying of which is expected to simplify and reduce 
computations in applications dealing with modeling of fluid dynamics problems. 
The section also provides an analytical representation of the general inte-
gro-differential forms of mass balance, momentum balance, and energy balance 
equations.  

In Section 3, we provide integro-differential forms of mass balance and mo-
mentum balance equations, which were adapted to the collision-dominated flow 
regime.  

In Section 4, we demonstrate seven validation tests aiming to prove the feasi-
bility of the proposed method. The first two validation tests, 4.1 and 4.2, illu-
strate that interaction of the model gas and the ideal gas with the gas-solid inter-
face are identical (compare the rate of collision per unit area and the pressure 
exerted on the surface); nevertheless, some the most essential properties charac-
terizing the model gas and the ideal gas are different. In the third validation test, 
4.3, we supported our approach by formulating the mass-balance and the mo-
mentum-balance in the three-dimensional unlimited incompressible gas space at 
the uniform temperature. Analogously, in the fourth validation test, 4.4.2, we 
supported our approach by formulating the mass-balance and the momen-
tum-balance in one-dimensional incompressible gas space confined between two 
parallel plates at the uniform temperature.  

Also, in the validation tests 4.4 and 4.5, we explain a method for obtaining an 
analytical solution describing the incompressible model gas flow at the uniform 
temperature in the channel, which is confined in the space between two infinite 
parallel plates. Validation test 4.4 demonstrates the model gas flow with diffuse 
particle scattering from the plates. Validation test 4.5 demonstrates the model 
gas flow in a case of mixed diffuse and specular particle scatterings from the 
plates being at rest.  

Lastly, in the validation test 4.6, we supported the proposed approach by re-
vealing that, in the collision-dominated flow regime, the differential equations, 
which were converted from the integro-differential mass and momentum bal-
ance equations, are identical to the corresponding Navier-Stokes equations.  

Finally, in Section 5, we present the conclusions and highlight the prospec-
tiveness of the proposed physical approach for developing a new generation of 
the CFD software based on the NAMDT.  

2. Physical Principles of the Fluid Model 

We suggest an approach in which fluid flow in a fluid system is model gas flow 
in a model gas system, which is equivalent to the fluid system. The transport 
processes involve the exchange of properties such as mass, momentum, and 
energy between interacting particles. In a more abstract sense, all particle inte-
ractions and property randomizing are an exchange of property/information 
[14]. We have also realized that 1) transport phenomena include any situation 
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that involves a net transfer of property/information between particles, which 
equals randomizing properties between interacting particles; 2) a randomized by 
property exchange between interacting particles physical/statistical property can 
be taken out into the surrounding gas [14]. However, we exclude interaction re-
sulted in chemical reactions between colliding particles and fragmentation or fu-
sion.  

In the following, all references are made to absolute time, which is measured 
equally within the model gas system. Besides, when referencing an appropriate 
law of motion, Newton’s Second Law of motion is considered. Also, in the inter-
ests of simplicity, we analyzed the model gas flow at a uniform body force such 
as a gravitational field of force or the acceleration field if dealing with a particle 
of a unit mass. 

2.1. Properties and Features of the Model Gas 

We assign these unique properties to the model gas [12]:  
1) The model gas enables a distant transport of one or more properties, in-

cluding one or more of mass, momentum, and energy by particles being in a 
constant state of mostly random motion and interaction by collisions.  

2) Each of the particles of the model gas is assigned to travel by obeying a bal-
listic trajectory that is governed by a law of motion in free space. It overcomes a 
distance between any of the two points of the ballistic trajectory with certain 
survival probability.  

3) Each of the particles is adapted to transport a combination of one or more 
properties, comprising mass, momentum, and energy between a point of initial 
collision and a point of ending collision.  

4) Each point within the space occupied by the model gas is treated as a point 
of collisions for converging particles, each following a ballistic trajectory with 
the same ending point simultaneously.  

5) Each point of collisions is treated as either a point source for diverging bal-
listic particles or a point sink for converging ballistic particles.  

6) Each of the particles moving from the point source to the point sink is 
treated as a property carrier. The property carrier is created in the point source 
during the initial collision by obtaining one or more properties of specific values 
being intrinsic to the model gas surrounding the point source. It is ended in the 
point sink during ending collision by transferring one or more properties of spe-
cific values in the point sink.  

7) The value of the property, which is delivered in the point sink, or the value 
of the property, which is taken away from the point source, is evaluated regard-
ing whether the value of property carried by each of the particles is modified be-
cause of interaction with an external field.  

8) The velocity of a point source equals the mass flow velocity of the model 
gas flow in a corresponding point of the initial collisions at the time of the initial 
collision.  
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One can note from the above that the model gas properties differ from the 
properties typically assigned to the ideal gas (see above in Introduction). 

In this paper, we investigate the transport of properties that are conserved 
during the ballistic traveling time.  

Figure 1 illustrates a schematic of the ballistic trajectories of a particle be-
tween two subsequent collisions in a model gas system.  

The schematic diagram above shows the model gas composed of identical 
randomly moving particles and positioned in the observer’s Cartesian coordi-
nate system 100. Note that in the paper, the observer’s coordinate system is des-
ignated by index “100.” Here we consider an isotropic model, which requires 
that the coordinate system needs to be at rest. To detect the position of the event, 
the observer reads a space coordinate at the location of an event. Also, the clocks 
at any location within a system are synchronized. The observer allocates space 
coordinates and time by recording both the space coordinates and time at the 
clock nearest the event position [12]. For clarity, the observer’s Cartesian coor-
dinate system 100 is orientated, so that y-axis is directed in the opposite direc-
tion of an applied field of external force 107, which provides, for each of particles, 
acceleration g . Each of the particles (shown as black disks), particularly a par-
ticle 101 (shown as white disks), travels between its two consecutive collisions: 
an initial collision 102 and an ending collision 103 by following a trajectory 104 
or 105 governed by applicable law of motion including Newton’s laws of motion. 
Note that in a lack of external force, all ballistic trajectories between consecutive 
collisions will be just straight lines, respectively, as indicated by trajectory 106. 
Specifically, referring to Figure 1, particle 101 obtains a set of properties of cer-
tain values in a point source 102 at the time of the initial collision. The property 
may include a scalar property of value Ψ  or a vector property of value 



Ψ , 
which is inherent to the model gas near the point source 102 at the time of a col-
lision it′ .  

In the point source 102 positioned in point ′r  at time it′  and moving with 
velocity ( ),it′ ′u r 

, particle 101, as a properties carrier, obtains one or more of 
properties being intrinsic to the model gas surrounding the point of the initial 
collision at the time of the initial collision. In the point source, the particle ac-
quires a thermal velocity component ( ),iTv t′ ′r  of an arbitrary direction rela-
tively to the point source. For certainty, the magnitude of the average thermal 
velocity component in three-dimensional configuration can be defined as: 

3
 ,B

T
k Tv
m

=                         (3) 

where Bk  is Boltzmann constant, T is the temperature, and m is the mass of a 
particle.  

Figure 1 shows a property carrier 101 converging in a point sink 103, which 
may result in delivering in point 103 of property inΨ , carried by the particles at 
the time of the ending collision.  
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Figure 1. Ballistic trajectories of a particle between two subsequent 
collisions in a fluid system composed of the model gas particles. 

2.2. Principles of Construction of the Property Balance in the  
Model Gas 

In the microscopic scale, the model gas flow is characterized by the group of 
particles of mass m, which move randomly and interact by collisions with effec-
tive collision cross-section σ c . In each of the points in space at a given time, the 
particle density n, the magnitude of thermal velocity Tv , and the vector of mass 
flow velocity u  quantify the model gas. In the interests of simplicity, unless 
otherwise stated, the particles are considered to have a unit mass, which, in the 
presence of external force, are accelerated during ballistic traveling with accele-
ration g . We have recognized that each point in space occupied by the model 
gas may serve as both a sink and a collector of property delivered by converging 
ballistic particles from the entire model gas system and a source or a disperser 
into the surrounding of the property taken away by diverging ballistic particles.  

Here, we reasonably may expect maintenance of a general property balance in 
each of the points of collisions within the model gas system. We formulate the 
balance, illustrated as a word equation in Figure 2 as follows [12]. In a given 
non-moving point r  at a given time t, the net rate of property influx per unit 
volume, ( )Ψ_FS , tinB r , formed the converging ballistic particles (each traveling 
along a ballistic trajectory with certain survival probability) from the model gas 
system is equated to the temporal rate of property change per unit volume 

[ ]n
t
∂
∂

Ψ  and the net rate of property efflux per unit volume, _FS
outBΨ , formed the 

diverging ballistic particles. This statement is expressed symbolically as  

( ) ( ) ( ) ( )_FS _FS, , , , .t t n t t
t

Ψ ∂
= +   ∂in outB r B r r r   Ψ Ψ             (4) 

For identification, we call the quantitative relationship above as the Ballistic 
Principle of the Property Balance in the Space (BPPBS) occupied by the particles 
in presumably chaotic motion. The BPPBS applies in general to any gas system, 
including the model gas systems containing heterogeneous gas-solid interfaces. 
Also, for clarity, we call our model as the Ballistic Model (BM).  

This conceptual relationship can be expanded to the infinite space, for exam-
ple, in a hypothetical system with no gravitational force. Straight-line trajectories 
of the particles may start from the infinity.  
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Figure 2. Block diagram of a word equation of the 
general property balance in the model gas system. 

 
In the interests of simplicity, we concentrate our further analysis on the ho-

mogeneous model gas flow in the three-dimensional space having uniform gas 
properties on its periphery. Therefore, Equation (4) is reduced to: 

( ) ( ) ( ) ( )_F _FS, , , , ,t t n t t
t

Ψ ∂
= +   ∂in outB r B r r r   Ψ Ψ             (5) 

where _F
 inBΨ  is the net rate of property influx per unit volume, which is formed 

by the converging ballistic particles from the surrounding model gas in the given 
non-moving point r  at the given time t. Still, the space of the model gas system 
may be separated from the infinite space by defining, for example, non-uniform 
gas pressure over the surface confining the system. This situation is further dis-
cussed when analyzing the momentum balance.  

