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Abstract 
In a linear regression model, testing for uniformity of the variance of the re-
siduals is a significant integral part of statistical analysis. This is a crucial as-
sumption that requires statistical confirmation via the use of some statistical 
tests mostly before carrying out the Analysis of Variance (ANOVA) tech-
nique. Many academic researchers have published series of papers (articles) 
on some tests for detecting variance heterogeneity assumption in multiple li-
near regression models. So many comparisons on these tests have been made 
using various statistical techniques like biases, error rates as well as powers. 
Aside comparisons, modifications of some of these statistical tests for detect-
ing variance heterogeneity have been reported in some literatures in recent 
years. In a multiple linear regression situation, much work has not been done 
on comparing some selected statistical tests for homoscedasticity assumption 
when linear, quadratic, square root, and exponential forms of heteroscedas-
ticity are injected into the residuals. As a result of this fact, the present study 
intends to work extensively on all these areas of interest with a view to filling 
the gap. The paper aims at providing a comprehensive comparative analysis 
of asymptotic behaviour of some selected statistical tests for homoscedasticity 
assumption in order to hunt for the best statistical test for detecting heteros-
cedasticity in a multiple linear regression scenario with varying variances and 
levels of significance. In the literature, several tests for homoscedasticity are 
available but only nine: Breusch-Godfrey test, studentized Breusch-Pagan 
test, White’s test, Nonconstant Variance Score test, Park test, Spearman Rank, 
Glejser test, Goldfeld-Quandt test, Harrison-McCabe test were considered 
for this study; this is with a view to examining, by Monte Carlo simulations, 
their asymptotic behaviours. However, four different forms of heteroscedastic 
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structures: exponential and linear (generalize of square-root and quadratic 
structures) were injected into the residual part of the multiple linear regres-
sion models at different categories of sample sizes: 30, 50, 100, 200, 500 and 
1000. Evaluations of the performances were done within R environment. 
Among other findings, our investigations revealed that Glejser and Park tests 
returned the best test to employ to check for heteroscedasticity in EHS and 
LHS respectively also White and Harrison-McCabe tests returned the best test 
to employ to check for homoscedasticity in EHS and LHS respectively for 
sample size less than 50. 
 

Keywords 
Homoscedasticity, Heteroscedasticity, Generalized Linear Model, Monte 
Carlo 

 

1. Introduction 

One of the crucial assumptions in the multiple linear regression models is that 
the variance of the errors should be constant [1]. The Ordinary Least Squares 
(OLS) method is very popular with statistics practitioners as it provides efficient 
and unbiased estimates of the parameters when the assumptions, especially the 
assumption of homoscedastic error variances, are met. But in many real-life ap-
plications, variances of the errors vary across observations. Since homoscedas-
ticity is often unrealistic assumption, researchers should consider how the re-
sults are affected by heteroscedasticity. Even though the OLS estimates retain 
unbiasedness in the presence of heteroscedasticity, its estimates become ineffi-
cient [2] [3].  

However, heteroscedasticity yields hypothesis tests that fail to keep false rejec-
tions at the nominal level, or estimated standard errors as well as confidence in-
tervals that are either too narrow or too large [4]. Every statistical procedure car-
ries with it certain assumptions that must be at least approximately true before 
the procedure can produce reliable and accurate results [3]. Researchers often 
apply a statistical procedure to their data without checking on the validity of the 
assumptions of the procedure. If one or more of the assumptions of a given sta-
tistical procedure are violated, most especially in multiple linear regression anal-
ysis, then misleading results will be produced by the procedure [5].  

