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Abstract 
In this paper, we solve chiral nonlinear Schrodinger equation (CNSE) nu-
merically. Two numerical methods are derived using the explicit Runge-Kutta 
method of order four and the linear multistep method (Predictor-Corrector 
method of fourth order). The resulting schemes of fourth order accuracy in 
spatial and temporal directions. The CNSE is non-integrable and has two 
kinds of soliton solutions: bright and dark soliton. The exact solutions and 
the conserved quantities of CNSE are used to display the efficiency and ro-
bustness of the numerical methods we derived. Interaction of two bright soli-
tons for different parameters is also displayed. 
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1. Introduction 

The chiral nonlinear Schrödinger equation (CNSE) [1] [2] we are going to study 
is given by  

2

2

1 0,
2

i i x
t x xx
ψ ψ ψ ψλ ψ ψ ψ

∗
∗ ∂ ∂ ∂ ∂

+ + − = −∞ < < ∞  ∂ ∂ ∂∂  
         (1) 

where t is time, x is spatial coordinate, ( ),x tψ  is a complex-valued function, 
and λ  is a nonlinear coupling constant appears through derivative coupling. 
This kind of nonlinearity is also known as the current density, unlike the case of 
cubic nonlinearity which is also known as the Kerr nonlinearity. The Chiral 
nonlinear Schrödinger is a non-integrable equation by the classical method of 
Inverse Scattering method. The single bright soliton solution of Equation (1) is 
given by [1] [2] 
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( ) ( )( ) ( )( ), sech exp ,x t A x vt i vx tψ β ω= − +               (2) 

where 

( )22
2 and ,

2

v A v
A v

λ
β λ ω

−
= =                  (3) 

A is the amplitude of the soliton, β  is the inverse width of the soliton, v is 
the soliton velocity, and ω  is the wave number. The dark soliton solution for 
(1) exists for 0vλ < , and has the form 

( ) ( )( ) ( )( ), tanh expx t A x vt i vx tψ β ω= − +                (4) 

where 

( )24
2 and .

2

v A v
A v

λ
β λ ω

−
= − =                  (5) 

Thus Equation (1) has bright or dark solitons that are given by (2) and (4), 
respectively, depending on the sign of vλ . This phenomenon makes the solitons 
chiral. Equation (1) has at least four conserved quantities [1] [2], namely  

( ) ( ) 2
1 , d ,I t x t xψ

∞

−∞
= ∫                         (6) 

( ) ( ) ( ) ( ) ( )( )2 , , , , d ,x xI t i x t x t x t x t xψ ψ ψ ψ
∞

−∞
= −∫             (7) 

( ) ( ) ( ) ( ) ( ) ( )( )4
3 , 2 , , , , d ,x xI t x t i x t x t x t x t xλ ψ ψ ψ ψ ψ

∞

−∞
 = + −  ∫      (8) 

and 

( ) ( ) ( ) ( ) ( )( ) ( )2 6
4 , 2 , , , , , dx x xI x t i x t x t x t x t x t xλ ψ ψ ψ ψ ψ λ ψ

∞

−∞
 = + − +  ∫  (9) 

Due to the exponential decay of the bright soliton solution (2) when x →∞ , 
the conserved quantities (6)-(9) are well defined. By using (2), the exact values of 
the conserved quantities are 

( )

( )

2
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2
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2 4, , 6 ,
3

4 15 5 40 8 .
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AI I I A v
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β β λ
λ λ β

β λ λ

= = = +

= + + +

             (10) 

The conserved quantities (6)-(9) using dark soliton solution (4) are not well 
defined due to the nonzero boundary condition as x →∞ .  

By assuming ( ) ( ) ( ), , ,x t u x t iv x tψ = + , where ( ) ( ), , ,u x t v x t  are real func-
tions, the CNSE (1) can be written as the nonlinear coupled system [3] [4] [5] as 

2

2

1 2 0,
2

u v v uu v v
t x xx

λ∂ ∂ ∂ ∂ + + − = ∂ ∂ ∂∂  
              (11) 

2

2

1 2 0.
2

v u v uu v u
t x xx

λ∂ ∂ ∂ ∂ − − − = ∂ ∂ ∂∂  
              (12) 

The resulting system obtained (11)-(12) can be displayed in a matrix vector 
form as 
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( )
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2
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A G A
t x