Here we admit the virtual nature of the balance described by Equation (4) or 
Equation (5). We consider that the value of property/information carried by a 
particle ejected from a given point in space at a given time is not a result of pre-
ceding physical interactions by collisions of all virtual converging ballistic par-
ticles capable of targeting with a certain probability the given point in space at 
the given time, but the result of the expectation of that value because of the cu-
mulative effect from the surrounding space, in which each point of space com-
plies with the BPPBS. Each given point in space at a given time is a point of real-
ity (present) or a pivot point of consuming the results of events from the gas 
space that occurred in the past and sending the result of consumption and ba-
lancing from the present into the future. The value of the property/information 
at the given point in space at the given time, which is to be sent in the future, can 
be determined by solving the balance equations shown above. The analytical 
tools needed to formulate the balance according to Equation (5) are described in 
more detail below.  

2.3. Defining a Net Rate of Total Property Influx Per Unit Volume  
in a General Non-Moving Point at a Given Time from the  
Surrounding Model Gas 

We have recognized and explained afterward that there exists a combination of a 
specific direction of an initial instant vector of thermal velocity ( ),iT t′ ′v r 

 and a 
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vector of mass flow velocity ( ),it′ ′u r 

, which allows each of the selected particles 
to arrive in the given non-moving point r  at the given time, t [12]. These par-
ticles, which originate from the initial collisions within the whole model gas sys-
tem, form the converging flux in the given non-moving point at the given time. 
The table of the model parameters associated with defining the net rate of total 
property influx per unit volume is presented in Table 1.  
 

Table 1. List of the model parameters associated with defining the net rate of total property influx per unit volume.  

Parameters Short description 

x y z
∂ ∂ ∂

= + +
∂ ∂ ∂

i j k
  

∇  the operator of vector differentiation 

t given time 

it′  the time of the initial collision of the converging particle 

r  position of the ending point of the converging particle 

′r  position of the starting point of the converging particle 

( ),it′ ′u r 

 mass flow velocity in the point ′r  at time it′  

( ),iTv t′ ′r  the average magnitude of the thermal velocity of converging particle in point ′r  at time it′  

( ),iVZ t′ ′r  the rate of collisions per unit volume in the point of the collision ′r  at the time it′  of the initial collision 

( ), , ,it t′ ′v r r  

 velocity vector in the ending point r  at the given time t 

( ),i iQ t t′  
the probability of free path traveling along the ballistic trajectory of the converging ballistic trajectory starting at 
time it′  and ending at time t 

( ), , ,it t′ ′in r r 

Ψ  property content delivered by the converging ballistic particle in the ending point r  at the given time t 

ii t tϕ ′= −  traveling time between an initial and ending consecutive collisions or the ballistic traveling time 

n particles density 

m particle mass 

σ c  the cross-section of collisions 

cP nσ= c  the number of particles placed within a collision tube of a unit length 

σ c  the cross-section of collisions 

V the volume of integration over space occupied by the model gas 

( ), ,it t′ ′c
ir r 

  
the position of a virtual ballistic particle at a time t , which has zero magnitude of thermal velocity in the  
starting point ′r  at the time of the initial collision it′  

( ), ,it t′ ′c
iv r 

  the velocity vector of the virtual ballistic particle having a zero component of the thermal velocity at a time t  

( )
( )

, ,
, ,

i

i

tt
tt

′ ′−
=

′ ′−

c
i

i c
i

r r r
n

r r r

  



  

 instant unit vector directing thermal velocity component, so a traveling particle targets point r  at time t 

( ), ,it t′ ′=r r r

 





 the position vector of a ballistic particle at time t  

( ), ,it t′ ′=v v r







  the velocity vector of the ballistic particle at time t  

g  an external force that applies to a particle of a unit mass 

relv  the average magnitude of the velocity of the traveling particle with respect to a nearby passed particle 
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Figure 3 shows a perspective view of the model gas system for explaining a 
ballistic movement of the converging ballistic particle after the initial collision, 
which is affected by the external field of force. For clarity, the observer’s Carte-
sian coordinate system 100 is oriented, so y-axis is along the negative direction 
of the applied acceleration field 306, which provides, for each particle, accelera-
tion g .  

We define the net rate of property influx from the model gas in the general 
non-moving point r  at the given time t by these six steps: 

Step 1: Identifying the converging ballistic trajectory and trajectory characte-
ristics  

Step 1 includes:  
1) Formulating position vector ( ), ,it t′ ′=r r r

 





 of particle 304 on trajectory 
301 and velocity vector ( )t=v v







  (not shown) at time t  by applying Equa-
tions (6) and (7), respectively, given below:  

( ) ( )( ) ( ), , , , ,i iT i it v t ttt t t′ ′ ′ ′ ′ ′ ′= = − + c
i ir r r r n r r







     

              (6) 

and 

( ) ( ) ( ), , , , , ,i T i it tv t tt′ ′ ′ ′ ′ ′= = + c
i iv v r r n v r    



 





              (7) 

where it tt ′≥ ≥ , in  is a unit vector defined in Table 1, and it′  is defined in (2) 
below. In Equations (6) and (7) above, ( ), ,it t′ ′c

ir r 

  and ( ), ,it t′ ′c
iv r 

  are defined 
by an appropriate law of motion.  

Specifically, when Newton’s Laws of Motion govern the motion of the par-
ticles, then ( ), ,it t′ ′c

ir r 

  and ( ), ,it t′ ′c
iv r 

  are defined by Equations (8) and (9) 
below:  

( ) ( )( ) ( )21, , ,
2i i i it t t tt t t′ ′ ′ ′ ′ ′ ′= + − + −c

ir r r u r g     

              (8) 

and 

( ) ( ) ( ), , ,i i it t tt t′ ′ ′ ′ ′= + −c
iv r u r g    

                    (9) 

2) Determining the time of the initial collision it′  in point ′r . It can be done 
by solving Equation (6) in which tt = . Where a model gas system is governed 
by Newton’s Law of Motion, it can be done by resolving, for each of the ballistic 
particles, the equation of projectile motion, given by Equation (10), with respect 
to the ballistic traveling time, iϕ :  

( ) ( )2
T

1 , , 0,
2 i ii iv t tϕ ϕ′ ′ ′ ′ ′ + + + − = ir n u r r r      g            (10) 

which is obtained by substitution of Equation (8) in Equation (6) followed by the 
assignment of  tt =  and substitution of iϕ  defined in Table 1 in Equation (6) 
and rearrangement of the terms. Upon resolving Equation (10) and selecting 
meaningful values for iϕ , it′  is computed as follows 

iit t ϕ′ = −                            (11) 

for each of the converging ballistic particles.  
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Figure 3. Perspective view of the model gas system for 
explaining the ballistic movement of the converging 
ballistic particle after an initial collision  

 
3) Defining an instant unit vector directing thermal velocity component of 

each particle in point ′r  at time it′  by presenting Equation (7) in the follow-
ing form: 

i Tvϕ = − c
i in r r  

                         (12) 

where c
ir


 is defined as:  

( ) ( ) ( )21, , ,
2i i iitt t ϕ ϕ′ ′ ′ ′ ′= + +c

ir r r u r g                     (13) 

In this, vector c
ir


 is interpreted as the location of the center of the expansion 
zone at time t or the location of a particle having zero magnitude of an arbitrary 
or thermal velocity in point ′r  at the time it′  of the divergence, which is ob-
served at time t.  

4) Defining the size of the expansion zone sp
iR , by executing scalar multipli-

cation of Equation (12) on itself resulted and averaging as:  

( )22 2
i Tvϕ = − c

ir r 

                        (14) 

and computing sp
iR  from Equation (14) as  

sp
i i TR vϕ= = − c

ir r                         (15) 

The velocity vector c
iv  of the center of the expansion zone 302 at time t is 

computed as  

( ) ( ), , , .i i itt t ϕ′ ′ ′ ′= +c
iv r u r g    

                    (16) 

The velocity v  of a particle reaching the general non-moving point r  at 
time t on any point of the control surface 302 is computed as 

( ) ( ) ( ), , , ,i iiTi tt v t t ϕ′ ′ ′ ′ ′ ′= + +iv r r n u r g      

               (17) 

which is obtained by assigning t t=  and substitution of ii t tϕ ′= −  in Equa-
tion (7) given above and rearrangement of the terms. 

Step 2: Defining the probability of free path traveling along the ballistic tra-
jectory from the starting point to the ending point 
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Step 2 includes:  
1) Defining the average magnitude of the velocity at a particular point of a 

trajectory of the ballistic particle with respect to nearby passed particles at a par-
ticular point of a trajectory.  

2) Expressing the probability of traveling along the ballistic trajectory in the 
three-dimensional configuration by Equation (18) given below:  

( ) ( )( ) ( )( )( ), exp d ,
i

t
i c relti tt tQ t v tP

′
′ = −∫ r r  

 

               (18) 

where t  is a parametric time it tt′ < ≤ , ( )tr




  is a point on the ballistic tra-
jectory at the parametric time t , ( )( )rel tv r





  is the average magnitude of the 
velocity with respect to a nearby passed particle in the trajectory point ( )tr





 , 
and ( )( )cP tr





  is the number of particles placed within a collision tube of a unit 
length in the trajectory point ( )tr





 .  
Figure 4 shows a perspective view for explaining a method for determining 

the average magnitude of the instantaneous velocity of the ballistic particle with 
respect to a nearby passed particle in a three-dimensional configuration. For 
clarity, the observer’s Cartesian coordinate system 100 is oriented, so y-axis is 
along the negative direction of the applied acceleration field, 401, which provides, 
for each particle, acceleration g . Here, at time t , particle P1 having a velocity 
( )1 , ,i tt′ ′v r 

  and originated from a collision in point A, passes in point B, which 
is positioned on ballistic trajectory 402, particle P2 having a velocity ( )( )2 tv r





 .  
Following sub-steps calculate the average magnitude of the velocity  

( )( )rel tv r




  of the ballistic particle with respect to nearby passed particles at a 
particular point of a trajectory B at a specified time t :  

1) by defining an instant magnitude of the velocity of the converging ballistic 
particle in the trajectory point with respect to nearby particles in the trajectory 
point r



  at time t  as 

( )( ) ( ) ( )( )1 2, , ,itt t t′ ′= −rlv r v r v r
 

 

   

                   (19) 

 

 
Figure 4. Perspective view for explaining a method of defining 
the magnitude of the instant velocity of the ballistic particle 
with respect to a nearby passed particle. 
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which is formed by connecting the end of the instant velocity vector ( )2 ,tv r





  
with any point S on spherical surface 403 of radius ( )( )Tv tr





 , where  

( ) ( ) ( ) ( )1 1, , , , ,i iT i it tt v t t t′ ′ ′ ′ ′ ′ ′= + + −v r r n u r g      

             (20) 

where 1n  is a unit vector having the point of origin ′r , ( ),iTv t′ ′r  and 
( ),it′ ′u r 

 are thermal velocity and mass flow velocity components in the rest 
frame of the model gas in point ′r  at time it′ , which are acquired by particle 
P1 because of a collision in this point, and where  