In short, a number of assumptions are associated with the analysis of data us-
ing OLS in multiple linear regression but the current study deals with only one 
of them, that is, homogeneity of variance assumption. Literarily, assumptions 
refer to basic principles that are accepted on faith, or assumed to be true, with-
out proof or verification. It is frequent and common that a researcher applies a 
statistical method to a set of data without thoroughly checking that the assump-
tions of the methods are valid [6]. This may be especially true in multiple linear 
modelling.  
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Notwithstanding, it is a known fact that all statistical procedures should have 
underlying assumptions; some are more stringent than others. In some cases, vi-
olation of these assumptions will not change substantive research conclusions. In 
other cases, violation of assumptions will undermine meaningful research. Es-
tablishing that one’s data meet the assumptions of the procedure one is using is 
an expected component of all quantitatively-based theses, journal articles, and 
dissertations. This assumption practically and usually exists in regression and 
experimental design but this research discusses its relation with regression anal-
ysis.  

The homogeneity of variance assumption is one of the critical assumptions 
underlying most parametric statistical procedures such as the analysis of va-
riance and it is very important for a good researcher to be able to test this as-
sumption before the application of ANOVA technique. Simply, the term “homo” 
means “the same” while “hetero” means different, therefore variance homogene-
ity assumption, which is equivalently called “homoscedasticity”, means that the 
variance of each residual should be the same throughout the experiment. If the 
errors (residuals) fail to possess equal (but sometimes unknown) variances, the 
reliability of application of analysis of variance technique may be badly affected 
[3]. Direct opposite in meaning to “homogeneity assumption” is “heterogeneity 
of error variances”, which simply refers to a situation where the variance of the 
residuals is affected by at least one predictor variable leading to unequal magni-
tude in spread. Thus, heterogeneity problem may arise in most of the economic 
(econometric), experimental and agricultural modelling where specifically anal-
ysis of variance technique is applied. Thus, homogeneity of variance is a major 
assumption underlying the validity of many parametric tests. More importantly, 
it serves as the null hypothesis in substantive studies that focus on cross- or 
within-group dispersion.  

In addition, showing that several samples do not come from populations with 
the same variance is sometimes of importance per se. The statistical validity of 
many commonly used tests such as the t-test and ANOVA depend on the extent 
to which the data conform to the assumption of homogeneity of variance. When 
a research design, however, involves groups that have very different variances, 
the p-value accompanying the test statistic, such as t and F may be too lenient or 
too harsh. Thus, substantive research often requires investigation of cross- or 
within-group fluctuation in dispersion. For example, in quality control research, 
homogeneity of variance tests is often “a useful endpoint in an analysis” [7]. In 
human performance studies, an increase or decrease in the dispersion of per-
formance scores within the same group of subjects may shed light on how 
changing condition affect human behaviour. Recent studies on gender-related 
differences in the dispersion of academic performance have provoked substan-
tive as well as methodological interest in homogeneity of variance [8] [9]. 

It has been reported in some literatures that the assumption of the error term 
is such that its probability distribution remains the same over all observations of 
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the explanatory variables, and in particular the variance of each ie  is the same 
for all values of the predictor variables [10]. This assumption is also known as 
Assumption of Homogeneity of Variances or the Assumption of Constant Va-
riance of the error term. If it is not satisfied in any particular case, we say that 
the error term ( ie ) is heteroscedastic. The meaning of the assumption of ho-
moscedasticity is that the variation of each error ( ie ) around its zero mean does 
not depend on the values of predictor variables. The variance of each ie  re-
mains the same irrespective of small or large values of the explanatory variables. 

Apparently, the present research intends to investigate the best statistical test, 
through the computation of the number of time (frequency) each test commits 
type II error (when sigma = 0) and type I error (sigma ≠ 0) for confirming ho-
moscedasticity assumption when different levels of heteroscedasticity are in-
jected into the multiple linear regression models at 30, 50, 100, 200, 500 and 
1000 sample sizes. 