∂ ∂
+ + =

∂ ∂
w w w w 0                     (13) 

where 

( )
0 1

, , 2 .
1 0

u v uA G u v
v x x

λ
    ∂ ∂ = = = −     − ∂ ∂    

w w           (14) 

There are many theoretical and numerical studies in the literature about the 
Nonlinear Schrödinger Equations (NLS). Most of these works are motivated to 
single NLS and the coupled NLS (see [3] [4] [5] and reference therein). However, 
up to the authors knowledge, only a few numerical studies for the chiral nonli-
near Schrodinger NLS. In [6], a conservative finite difference schemes for the 
chiral nonlinear schrodinger equation using finite difference method, three dif-
ferent schemes of second order accuracy are derived, a nonlinear implicit finite 
difference where we have to solve a nonlinear block tridigonal systems at each 
time step which is expensive to some extent, a linearization approach is used to 
overcome this difficulty and to obtain, two linearly implicit finite difference 
schemes. In this work, we are going to present numerical schemes of fourth order 
accuracy in both direction using method of lines. The method of lines has been 
used by several authors. A Method of lines is used to find the numerical solution of 
the Kortweg-de Vries Equation [7]. The method of lines solution of the regularized 
long-wave equation using Runge-Kutta time discretization method presented in 
[8]. The method of lines for solution of the one-dimensional wave equation sub-
ject to an integral conservation condition presented in [9]. Application of the 
method of lines for solving the KdV-Burger equation, two methods are used to 
solve this equation MOL and the Adomian decomposition method the results 
reveal that, both methods are comparable [10]. A generalization of the method 
of lines for the numerical solution of the coupled forced vibration of beams pre-
sented in [11]. In this work, we are going to solve the chiral nonlinear Schrodin-
ger equation using method of lines, which can be described in two major steps. 

Step 1: We convert the partial differential equation into a system of first order 
ordinary differential equation by approximating the space derivatives in the 
CNSE using fourth order finite difference approximation order. 

Step 2: We solve the ordinary differential system obtained in Step 1 using 
Runge-Kutta method of fourth order and Predictor Corrector method of fourth 
order. 

Several Numerical examples single and interaction of two solitons will be in-
vestigated to confirm the efficiency of the derived schemes. 

The paper is organized as follows: In Section 2, two methods of lines are de-
rived to solve the chiral NLS (1). In Section 3, some numerical results single so-
liton and interaction of two solitons to check the efficiency of the proposed 
schemes. Finally, the conclusion is given in Section 4. 

2. Numerical Methods 

We will consider the numerical solution of the nonlinear system (10)-(11) in a 
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finite interval [ ],L Rx x . We assume m Lx x mh= + , where 1,2, , 1m M= − , 
and h is called the space grid size, also we assume nt nk= , k is the time step size. 
We denote the exact and numerical solutions at the grid point ( ),m nx t  by 
( ),n n

m mvw  and ( ),n n
m mVU , respectively. Also we approximate the space deriva-

tives using the fourth order approximation [12]. 

( ) [ ]2 1 1 2
1 8 8

12
m

m m m m

u x
U U U U

x h − − + +

∂
= − + −

∂
             (15) 

( ) [ ]
2

2 1 1 22 2

1 16 30 16 .
12

m
m m m m m

u x
U U U U U

x h − − + +

∂
= − + − + −

∂
      (16) 

By using these approximations into (11)-(12), we will get the first order ordi-
nary differential coupled system 
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1 0 10, 0, for 1,2, , 1,M MV V V V m M− += = = = = −  

The numerical solution of the coupled system (17)-(18) can be obtained by 
using the Runge-Kutta method of fourth order or by using a linear multistep 
method in the following manner. First we write the previous system (17)-(18) in 
the coupled form 

( ), , 1, 2, , 1m m mU F U V m M= = −


              (19) 

( ), , 1, 2, , 1m m mV F U V m M= = −


              (20) 

The basic idea of the method of lines is to replace the spatial derivatives in the 
partial differential equation with algebraic approximations. Once this is carried 
out, the spatial derivatives are no longer stated explicitly in terms of the spatial 
independent variables. Thus, in effect we have a coupled system of ordinary dif-
ferential equations that approximate the original PDE. Two methods for solving 
the ODEs coupled system (19)-(20) are presented; Runge-Kutta method of 
fourth order and the fourth order Predictor-Corrector methods. The details of 
these methods will be given next. 