( )( ) ( )( ) ( )( )2 ,Tvt t t= +iv r r n u r  

 

 

 





                 (21) 

where ( )( )Tv tr




  and ( )( )tu r




  are thermal velocity and mass flow velocity 
components in the rest frame of the model gas in point r



  at time t , which are 
acquired by particle P2 because of a collision in this point, and  

2) by averaging the instant magnitude of the velocity overall directions of the 
thermal velocity component of one of the nearby particles in the trajectory point 
r


  at time t . This is done by integrating the instant magnitude of the relative 
velocity of Equation (19) over the angle of ϑ  from 0 to π  and ϕ , which is 
the angle of rotation around axis OP from 0 to 2π , and by normalizing by the 
solid angle of 4π , which results in: 

( )( )
( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )

2 2

0

1 2 cos sin d ,
2

rel

T T

v

v

t

t t t tv ϑ ϑ ϑ
π  = + − ∫





   

  



 

 



 

r r

r

v r r r v r
(22) 

where  

( )( ) ( ) ( )( )1 , , .itt t t′ ′= −rv r v r u r   







 



                 (23) 

Note that, typically, the magnitude of the relative mass flow velocity or the 
mass flow velocity component of the passing particle P1 with respect to nearby 
passed particle P2 is insignificant compared to the magnitude of the thermal ve-
locity of either passing particle P1 or nearby passed particle P2 or of both.  

The average magnitude of the velocity of the traveling particle with respect to 
a nearby passed particle is calculated from Equation (24) given below, which is 
obtained by substitution of ( ),T iv t′ ′≅rv r 

 in Equation (22) and executing the 
integration of the resulted equation:  

( )( )

( ) ( ) ( ) ( )( )( ) ( ) ( )( ){ }3 31 , , ,
6 , ,

i

rel

iT
Ti

T T T
T

v

v t v v t v

t

t t
v t v t

′ ′ ′ ′= + − −
′ ′



 





 

 









 

r

r r r r
r r

 (24) 

where ( )( )rel tv r




  is the average magnitude of the velocity with respect to a 
nearby passed particle in the trajectory point, ( ),iTv t′ ′r  is the magnitude of the 
thermal velocity in the starting point of the ballistic trajectory, and ( )( )Tv tr





  is 
the thermal velocity of a nearby passed particle in the trajectory point.  

Also, typically, the magnitudes of the thermal velocity of nearby particles are 
approximately identical. For non-relativistic particles, the average magnitude of 
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the velocity with respect to each particle moving in an arbitrary direction is cal-
culated from Equation (25) given below, which is obtained by substitution of 

( )( ) ( ),iT T Tv vt v t′ ′= =r r



  in Equation (24):  

4
3

.rel Tv v=                           (25) 

Analogously, for relativistic particles, the average magnitude of the velocity 
with respect to each particle moving in an arbitrary direction is calculated from 
Equation (25) given below:  

( ) ( )
( )

( )
2 2 2

2 20

2 2cos 1 cos
sin d

2 1 cos
TT

rel
T

v cvv
v c

ϑ ϑ
ϑ ϑ

ϑ
π  − − − =

−∫       (26) 

where c is the speed of light. For 1Tv
c
 , integrating Equation (26) will yield 

Equation (25). For 1Tv
c
≅ , integrating Equation (26) will yield:  

.relv c≅                            (27) 

Step 3: Defining the net rate of particle efflux per unit volume from a point 
source positioned in a point of the initial collisions and moving with the mass 
flow velocity of the model gas in that point.  

Step 3 includes the following sub-steps:  
1) Defining the particle flux ′rJ

N  along the ballistic trajectory in a point of the 
space r  surrounding the point of the initial collision, the step that includes 
representing ′rJ

N  by applying Equation (28) as given below:  

( ) ( ) ( )1 , , , , , ,
2 iii in t Q t t t t′ ′ ′ ′ ′ ′=rJ r v r r



   N              (28) 

where v  is defined by Equation (17), iQ  is a survival probability defined by 
Equation (18), and ( ),in t′ ′r  is particle density at a specific point ′r  at time 

it′ .  
2) Representing, in a coordinate system associated with the point of origin c

ir


 
that moves with velocity c

iv , the vector field of the particle flux ′rJ
N  through 

the in the control surface 302 of Figure 3 in the following form:  

( ) ( ) ( ) ( ) ( ) ( )1 1, , , , , , , ,
2

.
2i i i i ii i T in t Q t t t t n t Q t t v t ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= − = 

c
CS i iJ r v r r v r r n


       N  (29) 

3) Applying and executing the divergence operator ′ ⋅∇  to the vector field of 
Equation (29) followed by shrinking the volume of the auxiliary control volume 
to infinitely small volume, i.e., ′→r r  , which, in formula form, is expressed as:  

( ) { } ( ) ( ) ( ){ }1, , ,
2

,,V i Ti i i iZ t n t Q t t v t
′→′→

 ′ ′ ′ ′ ′ ′ ′ ′ ′ = ⋅ = ⋅   CS i r rr r
r J r r n

 

 



   

∇ ∇N  (30) 

where 

,
x y z
∂ ∂ ∂′ = + +
′ ′ ′∂ ∂ ∂

i j k
  

∇                      (31) 
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and includes representing the particle flux production rate, or the net rate of 
particle efflux per unit volume, or the rate of collisions per unit volume 

( ),iVZ t′ ′r , in a point of the initial collision moving with the mass flow velocity 
( ),it′ ′u r  at time it′  by following Equation (32) given below: 

( ) ( ) ( ) ( )1, , , , ,
2 i ci iV iZ t n t P t t′ ′ ′ ′ ′ ′ ′ ′= relr r r v r                 (32) 

where ( ),in t′ ′r  is particle density, ( ),icP t′ ′r  is the number of particles placed 
within a collision tube of a unit length in the corresponding point of the initial 
collisions at the time of the initial collision, and ( ),it′ ′relv r  is the average mag-
nitude of the velocity with respect to a nearby passed particle in the correspond-
ing point of initial collisions at the time of the initial collision. The above is ob-
tained upon acknowledgment that the control volume 305, which is confined by 
inflated control surface 302, is isolated (see Figure 3), and then the total particle 
efflux through the surface 302 at time t should be equal to the total particle efflux 
from the point at ′r  at time it′  through the surface 303 closely surrounding 
point ′r . One should recognize that, after a collision in point ′r  at time it′ , 
the particle may move in a random direction because of the arbitrary nature of 
the unit vector in , thus making an expansion zone around the point source in 
point ′r  at time it′ , which is shown as 302.  

Step 4: Defining property flux in a given non-moving point at a given time 
from one of the point sources of the model gas. 

Step 4 includes representing the property vector flux Ψ
′→r rJ  



 originated from 
the point source of the initial collisions in point ′r  at time it′ , which moves in 
the space of the model gas with a mass-flow velocity ( ),it′ ′u r 

, and being de-
tected by a point sink positioned in a being at the rest point r  at the given time 
t: 

( ) ( ) ( ) ( )
( ) ( )2

, , ,1 1, , , , , , d .
4 ,i V

i
i

T
i i

i

t t
t Q t t Z t t t V

v t
Ψ
′→

′ ′
′ ′ ′ ′ ′ ′=

′ ′π −
r r inc

i

v r r
J r r r r

rr r
 

  



   



 

Ψ  (33) 

Step 5: Defining the rate of the property vector flux Ψ
→FS rJ 



 in point r  at the 
given time t, which is originated from initial collisions within entire space occu-
pied by the model gas. 

Step 5 includes applying Equation (34) given below, which is obtained by in-
tegrating Equation (33) over the volume of the model gas system:  

( ) ( ) ( )
( ) ( )2 

, , ,1 1 , , , , , d .
4 ,

i
iV i

iT
ii V

t t
Q t t Z t t t V

v t
Ψ

→

′ ′
′ ′ ′ ′ ′ ′=

′ ′π −
∫∫∫FS r inc

i

v r r
J r r r

rr r


  



  



 

Ψ  (34) 

here point r  is excluded from integration in the equation above because we are 
interested in calculating the total rate of the property flux in the point sink at r , 
which is originated from the surrounding point sources of the initial collisions at 
′r .  
Step 6: Defining the net rate of property influx per unit volume _FSΨ

inB  
formed by the flow of ballistic particles and converging from the gas space in the 
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general non-moving point at the given time. 
Step 6 further includes a step of representing _FSΨ

inB  by applying Equation 
(35) given below: 

( )

( ) ( ) ( )
( ) ( )

_FS

2 

,

, , ,1 1 , , , , , d .
4 ,i VV

T

i
i i i

i

t

t t
Q t t Z t t t V

v t

Ψ

′ ′
′ ′ ′ ′ ′ ′= − ⋅

′ ′π −
∫∫∫

in

inc
i

B r

v r r
r r r

rr r



  

  



 

∇ Ψ
 (35) 

From the equation above, one can conclude that the net rate of property influx 
in the general non-moving point r  at the given time t is resulted from the im-
pact of the flow of ballistic particles converging from the gas space. The equation 
above calculates the impact in point r  at the given time t from all initial colli-
sions of converging ballistic particles having trajectories allowing them to target 
point r  at the given time t, the initial collisions taking place during all preced-
ing dynamic history of the system preceding the given time, i.e. it t′ < .  

2.4. Defining a Net Rate of Total Property Efflux Per Unit Volume  
from the General Non-Moving Point at the Given Time 

To define the net rate of property efflux per unit volume into surroundings from 
the general non-moving point r  at the given time, t, the linear dimensions of 
the main control volume surrounding point r  are selected to be sufficiently 
small for preventing two and more consecutive collisions of the same particle 
within the main control volume. We anticipate that the net rate of property ef-
flux per unit volume is formed by diverging particles. Each of the diverging par-
ticles is selected from all available particles by the ballistic trajectory having the 
starting point in the given non-moving point at the given time. The table of the 
model parameters associated with defining the net rate of total property efflux 
per unit volume is presented in Table 2.  