2. Aim and Objectives of the Study 

This study aims at providing a comprehensive comparative analysis of asymp-
totic behaviour of some selected statistical tests for homoscedasticity assumption 
in order to hunt for the best statistical test for detecting heteroscedasticity in a 
multiple linear regression scenario with varying variances. In order to achieve 
this aim, the following objectives are pursued:   

1) To compare nine different statistical tests under different heteroscedastic 
conditions such as Exponential and Linear (generalized structure for Quadratic 
and Square-root) Forms; 

2) To evaluate, through the computation of the number of time (frequency) 
each test commits type II error (when sigma = 0) and type I error (sigma ≠ 0) as 
the case may be; 

3) To investigate the asymptotic behaviour of the selected tests when the va-
riances are varied across all simulations. 

3. Theoretical Framework and Literature Review 

The analysis of variance (ANOVA) is one of the most important and useful 
techniques for variety of fields such as economics, agriculture, biology and so on 
with a view to comparing different groups or treatments with respect to their 
means [3]. Let us consider testing equality of means of k populations given sam-
ples { }: 1, 2, , ; 1, 2, ,ij ix i k j n= =   from ith population with mean iµ , va-
riance 2

iσ  and distribution function ( ){ }1
i iF xσ µ− − . While doing ANOVA, 

the null hypothesis to be tested is 

01 1 2: kH µ µ µ= = =  versus 11 : i jH µ µ≠  for some i j≠     (2.1) 

Hence, a set of assumptions such as normality, homogeneity and indepen-
dence of observations has to be made in order to employ an F test for (2.1). As [1] 
has pointed out, in practice, the assumption of homogeneity of variances is the 
one most often unmet in ANOVA. In the absence of homogeneity of variances, 
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the sample means will not necessarily have equal expected standard errors, and 
an exact solution for comparison among the means requires reference to a 
compound F distribution with unknown parameters if the true population va-
riances are unknown. It is now well established that the violation of the assump-
tion of homogeneity of variances can have severe effects on inference about the 
population means, especially in the case of unequal sample sizes [11] [12]. 

Furthermore, [13] has demonstrated that the ANOVA F is not robust to all 
degrees of variance heterogeneity even when sample sizes are equal. In fact, the 
conventional ANOVA F provides generally poor control over both Type I and 
Type II error rates under a wide variety of variance heterogeneity conditions. 
Therefore, the problem of homogeneity of variances has to be settled before 
performing an ANOVA [14] [15] [16]. 

Obviously, there are a good number of methods available to test for homo-
geneity of variances for different situations [17] [18] [19]. The most common 
and popular tests, however, in the case of one-way ANOVA, are Bartlett and Le-
vene tests. The hypothesis to be tested for homogeneity of variances is 

2 2 2
02 1 2: kH σ σ σ= = =  against 2 2

12 : i jH σ σ≠  for some i j≠     (2.2) 

Unfortunately, these tests (Bartlett and Levene) are sensitive to the assump-
tion of normality [20]. Specifically, the probability of a Type I error (α ) is de-
pendent upon the kurtosis of the distribution. However, these alternative tests 
are affected adversely by non-normality [21]. As [22] pointed out, none of the 
procedures directly handle the problem of skewness bias. [23] has also argued 
that failure to consider the impact of the combined violations of variance equal-
ity and distribution normality is an important omission of a statistical procedure. 
Under these circumstances, the development of new alternative tests, namely, 
trimming, transforming statistics, bootstrapping [24] to deal with unequal va-
riances, and non-normality is worthwhile. 

[25] employed four homogeneity tests, named SNHT, Buishand Range test, 
Pettitt test and Von Neumann Ratio (VNR) test to the European Climate. The 
results are categorized into three classes, which are useful, doubtful and suspect 
according to the number of tests rejecting the null hypothesis. Three testing va-
riables were used, each consists of annual values. For temperature, the two test-
ing variables are annual mean of diurnal temperature range and annual mean of 
the absolute day-to-day differences. Meanwhile for precipitation, the annual 
number of wet days (threshold 1 mm) is employed. 