2.1. Method of Lines Using Fourth Order Runge-Kutta Method 

In this method we use one-step method, to achieve high accuracy it is typically 
necessary to use multistage method, where the intermediate values of the solu-
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tion and its derivatives are generated and used within a single time step. To ap-
ply this approach, we use Runge-Kutta method of fourth order to solve the or-
dinary differential coupled systems (ODEs) [12].  

First we define 

1 2 1 1 2 1, , , and , , , ,
t tn n n n n n n n

M MU U U V V V− −   = =   U V   

and then we define the Runge-Kutta method as follows 

[ ]1
11 12 13 14

1 2 2
6

n n K K K K+ = + + + +U U              (21) 

[ ]1
21 22 23 24

1 2 2
6

n n
m K K K K+ = + + + +V V              (22) 

where 

( ) ( )11 21, , , ,n n n n
mK h V K h= =F U G U V              (23) 

12 11 21
1 1, ,
2 2

n nK h K K = + + 
 

F U V                (24) 

22 11 21
1 1, ,
2 2

n nK h K K = + + 
 

G U V                (25) 

13 12 22
1 1, ,
2 2

n nK h K K = + + 
 

F U V                (26) 

23 12 22
1 1, ,
2 2

n nK h K K = + + 
 

G U V                (27) 

( )14 13 23, ,n nK h K K= + +F U V                  (28) 

( )24 13 23,n nK h K K= + +G U V                  (29) 

Note to apply the Runge-Kutta method, we need to evaluate eight vector func-
tions at each time step. 

2.2. Method of Lines Using Linear Multistep Method of Fourth  
Order 

One approach to use the linear multistep method is to use a predictor-corrector 
method, in which an explicit Adams-Basforth method of fourth order is used to 
predict a value for numerical solution ( )pU , and then the Adams-Moulton of 
method of fourth order is used to correct this value. This is done by using ( )pU  
on the right hand side of the Adams -Moulton method inside the function eval-
uation, so that the Adams-Moulton is no longer implicit. Now to apply this me-
thod in our problem, we execute the following steps. 

Step 1 Starting Values 
Use the explicit Runge-Kutta method of fourth order 

[ ]1
11 12 13 14

1 2 2
6

n n
m mU U K K K K+ = + + + +               (30) 

[ ]1
21 22 23 24

1 2 2
6

n n
m mV V K K K K+ = + + + +               (31) 

https://doi.org/10.4236/am.2020.116032


K. S. AL-Basyouni, M. S. Ismail 
 

 

DOI: 10.4236/am.2020.116032 452 Applied Mathematics 
 

where 

( ) ( )11 21, , , ,n n n n
mK h V K h= =F U G U V                  (32) 

12 11 21
1 1, ,
2 2

n nK h K K = + + 
 

F U V                   (33) 

22 11 21
1 1, ,
2 2

n nK h K K = + + 
 

G U V                   (34) 

13 12 22
1 1, ,
2 2

n nK h K K = + + 
 

F U V                   (35) 

23 12 22
1 1, ,
2 2

n nK h K K = + + 
 

G U V                   (36) 

( )14 13 23, ,n nK h K K= + +F U V                     (37) 

( )24 13 23,n nK h K K= + +G U V                     (38) 

to calculate the missing values 

, , for 1,2,3 and 1,2, , 1n m n m M= = −U V 
              (39) 

Step 2: Predictor (Adams Bashforth of fourth order) 

( ) ( ) ( )
( ) ( )

1 1

2 2 3 3

55 , 59 ,
24

37 , 9 ,

p n n n n n

n n n n

k − −

− − − −

= + −

+ − 

U U F U V F U V

F U V F U V
           (40) 

( ) ( ) ( )
( ) ( )

1 1

2 2 3 3

55 , 59 ,
24

37 , 9 ,

p n n n n n

n n n n

k − −

− − − −

= + −

+ − 

V V G U V G U V

G U V G U V
           (41) 

for 3,4, ,n N=  . 
Step 3: Corrector (Adams Moulton of fourth order) 

( ) ( )
( ) ( )

1

1 1 2 2

9 19 ,
24

5 , ,

n n p p n n

n n n n

k+

− − − −

= + +

− + 

U U F U ,V F U V

F U V F U V
             (42) 

( ) ( )
( ) ( )

1

1 1 2 2

9 19 ,
24

5 , ,

n n p p n n

n n n n

k+

− − − −

= + +

− + 

V V G U ,V G U V

G U V G U V
             (43) 

for 3,4, ,n N=  . 
Note that step 1 is used to find the starting values using Runge-Kutta method 

of fourth order. We conclude that, at each time step, the numerical solution ob-
tained by executing Step 2 and Step 3. Note that we need only four function 
evaluation at each time step, which is almost half of the Runge-Kutta method 
(21)-(22). 