Figure 5 is a schematic shown to illustrate a method for analytical repre-
sentation of the net rate of property efflux from a non-moving point in 
three-dimensional space occupied by the model gas. For clarity, the observer’s 
Cartesian coordinate system 100 is oriented, so the y-axis is along the negative 
direction of the applied acceleration field 504. In Figure 5, particle P1 in point A, 
which is indicated by the position vector r  (501) at the given time t, diverges 
from the point source in this point and, in point B, which is indicated by the po-
sition vector ′r  (502) at the time at′ , has velocity +v  while crossing control 
surface 503 enclosing the point source in point A. We assume that property 

( ), , ,at t′ ′r r 

Ψ  was initially acquired by the particle at the moment of the initial 
collision in point r  at time t. Specifically, in the point source in point r  at 
time t (point A), each of the diverging particles obtains the thermal velocity of 
the magnitude of Tv  and mass flow velocity u  (not shown).  

We define the net rate of property efflux from the general non-moving point 
r  at the given time t by these four steps: 

Step 1: Identifying a trajectory and trajectory characteristics, for each particle 
diverging from the general non-moving point at the given time.  
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Figure 5. Perspective view of the model gas 
system for explaining the ballistic movement of 
the diverging particle after a collision. 

 
Table 2. List of the model parameters associated with defining the net rate of total 
property efflux per unit volume. 

Parameters Short description 

t given time 

r  position of the starting point of a ballistic trajectory of the diverging particle 

′r  position of the ending point of a ballistic trajectory of the diverging particle 

at′  time of positioning the ending point of the diverging particle 

( ),n t r  particle density in the starting point r  at the given time t 

( ), tu r   mass flow velocity in point r  at time t 

( ),Tv tr  the average magnitude of the thermal velocity of a diverging particle in point r  
at time t 

( ), , at t+
′v r 

 the velocity vector of the diverging particle at the time of positioning in point ′r  

( ), , ttc
ar r 

  the position of a virtual ballistic particle at time t , which has zero magnitude of 
thermal velocity in the starting point r  at the time of initial collision t 

( ), , ttc
av r 

  the velocity vector of the virtual ballistic particle at time t  

( ),aQ t t+
′  

the probability of free path traveling along the ballistic trajectory starting at time t 
and ending at time at′  

( ), , ,at t′ ′r r 

Ψ  
property content carried by the diverging particle at the time at′  of crossing in 

point ′r  enclosing control surface 503 

 
Step 1 includes: 
1) Formulating position vector ′r



  (506) of the particle on trajectory 505 and 
velocity vector ′v



  (not shown) at time t  by applying Equations (36) and (37), 
respectively, given below:  

( ) ( ) ( ) ( ), , , , , ,Ttt v t tt tt+′ ′= = − + c
c ar r r r n r r     

  



           (36) 

and 

( ) ( ) ( ) ( ), , , , , ,Tt v t tt t t+ + +′ ′= = + c
c av v r r n v r     

  



            (37) 

where +cn  is a unit vector with the initial point of origin r  at time t and 
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at tt′ ≥ ≥ . In Equations (36) and (37) above, ( ), , ttc
ar r 

  and ( ), , ttc
av r 

  are de-
fined by an appropriate law of motion.  

Specifically, when Newton’s Law of Motion governs the model gas system, 
( ), , ttc

ar r 

  and ( ), , ttc
av r 

  are defined by Equations (38) and (39), respectively, 
given below:  

( ) ( )( ) ( )21, , ,
2

t t t tt t t= + − + −c
ar r r u r g     

              (38) 

and 

( ) ( ) ( ), , , .t t tt t= + −c
av r u r g    

                   (39) 

2) Determining the time needed, for each particle diverging from a 
non-moving point r  at the given time t to cross a control surface enclosing 
point r  in point ′r  of the control surface. It can be done by solving Equation 
(36) in which at t′= . Specifically, when Newton’s Laws of Motion govern the 
motion of the particles, then it can be done by resolving the equation of projec-
tile motion, Equation (40) given below, with respect to the ballistic traveling 
time ϕ+  

( ) ( )T
21, ,

2
v t t ϕ ϕ+ + +′ = + + +  cr r r n u r g                   (40) 

which is obtained by assigning at t′=  and substitution of at tϕ+ ′= −  in Equa-
tion (36) and rearrangement of the terms. Traveling time ϕ+  is needed to indi-
cate a time at′  at which the departing particle has reached a point ′r  on con-
trol surface 503 enclosing point r .  

3) Defining an instant unit vector directing thermal velocity component along 
the diverging ballistic trajectory includes:  

presenting Equation (40) in the following form:  

,Tvϕ+ + ′= − c
c an r r  

                   (41) 

where +cn  is a unit vector and c
ar


 (not shown) is the location of a virtual bal-
listic particle leaving point r  at time t, which would have zero magnitude of 
the thermal velocity and is observed at time at′ . In a case, where a model gas 
system is governed by Newton’s Laws of Motion, c

ar


 is expressed as:  

( ) 21,
2

t ϕ ϕ++= + +c
ar r u r g                        (42) 

and deriving +cn  from Equation (41), which is given as  

,+

′ −
=

′ −

c
a

c c
a

r r
n

r r

 



 

                         (43) 

where +cn  is a unit vector of origin c
ar


 at time at′ , directing the vector of the 
thermal velocity component and where at′  is the time of positioning in point 
′r , which is on the control surface 503.  
4) Defining the velocity vector +v , (507) of each particle at the moment of 

crossing the control surface in point ′r  includes, where a model gas system is 
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governed by Newton’s Laws of Motion, representing +v  by applying Equation 
(44) as given below: 

( ) ( ) ( ), , , , , ,a Tt t v t t ϕ+ + +′ ′ = + +cv r r r n u r g       

             (44) 

which is obtained by assigning at t′=  and substitution of a tt ϕ+′ − =  in Equa-
tion (37). 

Step 2: Defining the probability of traveling along the ballistic trajectory from 
the general non-moving point r  at time t to one of the points in space sur-
rounding the general non-moving point.  

Step 2 includes representing the probability ( ),aQ t t+ ′  by applying Equation 
(45) given below:  

( ) ( ) ( )( ) ( )( )( ), 0, exp d ,at
i c reltaQ t t Q P t t tvϕ

′

+ + +′ ′ ′= = −∫ r r


 







         (45) 

where a tt ϕ+′ = +  is the time of the particle positioning in point ′r , ( )( )cP t′r




  
is the number of particles placed within a collision tube of a unit length in the 
trajectory point ( )t′r





 , ( )( )relv t′r




  is an average magnitude of the velocity with 
respect to a nearby passed particle in the trajectory point ( )t′r





 .  
Step 3: Defining the vector/tensor field of property flux rJ Ψ  along with one 

of the ballistic trajectories of a diverging particle in point ′r .  
Step 3 includes representing the property vector flux rJ Ψ  by applying Equa-

tion (46) as given below: 

( ) ( ) ( ) ( )1 , , , , , , , , .
2 a a an t Q t t t t t t+ +′ ′ ′ ′ ′=rJ r v r r r r     Ψ Ψ           (46) 

Step 4: Defining the net rate of property efflux per unit volume _FS
outBΨ  from 

the general non-moving point r  at the given time t.  
Step 4 includes representing _FS

outBΨ  by applying Equation (47) as given be-
low:  

( ) ( ) ( ) ( ) ( ){ }_FS 1, , , , , , , , ,,
2 a a ar t n t Q t t t t t t+ + ′→

′ ′ ′ ′ ′ = ⋅  out r r
B r v r r r r

 

     Ψ ∇ Ψ   (47) 

which is obtained by executing the divergence operator ⋅∇  to the vector field 
of Equation (46) and by shrinking the volume of control volume 508 confined by 
the control surface 503 to an infinitely small volume, i.e., ′ →r r  , which also 
leads to the limit →c

ar r 

. 

2.5. Analytical Representation of a General Integro-Differential  
form of Property Balance Equation in the Three-Dimensional  
Model Gas System 

The integro-differential form of property balance equation is formulated by Eq-
uation (48) given below, which is obtained by substitution of Equations (35) and 
(47) in Equation (5):  

( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( )
( ) ( )2

1, , , , , , , , , ,
2

, , ,1 1 , , , ,
4 ,

,, di VV

a a a

i
i i i

iT

n t r t r n t Q t t t t t t
t

t t
Q t t Z t t t V

v t

+ + ′→

∂ ′ ′ ′ ′ ′ + ⋅    ∂
′ ′

′ ′ ′ ′ ′ ′= − ⋅
′ ′π −

∫∫∫

r r

inc
i

r v r r r r

v r r
r r r

rr r

 

      

  

  



 

Ψ ∇ Ψ

∇ Ψ
(48) 

https://doi.org/10.4236/jamp.2020.86084


N. Kislov 
 

 

DOI: 10.4236/jamp.2020.86084 1100 Journal of Applied Mathematics and Physics 
 

here point r  is not included in integration for converging ballistic particles. It 
implies that any singularity in the right-hand of the equation above is excluded, 
so Equation (48) defines Ψ  at 0t ≥  as an implicit function of r  on 3 , i.e. 

3∈r  .  
The analytical representation of the general integro-differential form of prop-

erty balance equation shown by Equation (48) is generally valid for any homo-
geneous fluid system with any configuration of the external field of force.  

Remark that the integro-differential property balance equation needs to be 
formed for each unknown property/variable so that the number of equations in a 
system of balance equations is sufficient to determine each of the unknown 
properties characterizing the model gas flow. In the following, we provide gen-
eral governing integro-differential forms of mass balance, momentum balance, 
and energy balance equations.  

In continuation of the discussion at the end of Section 2.2, we would like to 
highlight that the equation above is a general symbolic representation of the rule 
that shall be obeyed at any given time t in any given point r  of space occupied 
by presumably chaotically moving particles experiencing random collisions. Eq-
uation (48) also shows that the balance at time t in any given point r  is formed 
by the exhaustive combination of converging ballistic particles from the sur-
rounding, which can target with a certain probability the given point in space r  
at the given time t. The converging in point r  at time t ballistic particles are 
originated from preceding collisions at times it t′ <  (past). Whereas the di-
verging ballistic particles originated from collisions at time t (present) transport 
the balanced property/information into surrounding toward the future at t′ > .  

2.5.1. Analytical Representation of a General Integro-Differential Form  
of Mass Balance Equation in the Three-Dimensional Model Gas  
System 

To formulate a general integro-differential form of mass balance equation in a 
given non-moving point of space occupied by the model at a given time, we will 
modify Equation (48) by assigning: 

1.= =inΨ Ψ                           (49) 

Then, we obtain the following general integro-differential form of the mass 
balance equation 

( ) ( ) ( ) ( ){ }

( ) ( ) ( )
( )2

1, , , , , ,
2

, , ,1 1
4

., , d
,i VV

a a

i
i i

iT

n t r n t Q t t t t
t

t t
Q t t Z t V

v t

+ + ′→

∂ ′ ′ ′ + ⋅    ∂
′ ′

′ ′ ′ ′= − ⋅
′ ′π −

∫∫∫

r r

c
i

r v r r

v r r
r

rr r

 

   

  





 

∇

∇
        (50) 

2.5.2. Analytical Representation of a General Integro-Differential Form  
of Momentum Balance Equation in the Three-Dimensional Model  
Gas System 

To formulate a general integro-differential form of momentum balance equation 
in a given non-moving point of space occupied by the model at a given time, we 
will modify Equation (48) by assigning: 
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( ) ( ), , , , , ,a at t t t+′ ′ ′ ′=r r v r r    

Ψ                    (51) 

in the left-hand of the equation and 

( ) ( ), , , , , ,i it t t t′ ′ ′ ′=in r r v r r    

Ψ                    (52) 

in the right-hand of the equation. Then we obtain: 

( ) ( )
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r r
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∇

 (53) 

In the equation above, we also introduce a term of the pressure force exerted 
on its surroundings in point r  at time t, which may appear because of a 
non-uniform pressure applied to a bounded system. 

2.5.3. Analytical Representation of a General Integro-Differential Form  
of Energy Balance Equation in the Three-Dimensional Model Gas  
System 

To formulate a general integro-differential form of energy balance equation in a 
given non-moving point of space occupied by the model at a given time, we will 
modify Equation (48) by assigning: 

( ) ( ) ( )1, , , , , , , , ,
2a a at t t t t t+ +′ ′ ′ ′ ′ ′= ⋅r r v r r v r r       

Ψ            (54) 

in the left-hand of the equation and 

( ) ( ) ( )1, , , , , , , , ,
2i i it t t t t t′ ′ ′ ′ ′ ′= ⋅in r r v r r v r r       

Ψ             (55) 

in the right-hand of the equation. Then we obtain: 
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∇

∇
(56) 

In the second left-term of the equation above, we also introduced a term of the 
pressure force work on its surroundings in point r  at time t, which may appear 
because of a non-uniform pressure applied to the system. 

3. Integro-Differential Forms of Mass and Momentum  
Balance Equations in Collision-Dominated Flow Regime 

We have recognized that, in the majority of real conditions on Earth and 
near-Earth space, first, the acceleration field g  applied to each of the model 
gas particles is approximately a constant, namely:  

;constant=g                             (57) 

second, for each of the model gas particles, the average magnitude of the thermal 
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velocity component, Tv , is much higher than the magnitude of a mass-flow ve-
locity component u , namely:  

;Tvu                           (58) 

third, in the collision-dominated flow regime, the magnitude of velocity gained 
or lost because of interaction with the acceleration field during the ballistic trav-
eling time 0iϕ  is insignificant in comparison with the thermal velocity compo-
nent Tv , namely:  

0 ;i Tvϕg                          (59) 

fourth, in the collision-dominated flow regime, the relative change of any prop-
erty value or any parameter characterizing the model gas Σ  is insignificant 

during the period between collisions 1

cP relv
 in a given point of the model gas, 

which is expressed: 

d Σ
1 d 1

Σc

t
P relv

                       (60) 

and fifth, in the collision-dominated flow regime, the relative change of any 
property value or any parameter characterizing the model gas is insignificant on 

the length scale of the average distance between the model gas particles 1

cP
, 

which is expressed: 

Σ1 1
ΣcP


∇
                       (61) 

We also note here that since point r  is excluded from integration in the 
domain of integration Ω in which ′ ≠r r  , the operation of differentiation re-
garding a parameter r  is interchangeable with the operation of integration 
over some other variable ′r . Also, these functions or approximations for func-
tions involving in calculations according to Equations (50), (53), and (56) are 
formulated:  

1) Approximating ( ), , ,at t+ ′ ′v r r  

 as 

( ) ( ) ( ) ( )0 0 00, , , , , , , , ,Ta at t t t v t t ϕ+ + + +′ ′ ′ ′≅ = + +v r r v r r r n u r g          

     (62) 

where 0+n  is the unit vector of arbitrary direction from the point r , which is 
approximated from +n  as  

0 ,+ +

′ −
≅ =

′ −
r rn n
r r

 

 

 

                   (63) 

and 0ϕ+  is the ballistic traveling time, which is approximated from ϕ+  as  

( )0 .
,Tv t

ϕ ϕ+ +

′ −
≅ =

r r
r

 



                  (64) 

2) Approximating ( ),aQ t t+ ′  as 

( ) ( ) ( )( ) ( )( )( )0
0 0, , exp d ,at

a cta relQ t t Q t t v t tP t
′

+ +′ ′ ′ ′≅ = −∫ r r


 







       (65) 
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where 0at′  is the time of the particle positioning in point ′r , which is approx-
imated from at′  as  

0 0aat t t ϕ+′ ′≅ = +                      (66) 

3) For ′ →r r  , executing ( )0 0 ,aQ t t+ ′∇  as 
4) Approximating ( ), , ,it t′ ′v r r  

 as 

( ) ( ) ( ) ( )0 0 00 0, , , ,, , , , ,T i ii iit t t t v t t ϕ′ ′ ′ ′ ′ ′ ′ ′≅ = + +iv r r v r r r n u r g          

     (67) 

where 0in  is the unit vector of arbitrary direction from the point ′r , which is 
approximated from in  as  

0
′−

≅ =
′−i i

r rn n
r r

 

 

 

                     (68) 

and 0iϕ  is the ballistic traveling time, which is approximated from iϕ  as 

( )0 .
,i

i i
Tv t

ϕ ϕ
′−

≅ =
′ ′

r r
r

 



                    (69) 

5) Approximating ( ),i iQ t t′  as 

( ) ( ) ( )( ) ( )( )( )
0

0 0, , exp d ,
i

t
i i c rei ti lQ t t Q t t P vt t t

′
′ ′≅ = −∫ r r

 



 



        (70) 

where 0it′  is the time of the particle positioning in point ′r , which is approx-
imated from it′  as 

0 0 .i iit t t ϕ′ ′≅ = −                       (71) 

6) Approximating ( )0 0,i iQ t t′∇  as 

( ) ( ) ( ) ( ) ( )0
0

00 0, , , , .
,i i ci i

iT

Q t t Q t t P t t
v t

′ ′≅ −
′ ′
i

rel
n

r v r
r



 



∇          (72) 

7) Approximating c
ir


 as 

.′≅c
ir r 

                           (73) 

8) Representing ( ), ′G r r  , a first vector derivative of the Green function with 
no boundary conditions, as 

( ) 3

1, ,
4

′−′ =
π ′−

r rG r r
r r

 

 

 

                     (74) 

which has the following property: 

( ) ( ), .δ′ ′⋅ = −G r r r r   

∇                      (75) 

Considering that governing equations require satisfaction of the balance of 
any model gas property at any time, these analytical representations of approxi-
mations for mass balance, momentum balance, and energy balance are provided.  

3.1. Analytical Representation of an Integro-Differential Form of  
the Mass Balance Equation in the Collision-Dominated Flow  
Regime 

Here the mass balance equation is formed by considering a unique combination 
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of ballistic particles converging from the entire model gas system in a given 
point at a given time and the diverging ballistic particles from the given point at 
the given time. Besides, each of the converging ballistic particles can target point 
r  at given time t and originates from a preceding collision within the model gas 
system at a time earlier than time t. Such a combination of converging and di-
verging ballistic particles capable of targeting or escaping point r  at given time 
t is treated as an exhaustive combination. Therefore, from a physical viewpoint, 
the solution ( ),tu r 

 is unique.  
To formulate an integro-differential form of mass balance equation in the col-

lision-dominated flow regime, which applies to a given non-moving point of 
space occupied by the model at a given time, we will modify Equation (50) by 
following steps of: 

1) substituting approximations from Equation (62) to Equation (73) in Equa-
tion (50) and executing vector differentiation;  

2) executing limit ′ →r r   in the second left-hand term of the resulting inte-
gro-differential mass balance equation;  

3) remembering that point r  is not included in integration for converging 
ballistic particle; and  

4) neglecting terms containing 1

cP relv
.  

Upon executing the above, Equation (50) is reduced to:  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
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+ + ⋅   ∂
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′ ′
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∫∫∫

∫∫∫
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,i i
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Q t t V
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ϕ′ ′ ′⋅
′ ′

G r r g
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(76) 

where ( ),VZ t r  the rate of collisions per unit volume in the given non-moving 
point r  at time t, which is expressed as 

( ) ( ) ( ) ( )1, , , , .
2V cZ t n t P t t= relr r r v r                   (77) 

Equation (76) defines function u  as a function of r  on 3 , i.e. 3∈r  , 
at 0t ≥ . 

3.2. Analytical Representation of an Integro-Differential Form of  
the Momentum Balance Equation in the Collision-Dominated  
Flow Regime 

Here we again should note that the momentum balance equation is formed by 
considering a unique combination of ballistic particles converging from the en-
tire model gas system in a given point at a given time and the diverging ballistic 
particles from the given point at the given time. Besides, each of the converging 
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ballistic particles can target point r  at given time t and originates from a pre-
ceding collision within the model gas system at a time earlier than time t. Such a 
combination of converging and diverging ballistic particles capable of targeting 
or escaping point r  at given time t is treated as an exhaustive combination. 
Therefore, from a physical viewpoint, the solution ( ),tu r 

 is unique. 
To formulate an integro-differential form of momentum balance equation in a 

given non-moving point of space occupied by the model at a given time, we will 
modify Equation (53) as follows: 

1) assigning 

( ) ( ) ( )0 0, , , , ,a Tt t v t t ϕ+ + +′ ′ ≅ + +v r r r n u r g       

             (78) 

and 

( ) ( ) ( )0 0 0 0, , , ;, ,T i i iit t v t t ϕ′ ′ ′ ′ ′ ′≅ + +iv r r r n u r g       

            (79) 

2) substituting approximations for functions involving in Equation (48) by 
equations from Equation (62) to Equation (73) and executing vector differentia-
tion;  

3) executing limit ′ →r r   in the second left-hand term of the resulting inte-
gro-differential momentum balance equation;  

4) remembering that point r  is not included in integration for converging 
ballistic particle; and  

5) neglecting terms containing 1

cP relv
.  