3. Numerical Results 

In this section, we will test the efficiency of the numerical schemes we derived, 
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by considering different numerical tests. Trapezoidal rule is used to calculate the 
conserved quantities. Define the error norms 

( )
1 1

max n n
m mm M

L u u U∞ ≤ ≤ −
= −                     (44) 

( )
1 2

2
1

M
n n
m m

m
L u h u U

−

=

 = −  
∑ .                   (45) 

3.1. Bright Soliton Solution 

To study the behavior of the single bright soliton solution, we choose the initial 
condition 

( ) ( ) ( ),0 sech expx A x ivxψ β=                   (46) 

together with the homogenous Dirichlet boundary conditions ( ),0 0xψ =  at 
,L Rx x x= . The following set of parameters are used 

50.0, 50.0.0, 0.1, 0.001, 0.5,
0.5, 0.5, 0,1,2, , 20.

L Rx x h k A
v tλ

= − = = = =
= = = 

          (47) 

Table 1 and Table 2 display the errors and the conserved quantities for our 
proposed schemes. The numerical results are highly accurate and conserved the 
conserved quantities exactly. The two methods produced almost the same results 
(both fourth order methods in space and time directions). In Figure 1, we dis-
play the motion of the single bright solitons for 0,0.5, ,10t =  . We have no-
ticed that the cpu execution time required for producing the results in Table 1, 
Table 2 are 4.14 and 2.65 seconds respectively… 
 
Table 1. Single bright soliton using Runge-Kutta method (cpu = 4.14). 

T I1 I2 I3 I4 L∞ L2 

0 1.414214 1.413330 2.944511 3.044373 - - 

5 1.414214 1.413330 2.944511 3.044373 0.00000 0.000001 

10 1.414214 1.413330 2.944511 3.044373 0.000001 0.000001 

15 1.414214 1.413330 2.944511 3.044373 0.000001 0.000002 

20 1.414214 1.413330 2.944511 3.044373 0.000001 0.000003 

 
Table 2. Single bright soliton using predictor-corrector method (cpu = 2.656). 

T I1 I2 I3 I4 L∞ L2 

0 1.414214 1.413330 2.944511 3.044373 - - 

5 1.414214 1.413330 2.944511 3.044373 0.00000 0.000001 

10 1.414214 1.413330 2.944511 3.044373 0.000001 0.000001 

15 1.414214 1.413330 2.944511 3.044373 0.000001 0.000002 

20 1.414214 1.413330 2.944511 3.044373 0.000001 0.000003 
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Figure 1. Single Bright soliton: 0.5, 0.5, 0.5A vλ= = = . 

3.2. Interaction of Two Bright Solitons 

In non-integrable equations, stable solitons may exist, but their collisions are 
generally inelastic. To study the interaction behavior of the two bright solitons in 
the chiral nonlinear Schrodinger, we choose the initial condition [13]  

( ) ( ) ( )1 2,0 ,0 e ,0 ,x x xδψ ψ ψ= +                   (48) 

where 

( )( ) ( )( )( )1 1 1 1 1 1( ,0) sech exp ,x A x x i v x xψ β= − −            (49) 

( ) ( )( ) ( )( )( )2 2 1 2 2 2,0 sech exp ,x A x x i v x xψ β= − −           (50) 

and [ ],δ ∈ −π π  is the phase difference between the solitons. The initial condi-
tion represents the sum of two well separated single bright solitons. To study the 
interaction scenario the following parameters are selected 

1 2 1

1 2 2

0.1, 0.001, 50, 20, 1.0,
1.0, 0.5, 0.1, 0.5, 0,1,2, ,80.

lh k x x x A
v A v tλ
= = = − = − = =

= = = = = 

          (51) 

The conserved quantities of the interaction scenario are given in Table 3. We 

have noticed that the numerical results are highly accurate and the exact conservation of 

I1. In Figure 2 and Figure 3, we display the interaction scenario, and we have 
noticed how the two solitons approach each other and the faster soliton emerges 
to the slower soliton. Eventually, the two original solitons leave the interaction 
region with their original shape. 

In Figures 4-9, we display the interaction scenario of two solitons for differ-
ent parameters. Different scenario obtained, the interaction are similar to those 
produced by conventional nonlinear Schrodinger equation dynamics. Also we 
have noticed in Figure 6 and Figure 7, fussion of solitons is observed by choos-
ing 0.4δ = π . 

https://doi.org/10.4236/am.2020.116032


K. S. AL-Basyouni, M. S. Ismail 
 

 

DOI: 10.4236/am.2020.116032 455 Applied Mathematics 
 

 
Figure 2. Interaction of two solitons: 1 2 1 21, 0.5, 1, 0.1, 0.5, 0A A v v λ δ= = = = = = . 

 

 
Figure 3. Interaction of two solitons: 1 2 1 21, 0.5, 1, 0.1, 0.5, 0A A v v λ δ= = = = = = . 

 

 
Figure 4. Interaction of two solitons: 1 2 1 20.5, 0.5, 2, 0.5, 0.5,A A v v λ δ= = = = = = π . 
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Figure 5. Interaction of two solitons: 1 2 1 20.5, 0.5, 2, 0.5, 0.5,A A v v λ δ= = = = = = π . 

 

 
Figure 6. Interaction of two solitons: 1 2 1 21.0, 0.8, 1, 0.1, 0.5, 0.4A A v v λ δ= = = = = = π . 

 

 
Figure 7. Interaction of two solitons: 1 2 1 21.0, 0.8, 1, 0.1, 0.5, 0.4A A v v λ δ= = = = = = π . 
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Figure 8. Interaction of two solitons: 1 2 1 20.5, 0.5, 2, 0.5, 0.5,A A v v λ δ= = = = = = π . 

 

 
Figure 9. Interaction of two solitons: 1 2 1 20.5, 0.5, 2, 0.5, 0.5,A A v v λ δ= = = = = = π . 

 
Table 3. Interaction of two bright solitons using Runge-Kutta method. 

t I1 I2 I3 I4 

0 5.164771 4.618162 10.169401 10.881909 

20 5.164771 4.575337 10.105110 10.811868 

40 5.164771 4.551480 10.070448 10.725963 

60 5.164771 4.503832 9.998313 10.703303 

80 5.164769 4.479468 9.499313 10.661822 

3.3. Single Dark Soliton 

To study the behavior of the single dark soliton solution, we choose the initial 
condition 

( ) ( ) ( ),0 tanh expx A x ivxψ β=                   (52) 
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and use the Dirichlet boundary conditions at ,L Rx x x=  which are extracted 
from the exact solution (Boundary conditions are nonzero). The following set of 
parameters are used 

50.0, 50, 0.1, 0.001, 0.5,
0.5, 0.5, 0,0.4,0.8, , 20.

L Rx x h k A
v tλ

= − = = = =
= − = = 

           (53) 

In Table 4, we calculate the L∞ and L2 error norms and the conserved quantity 
I1, we found that the proposed methods are highly accurate. The simulation of 
the single dark soliton displayed in Figure 10 for 0,0.4, , 20t =  . The cpu ex-
ecution time is 4.14 section, which is the same as the bright soliton. 

4. Conclusion 

The method of lines is used to solve the Chiral nonlinear Schrodinger equation, 
using two methods of fourth order accuracy in both directions space and time. 
The numerical results using single soliton, and the interaction of two solitons of 
the CNSE confirmed the efficiency, reliability, and accuracy of the present me-
thods. Concerning the cpu time required for execution, the merit goes for the 
Predictor-Corrector method. We can conclude that, the methods presented in 
this paper can be applied to similar type of equations, like nonlinear Schrodinger 
and coupled nonlinear Schrodinger equations. 
 

 
Figure 10. Dark soliton: with 0.5, 0.5, 0.5A vλ= = − = . 

 
Table 4. Single Dark soliton using Runge-Kutta method (cpu = 4.14). 

T I1 L∞ L2 

0 23586786 0.000000 0.000000 

5 23.585682 0.000062 0.00000 

10 23.585674 0.000065 0.000001 

15 23.585675 0.000067 0.000001 

20 23585677 0.000066 0.000001 
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