Upon executing the above, Equation (56) is reduced to:  

[ ] ( ) [ ]
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∫∫∫

∫∫∫

∫∫∫
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v G v u
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v g
r r

v G u u

v G ug gu

    



 



 

 

   

∇ ∇ ∇

0 .di Vϕ  ′   gg

     (80) 

It implies that Equation (80) defines u  at 0t ≥  as an implicit function of 
r  on 3 , i.e. 3∈r  .  

4. Validation Tests 

The following validation tests are aimed to demonstrate the feasibility of the 
proposed method.  

4.1. Determining the Total Rate of Collisions Per Unit Area on a  
Surface Being in Contact with the Gas 

Figure 6 is a perspective view for explaining a method for determining the total 
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rate of collisions per unit area on a surface being in contact with the gas. In a 
system with no gravitational force, the ballistic particles have straight-line tra-
jectories. Here we limit further our consideration to an incompressible model 
gas at the uniform temperature in a steady-state condition. In the semi-sphere 
filled with the model gas over the being at rest surface sA  having a directional 
vector n , each particle having an instantaneous randomly directed vector of the 
thermal velocity of magnitude, Tv  may have the instant vector-velocity com-
ponent directing a particle toward the surface sA . In Figure 6 the particle 601 
positioned at ′r  is shown at distance y from the surface sA  in point r . The 
angle between the instant vector-velocity v  and the directional vector n  is 
labeled as θ . The ends of the directionally random vector-velocity of magnitude 

Tv  form spherical surface 602.  
Adopting Equation (34) to the conditions above and assigning 1=inΨ , the 

total rate of collisions per unit area on the surface sA  is given as:  

( ) 02 ,1 1 , d
4V iV

Z Z Q V′ ′= − ⋅
π ′−
∫∫∫ ir r n n

r r
   

 

            (81) 

where  

0 ,
′−

=
′−i

r rn
r r

 



 

                        (82) 

( )0
4, exp ,
3i cQ P ′ ′= − − 

 
r r r r   

                (83) 

and VZ  is the rate of collisions per unit volume, which, upon substitution of 
Equation (25) in Equation (77) is expressed as  

2
3

,V c TZ nP v=                         (84) 

where n is particle density, Tv  is the magnitude of the thermal velocity, and 

cP  is the number of particles placed within a collision tube of a unit length.  
Finally, using the geometry illustrated in Figure 6, considering that  

( )cosyρ θ′ ′− = =r r 

                     (85) 

and  
 

 
Figure 6. The perspective view of the geometry and 
coordinate system for determining the total rate of 
collisions per unit area and the pressure exerted on 
the surface from the gas volume. 
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( )0 cos θ⋅ = −in n 

                     (86) 

and substituting Equations (82), (83), (84), (85), and (86) in Equation (81), in 
which ( )2d sin d d dV ρ θ θ ϕ ρ′ ′ ′= , we obtain: 

( ) ( )2
2

0 0 0

2 1 4exp sin d d d .
3 4 3 cos 4

c T
c T

P y vZ nP v y nθ θ ϕ
θ

π
π ∞  

= − =  π  
∫ ∫ ∫      (87) 

That the result of derivation above according to our method applied to the 
model gas is identical to the result of the derivation of the rate of collisions per 
unit area of an ideal gas, which one can find in any course of the kinetic theory 
of gases, supports the Ballistic Model.  

4.2. Determining the Pressure Exerted on the Surface from the  
Entire Gas Volume Being in Contact with the Surface 

Referring to the previous section and Figure 6 we recognize that each particle of 
the model gas carries the momentum 

0Tmv= ip n                          (88) 

and the momentum component delivered by the particle to the surface sA  is  

0 ,Tmv∆ = ⋅y ip n n                        (89) 

where m is mass of the particle/molecule. 
If the particle undergoes an elastic collision with the surface, in such a col-

lision, the momentum passed on the surface is steady-state. Adopting Equa-
tion (34) to the conditions listed initially referring to Figure 7 and assigning

2= ∆in ypΨ , the pressure P exerted on the surface sA  is given as:  

( )( )( )0 0 02 .2 1 , d
4V T iV

P Z mv Q V′ ′⋅=
π ′

⋅
−

∫∫∫ i ir r n n n n
r r

     

 

           (90) 

Now, using the geometry illustrated in Figure 6 and substituting Equations 
(82), (83), (84), (85), and (86) in Equation (90), in which  

( )2d sin d d dV ρ θ θ ϕ ρ′ ′ ′= , we obtain: 

( ) ( ) ( )2 2

0 0 0

2
22 1 4exp cos sin d d d .

3 3 cos 3
c T

c T T
P y mnvP nP v mv yθ θ θ ϕ
θ

π π ∞  
= − =  π  

∫ ∫ ∫ (91) 

Again, that the result of derivation above according to our method, which 
considers an impact on the surface of unlimited number particles of the model 
gas (integration along y direction from zero to infinity), is identical to the result 
of the derivation of the pressure of an ideal gas according to the kinetic theory of 
gases, corroborates with the Ballistic Model.  

Besides, analyzing validation tests 4.1 and 4.2 above, one may note that the 
proposed method provides the possibility of quantifying impacts of the limited 
number of particles on the gas-solid interface. This, from the practical viewpoint, 
is important in many applications dealing with MEMS technology (capacitive 
sensing, electrostatic actuation mechanisms, a block of sensing mass in micro 
gyroscopes, accelerometers, switches, mirrors, pressure sensors and so on) [15]. 
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Figure 7. The schematic one-dimensional view of flow geometry and coordinate 
system showing model gas flow confined between two parallel plates. 

4.3. Direct Validation of the BPPBS in the Three-Dimensional  
Unlimited Incompressible Gas Space at the Uniform  
Temperature 

Recognizing that in a steady-state model incompressible gas flow at the uni-
form temperature with no gravitational force, all variables describing flow de-
pend on the position in space and are not dependent on time, so that the par-
ticle density n, the mass m, and the magnitude of the thermal velocity of the 
particle/molecule, Tv , are constant. In the model gas system being at rest and 
characterized by the above conditions, when the applied to the model gas system 
external pressure is uniform, the mass-flow velocity, u , is expected to be zero. 
Now we may formulate the mass-balance equation by adopting Equations (76) 
as 

( )0
1 1 1, d

4V c rel V iV
T

mZ P v Z m Q V
v

′ ′=
′π −∫∫∫ r r

r r
 

 

           (92) 

and the momentum-balance equation by adopting Equations (80) as 

( ) ( )00 , , .dc rel V iV
P v Z m Q V′ ′ ′= ∫∫∫ r r G r r   

              (93) 

We need to verify these two equalities above by integration of the right-hands 
of Equations (92) and (93).  

Placing the basis of the coordinate system in point r  and transforming the 
Cartesian coordinate system into the spherical coordinate system, then, after de-
fining  

.ρ′ ′= −r r 

                        (94) 

and substituting Equations (83) and (94) in Equation (92), in which 
( )2d sin d d dV ρ θ θ ϕ ρ′ ′ ′= , we calculate the right-hand of Equations (92) as fol-

lows:  

( )2

0 0 0

0

4 1 4exp sin d d d
3 4 3

4 4exp d
3 3

.

c V c

c V c V

P Z m P

P Z m P mZ

ρ θ θ ϕ ρ

ρ ρ
∞

π π ∞  ′ ′− π  
 ′ ′= − = 
 

∫ ∫ ∫

∫
         (95) 
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Analogously, after substitution of Equations (74), (83), and (94) in Equation 
(93) and taking into account that point 0ρ′ =



 is not included into integration, 
we calculate the right-hand of Equations (93) as follows: 

( )2

0 0 0

0

4 1 4exp sin d d d
3 4 3

4 4exp d 0.
3 3

c T V c

c T V c

P v Z P

P v Z P

ρ θ θ ϕ ρ ρ ρ

ρ ρ ρ ρ

∞

∞

π π  ′ ′ ′ ′− π  
 ′ ′ ′ ′= − = 
 

∫ ∫ ∫

∫





      (96) 

here cP  is the number of particles placed within a collision tube of a unit 
length, VZ  is the rate of collisions per unit volume, which is defined by Equa-
tion (84), and ρ ρ′ ′



 is a unit vector with the point of origin at 0ρ′ =


.  
That the results of integration provided by Equations (95) and (96) are iden-

tical to the left-hands of Equations (92) and (93), respectively, evidently supports 
the validity of the BPPBS in three-dimensional infinite space.  

Note: A short communication about these two validation tests below is 
present on the website and can be accessed on [16]. This communication is not 
published nor is under publication elsewhere.  

4.4. Incompressible Model Gas Flow between Two Infinite  
Parallel Plates at the Uniform Temperature in a Case of  
Diffuse Particle Scatterings 

The velocity profile generated in the model gas due to the pressure gradient along 
the channel is analyzed by an analytical method based on the proposed model gas 
flow described above. Figure 7 shows schematically a one-dimensional model gas 
system, in which the main control volume (CV) of the unit length volume 
dV x y= ∆ ∆  is at y  within the model gas flow confined by two parallel plates 
at 0=y  and H=y . Plate 1 and Plate 2 confine across y-axis a model gas flow 
along the x-axis and surfaces 701 and 702 positioned at distance x∆  bound a 
portion of the model gas system along the x-axis. The known method of obtain-
ing analytical solutions for isothermal gaseous flow with slip boundary condi-
tions is based on the locally fully developed flow assumption and applying the 
second-order velocity slip boundary conditions (Maxwell-type assumption) in 
the following form [17]  

2

1
2

2 2 ,w f f
u uu u C C
y y

λ λ∂ ∂
− = ± −

∂ ∂
                  (97) 

where u is the gas slip velocity near the wall, wu  is the tangential velocity of the 
wall, and fλ  is the mean free path.  

The method described below uses none of the Maxwell-type assumptions.  

4.4.1. Properties and Features of the Gas-Solid Interface 
Here we assign the following additional unique properties to the model gas be-
ing in contact with a gas-solid interface revealing mixed diffuse and specular 
scattering of particles [13]: 

1) Each collision on a gas-solid interface of the model gas system, which has 
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resulted in the scattering of the diffuse particles from the gas-solid interface, is 
treated as an act of interaction involving a property transport from the gas-solid 
interface to the scattered particle.  

2) Each point of the diffuse particle scattering on the gas-solid interface is 
treated as a heterogeneous point source for each of the scattered particles.  

3) The velocity of each of the heterogeneous point sources on the gas-solid 
interface equals the velocity of the gas-solid interface of corresponding points of 
diffuse particle scattering.  

4) The point source strength of the heterogeneous point sources on the 
gas-solid interface is directly proportional to a property accommodation coeffi-
cient σ  in a corresponding point of diffuse particle. 

Note: Diffuse scattering is an act of interaction involving property transfer 
from a gas-solid interface to a scattered particle. Specular scattering does not 
involve property exchange between the gas-solid interface and a scattered par-
ticle.  

In the model gas system confined by gas-solid interfaces with the purely dif-
fuse scattering of particles, each particle initiated from the preceding diffuse 
scatterings from the interfaces delivers in the CV some property obtained from 
the location of the initial diffuse scattering (ballistic trajectory 703 from plate 2 
and ballistic trajectory 704 from plate 1 of Figure 7. Ballistic trajectories 705 and 
706 show movement of ballistic particles, which are initiated from the preceding 
collisions in the gas space, into targeting point y . Finally, ballistic trajectories 
707 and 708 show the movement of diverging ballistic particles, which are origi-
nated from the preceding collisions in space surrounding point y . The fluid 

flow, with the velocity distribution ( )yxu , is forced by both the pressure gra-

dient d
d
P
x

 and the plates’ movement with velocity 0xu  and xHu  along the 

x-direction.  

4.4.2. Direct Validation of the BPPBS in the Gas Space Confined between  
Two Parallel Plates 

Recognizing that in a steady-state model incompressible gas flow at the uniform 
temperature, all variables describing flow depend on the position in space and 
are not dependent on time so that the particle density n, the mass m and the 
magnitude of the thermal velocity of the particle/molecule, Tv , are constant. In 
the model gas system confined by the infinite parallel plates being at rest along y 
direction and characterized by the above conditions, the mass-flow velocity 
along y direction is expected to be zero. Now, considering that point y is not in-
cluded in integration, we may formulate the system of integral equations in these 
forms: 

( )
( )( ) ( )

0

1 exp d
2

exp exp

V c V c

b c c b c

H

c

Z m P Z m P y

Z P m P H y Z P m P y

′ ′= − −

+ − − + −

∫ y y
        (98) 

for mass-balance, and 
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( )
( )( ) ( )

0 0
10 exp d
2

exp exp

c V T c

b c T c

H

b c T c

P Z v m P y

Z P v m P H y Z P v m P y

+′ ′= − −

− − − + −

∫ y y n
        (99) 

for y-momentum-balance. Here cP  is the number of particles placed within a 
collision tube of a unit length, bZ  is the rate of collisions per unit area on plate 
1 or plate 2, and VZ  is the rate of collisions per unit volume, which is defined 
as  

1
2

,V c TZ nP v=                        (100) 

and 0+n  is the unit vector of arbitrary direction from the point y, which is de-
fined as 

0 .+

′−
=

′−
y yn
y y

                       (101) 

The left-hand of Equation (99) has zero value because of the average momen-
tum of the diverging particle, which is measured by the instant momentum 

0Tmv +n , is zero.  
Solving Equation (98) will cause finding that 

.
2

V
b

c

Z
Z

P
=                          (102) 

Substituting Equation (102) in Equation (99), we may verify that the mass 
and momentum balance in any point of space between plate 1 and plate 2 
along 𝑦𝑦 axis are concerved, which suggests the valididty of the BPPBS in the 
one-dimensional configuration.  

4.4.3. Analytical Derivation of the Velocity Profile Induced in the Model  
Gas Due to the Pressure Gradient along the Channel between Two  
Parallel Plates 

Step 1: Formulating an integral form of the xu -momentum balance equation  
Considering the above, we obtain the following integral form of the xu  mo-

mentum balance equation in a steady-state model gas flow [12]: 

( ) ( ) ( )

( )( ) ( )

0

0

d 1 exp d
d 2
1 1exp exp ,
2 2

H
V V c c

V c V c

PZ y m Z P m P y y
x

Z m P H y Z m P y

′ ′ ′= − + − −

+ − − + −

∫x x

xH x

u y y u

u u
   (103) 

Step 2: Obtaining a differential form matching to the corresponding integral 
form of the xu  momentum balance equation.  

Here we use the method of differentiation (twice). Each step of the differentia-
tion is followed by the step of subsequent elimination of the integral terms by 
using the original equation, which is given as: 

2

2 2

d d .
dd

V

c

Z Pm
xP y

=xu                          (104) 

Step 3: Obtaining a general solution having arbitrary coefficients. 
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Integrating twice the equation above, we obtain: 

( ) 2 ,y Ay By C= + +xu                   (105) 

where 
2 1 d d

2 d d
c c

V T

P PP PA
m Z x mnv x

= =                 (106) 

and B and C are the arbitrary coefficients.  
Step 4: Determining the values of each of the arbitrary coefficients. 
Introducing Equation (105) in Equation (103) (for a specific number of points 

(two) within the model gas system), we determine the values of each of the arbi-
trary coefficients. For certainty, we selected points 0y =  and y H=  for the 
balance establishment. 

Step 5: Solving a system of the obtained in Step 4 algebraic equations. 
We obtained the following functional relationship of fluid velocity xu  from 

other properties and geometry parameters characterizing the model gas system: 

( )0

2
c xH x

c

P u u
B AH

P H
−

= − +
+

                 (107) 

and 

[ ]2
02 1 .

2 2
xH x

c
c cc c

u uHC A P H
P P H P HP

 
= − + + + + 

+ + 
         (108) 

where Plate 1 and Plate 2 are at rest, i.e. 0 0xH xu u= = , substitution in Equation 
(105) of Equations (106), (107), and (108), in which cP H  is replaced by 1Kn− , 
will yield: 

( )
2

2
2

d 1 2 ,
dT

H P y yy Kn Kn
mnv x Kn HH

 
= − − + + + 

 
xu        (109) 

where Kn  is the Knudsen number defined as the ratio of the mean free path 
~ 1f cPλ  and the representative length scale H, i.e., fKn Hλ= . Further in-

tegration of ( )yxu  in y-direction followed by normalization with d
dT

H P
mnv x

−  

results in an expression for a non-dimensional flow rate NQ :  

21 1 2 ,
6NQ Kn Kn

Kn
 = + + 
 

                (110) 

The equation above reveals there is a minimum in the normalized mass flow 
rate (at about 0.3Kn ≅ ), which is called the Knudsen paradox in the literature 
[18]. It is explained by the fact that [w]ith increasing Knudsen number, the addi-
tional diffusive flux becomes significant and deviates from the no-slip solution. 
Beyond a critical limit ( 0.3Kn > ), the diffusive flux dominates the convective 
flux [18].  

Figure 8 compares the non-dimensional flow rates calculated by Equation 
(110) for the proposed model (Ballistic Model) and a selection of slip models 
proposed by various authors. The non-dimensional flow rate was proposed in 
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the form [19] 

( ) ( )2
1 21 6 12 12NQ C Kn C Kn Kn= π + +             (111) 

where corresponding slip coefficients 1C  and 2C  are taken from Table 6 in 
[20] The results of the linearized Boltzmann solution of [21] are plotted from 
Figure 2 of [17].  

In Figure 8, the flow rate according to Equations (110) is rescaled by 2π  
factor for the comparison purposes. 

We compared the non-dimensional flow rates calculated by Equation (110) 
for the Ballistic Model and a selection of slip models proposed by various au-
thors [21] [22] [23] [24], and [25]. The comparison shows that the discrepancy 
among various slip models, including the model presented here, is small for 

0.1Kn < . However, the significant discrepancy occurs for 0.1Kn > . Still, the 
results obtained according to our Ballistic Model are within the reasonable 
range of discrepancies of variety of the literature data (see also Table 6 in [20]).  

4.5. Incompressible Model Gas Flow at the Uniform Temperature  
in the Space between Two Being at Rest Infinite Parallel  
Plates in a Case of Mixed Diffuse and Specular Particle  
Scatterings 

Here we assume the symmetricity of the expected solution (because of the zero 
velocity of the confining plates). We also consider that the influx of xu  mo-
mentum in a given point y is formed by converging ballistic particles originated 
from initial collisions within the model gas volume and having at least the last 
previous specular scattering either from the gas-solid interface of Plate 2 (709) or 
from the gas-solid interface of Plate 1 (710). With these assumptions, we may 
obtain the following integral form of the xu  momentum balance equation in a 
steady-state model gas flow:  
 

 
Figure 8. Comparison of the non-dimensional flow rate QH 
as a function of the Knudsen number for a selection of slip 
models and the Ballistic Model. 
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( ) ( )

( ) ( ) ( )( ) ( )
( ) ( )

( ) ( )

0

0

d 1 exp d
d 2

1 exp exp exp1
2 1 1 p

,

ex

exp d

H
V c V c

c c c
c V

c

c
H

PmZ P mZ P y y
x

P H P H y P y
P mZ

P H

P y y

σ

σ

′ ′ ′= − + − −

 − − − − + − +
− − −

′ ′ ′×

∫

∫

x x

x

u y y u

u y

(112) 

where σ  is the momentum accommodation coefficient, which is the probabil-
ity, for an incident particle, to accommodate momentum from the gas-solid in-
terface and to scatter back in the model gas as a diffuse particle. Comparative 
analysis of the integral equations describing model gas flow confined between 
the parallel plates with purely diffuse scattering (see Equation (103)) and mixed 
diffuse and specular scattering (see Equation (112)) results in finding they have 
similar forms if  

( ) ( )
( ) ( ) ( ) ( )0 0

1
exp exp d ,

1 1 expxH x c c
H

c x
c

u u P P H u P y
P H

σ
σ

−
′ ′ ′= = −

− − − ∫ y y (113) 

where xHu  and 0xu  represent coefficients of Equation (103), and the 
right-hand of the equation above represents the similar coefficient in Equation 
(112). The analysis also leads to the conclusion that the velocity profile can be 
described by Equation (105), where coefficient A is expressed by Equation (106). 
Substituting Equation (113) in Equation (107), we obtain: 

.B AH= −                           (114) 

Finally, substituting ( ) ( )2
xu A y By C′ ′ ′= + +y  in Equation (113) and subs-

tituting the resulting equation in Equation (108), then executing corresponding 
integrations and algebra operations, we obtain: 

2 22 2 .C AH Kn Knσ
σ
− = − +  

                   (115) 

Remarkably, the derived tangential slip velocity coefficient C does contain the 

term being proportional to 2 σ
σ
− . Its appearance is the result of the application 

of the BM but not the result of usage of the semi-empirical Maxwell-type as-
sumptions as of Equation (97).  

Substitution in Equation (105) of Equations (106), (114), and (115) will yield: 

( )
2

2
2

d 1 2 2 .
dT

H P y yy Kn Kn
mnv x Kn HH

σ
σ

 −
= − − + + + 

 
xu        (116) 

That the tangential slip velocity coefficient C is analytically defined from the 
continuum through the slip and transition to free-molecule flow regimes gave 
us confidence that our approach is valid. Again, our method uses none of the 
Maxwell-type assumptions. Still, coefficient C contains the terms proportional to 
Kn  and 2Kn  in Equation (109) or Equation (116).  

4.6. Reducing Integro-Differential Forms of Mass and Momentum  
Balance Equations into Corresponding Differential Forms 

According to Tenenbaum and Pollard [26], to test whether an implicit function 
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defined by the relation ( ), 0f x y =  is a solution of a given differential equation; 
there is a need to show that the function does satisfy a given differential equation 
on an interval I: a x b< < . Then the relation ( ), 0f x y =  is called an implicit 
solution of the differential equation.  

Definition 3.6 [26]: A relation ( ), 0f x y =  will be called an implicit solution 
of the differential equation  

( )( ), , , , 0nF x y y y′ =                    (117) 

on an interval I: a x b< < , if  
1) it defines y as an implicit function of x on I, i.e., if there exists a function 
( )g x  defined on I such that ( )( ), 0f x g x =  for every x on I, and if  
2) ( )g x  satisfies (117), i.e., if  

( ) ( ) ( )( )( ), , , , 0nF x g x g x g x′ =                (118) 

for every x on I.  
The standard procedure in calculus to prove that an implicit function defined 

by relationship ( ), 0f x y =  (a) is a solution of a given differential equation 
( )( ), , , , 0nF x y y y′ =  (b) on an interval I: a x b< <  is the following [26]: 

“Differentiate (a) implicitly. If it yields (b), then (a) is said to be an implicit solu-
tion of (b),” if ( ),f x y  defines 𝑦𝑦 as an implicit function of x on the same in-
terval I: a x b< < .  

To reduce an equation to an ordinary differential equation, we apply the me-
thod of differentiation for integral equations (ones, twice, and so on) with sub-
sequent elimination of the terms belonging to the original equation [27]. Specif-
ically, we will use this technique for reducing vector integro-differential balance 
equations into corresponding vector differential balance equations. Here we 
need also note that the point r  should be included when we apply the operator 
of vector differentiation at this point. In the domain of integration Ω in which 
′ ≠r r 

, operation of differentiation regarding a parameter r  is interchangeable 
with the operation of the integration over some other variable ′r . Even if do-
main Γ  includes singularity point r , one can easy determine that the inte-

grals containing the term 2

1 1
4

 
 
π ′ − r r 

∇  are zeroed. The “fate” of other inte-

grals containing singularity point r  because of the Green function, ( ), ′G r r  , 
will be examined afterward.  

4.6.1. Reducing the Integro-Differential Form of Mass Balance Equation  
into a Corresponding Vector Differential Form 

Deriving a vector differential form of mass balance equation is shown: 
Step 1. Normalizing Equation (76) by cP relv , then applying differential oper-

ator ∇  to the left- and right-hands of the equation and executing procedures 
of neglecting insignificant terms, which are similar to the described in Section III. 
It leads to establishing the following equality:  
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    (119) 

Step 2. Applying divergence operator ∇⋅  to the left- and right-hands of the 
equation above and neglecting insignificant terms by the steps, which are similar 
to the described in Section III: 

[ ]
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0
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00
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0
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∇ ∇
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∇

     (120) 

Step 3. Comparing the first three right-hand terms in the equation above and 
Equation (76), we may suggest a modification of Equation (76) by introducing a 

coefficient of proportionality to the mass, 2

1

Tv
. This results in obtaining of the 

following equation: 
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     (121) 

Substituting the first three right-hand terms of Equation (120) by the 
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left-hand terms of Equation (121) and rearranging terms, we finally obtain:  

[ ] ( )

2 2

2

9 1 1 2 1 1 1 .
16 3 2 2

T T

T
c T

c T c T TT

n n
t v v

nv
n nP v n n

P v P v t nvv

   ∂
+ ⋅   ∂    
  ∂  = ⋅ ∇ + + ⋅ − ⋅    ∂    

u

u u



 

∇

∇
∇ ∇

(122) 

Rearranging terms in the equation above, we derived the following reduced 
vector-differential form of the mass balance equation: 

( ) [ ]

( )

29 1 1 2 1
16 3 2

1 12 2
2

T c T
c T c T

TT
T

T T T

n n v n nP v n
t P v P v t
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  ∂ ∂  + ⋅ = ⋅ ∇ + + ⋅    ∂ ∂    
 ∂

+ + ⋅ − 
∂  

u u

u

 



∇ ∇ ∇

∇∇
(123) 

In the collision-dominated flow regime, the relative change of any property 
value or any parameter characterizing the model gas is insignificant on the 
length scale of the average distance between the gas particles or on the time scale 
of traveling time between consecutive collisions. Therefore, for a high frequency 
of collisions quantified by c TP v  value, the terms in the right hand of the equa-
tion above can be neglected, and the equation is reduced to the well-known con-
tinuity equation for compressible fluid: 

( ) 0,n n
t
∂

+ ⋅ =
∂

u∇                     (124) 

which is identical to Equation (1). Since the vector differentiation of Equation 
(76) yields Equation (123), which eventually is reduced to Equation (1) and Eq-
uation (76) defines u  at 0t ≥  as an implicit function of r  on 3 , and then 
Equation (76) is an implicit solution of Equation (1) in the region 3∈r   oc-
cupied by the model gas.  

4.6.2. Reducing the Integro-Differential Form of the Momentum Balance  
Equation into a Corresponding Vector Differential Form 

Deriving a vector differential form of mass balance equation is shown: 
Step 1. Normalizing Equation (80) by cP relv , applying the differential opera-

tor ∇  to the left- and right-hands of the equation, and executing procedures of 
neglecting insignificant terms, which are similar to those described in Section 3. 
It leads to establishing the following equality:  
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Step 2. Applying divergence operator ∇⋅  to the left- and right-hands of the 
equation above and neglecting insignificant terms by the procedures, which is 
similar to the described in Section III:  
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Step 3. Comparing the first four right-hand terms in the equation above and 
Equation (76), we may suggest a modification of Equation (80) by introducing a 

coefficient of proportionality to the mass, 2

1

Tv
. This results in obtaining of the 

following equation: 
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Substituting the first five right-hand terms of Equation (126) by the left-hand 
terms of Equation (127) and rearranging terms, we finally obtain:  
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Considering the conservation of mass by subtracting Equation (122) multip-
lied by u  from Equation (128) and rearranging terms, the following reduced 
vector-differential form of the momentum balance equation is provided: 
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Comparing the first, the second, the third, and the fourth left-hand terms of 
Equations (2) with the first, the third, the fourth, and the fifth left-hand terms of 
Equation (129), respectively, suggests that each pair of the corresponding com-
pared terms is identical. The second left-hand term of the equation above is 
identified as a normalized self-diffusion force. Additional comparison of the 
right-hand terms of Equations (2) and (129) may suggest that stress inside the 
fluid has the following functional dependence: 
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Since the vector differentiation of Equation (80) yields Equation (129), which 
resembles Equation (2) and Equation (80) defines u  at 0t ≥  as an implicit 
function of r  on 3 , then Equation (80) is an implicit solution of Equation (2) 
in the region 3∈r   occupied by the model gas.  

5. Conclusions 

1) Modeling of fluid dynamics problems by the NAMDT is based on the rec-
ognition that each particle composing the model gas travels with a probability 
between any of two points in space occupied by the model gas while following a 
ballistic trajectory governed by a law of motion in free space. Each ballistic par-
ticle is treated as a property carrier transporting one or more of mass, momen-
tum, and energy between the points of consecutive collisions and each point in 
space occupied by the model gas is both a sink accumulating property delivered 
by converging ballistic particles from the entire model gas system and a source 
dispersing property by diverging ballistic particles.  

2) Based on the proposed model gas properties, we formulated the Ballistic 
Principle of the Property Balance in the Space occupied by the gas, application of 
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which may simplify and reduce computations in applications dealing with mod-
eling of fluid dynamics problems.  

3) Following the above principles, a general integro-differential form of the 
property balance equation is proposed. The general integro-differential form of 
the property balance is further modified to derive the integro-differential forms 
of mass balance, momentum balance, and energy balance.  

4) The following two direct tests validate the BPPBS:  
a) demonstration of the mass-balance and momentum-balance conservation 

in a given non-moving point in three-dimensional unlimited incompressible gas 
space with a lack of gravitational force at the uniform temperature by analytical 
verification of the balance between the rate of mass and momentum influx and 
the rate of mass and momentum efflux, respectively, in the given point of the gas 
space;  

b) demonstration of the mass-balance and momentum-balance conservation 
in a given non-moving point in one-dimensional incompressible gas space con-
fined between two parallel plates at the uniform temperature by analytical veri-
fication of the balance between the rate of mass and momentum influx and the 
rate of mass and momentum efflux, respectively, in the given point of the gas 
space.  

5) The BPPBS is also validated by demonstrating that, in the collision dominat-
ed flow regime, the differential equations, which we converted from the de-
rived integro-differential mass and momentum balance equations, are identic-
al to the corresponding Navier-Stokes equations. This finding supports the 
assumption that, in the collision-dominated flow regime, the formulated inte-
gro-differential forms of the balance are exact implicit solutions for corres-
ponding Navier-Stokes equations.  

6) The analytical solution for determining the velocity profile induced in the 
model gas flow due to the pressure gradient along the channel is demonstrated. 
That the analytical solution is valid to explain velocity profiles in the wide 
range of gas pressure from the continuum through the slip and transition to 
free-molecule flow regimes gives additional confidence that the BM is valid.  

7) From the practical viewpoint, the proposed method can be a fundamental 
base of a new generation of the CFD software in which the solver does not use 
the Navier-Stokes or Boltzmann equations. Using the solver operating on the 
exact implicit solutions of the balance equations will eliminate uncertainty, im-
prove predictability, and shorten the computational time.  

8) Although the BM is formulated to solve the CFD problems, it can be 
eventually used to model any dynamic system composed of presumably chaot-
ically moving particles/elements, each carrying a specific amount of proper-
ty/information. 
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