Tests for equality of variances are of interest in many situations such as analy-
sis of variance or quality control [26]. The classical approach to hypothesis test-
ing begins with the likelihood ratio test under the assumption of normal distri-
butions given by [27]. However, as this test is very sensitive to departures from 
normality, many alternative tests have been prompted since then. Some of these 
are modifications of likelihood ratio test. Others are adaptations of the F-test to 
test variances rather than means. Against one would hope, recent comparative 
studies reveal that some of these tests present lack of robustness and have poor 

https://doi.org/10.4236/ojs.2020.103029


Onifade O. C., Olanrewaju S. O. 
 

 

DOI: 10.4236/ojs.2020.103029 458 Open Journal of Statistics 
 

power [28]. This problem was also studied by [7], who performed an increasing 
study of many of the existing parametric and non-parametric tests. In his last 
paper Monte Carlo simulations of some distributions for several sample sizes 
show a few tests that are robust and have good power. 

4. Methodology 
4.1. Forms of Heteroscedasticity  

The study considers four different heteroscedastic structures coined from [29] 
additive and multiplicative heteroscedastic model but in our model, we assume 
that the variance of the error varies as the mean of the responses. The two gener-
al forms are: 

1) ( ) ( )2e iE yVar e e σ′ = ; 
2) ( ) ( )2 g

iVar e e E yσ′ = ; where 0g ≥ . 
Emanating from the two above, four heteroscedastic structures were formu-

lated as follows: 
1) Exponential Form: ( ) ( )1 1 2 22 2

1 e eiE y x x
ih β βσ σ += = ; 

2) Linear Form: ( ) ( )12 2
2 1 1 2 2

g
i ih E y x xσ σ β β= = + ; 

3) Square-rooted Form: ( ) ( )0.52 2
3 1 1 2 2

g
i ih E y x xσ σ β β= = + ; 

4) Quadratic Form: ( ) ( )22 2
4 1 1 2 2

g
i ih E y x xσ σ β β= = + . 

4.2. Procedure for the Monte Carlo Simulation Experiment 

To investigate the finite sample properties of the test statistics of the presence of 
heteroscedasticity in any given dataset, we use a Monte Carlo experiment. We 
simulate a linear multiple regression model with three explanatory variables 
model using a simple Least square function of the form: 

0 1 1 2 2 3 3   iy x x x eβ β β β= + + + +                   (3.1) 

where e is a normal error variable. 
Following [30], we then simulate the independent variables Xi as follows:  
Xi’s are a set of independent variables that are fixed following 1 1, ,X N=  , 

2 1, ,X N=  , ( )3 rnorm 10,1X =  and Z i= , for 1, ,i N=  . 
We also generate the two error terms as follows ( )2~ 0,v N σ  and  

( )2~ 0,u N σ  
Then the model for the heteroscedasticity function was formed as follows: 

( )0 1 1 2 2exp ln lnv i iX Xα ασ α σ σ= + +               (3.2) 

The parameters were then set at: 

0 0 0 1 2 1 1β α γ α α γ= = = = = =  

( )1 2 3 0.5 constant return to scaleβ β β= = =  

The parameter σ  measures the degree of heteroscedasticity. We use several 
degrees of heteroscedasticity by letting σ  to vary (0, 0.1, 0.3, 0.7 and 0.9). 
When 0σ = , we obtain the homoscedastic case. We considered also different 
sample sizes: 30, 50, 100, 200, 500 and 1000 observations (Hadri and Garry, 
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1998). To analyze the performance of the heteroscedasticity test statistic as we 
estimated the OLS model and then tested with the following heteroscedastic test 
statistics (Breusch-Godfrey test, studentized Breusch-Pagan test, White’s Test, 
Non-constant Variance Score Test, Park test, Spearman Rank, GLEJSER test, 
Goldfeld-Quandt test, Harrison-McCabe test) for the true presence of the prob-
lem using the test frequency of significance at 1%, 5% and 10% respectively. We 
also set the number of replications to 1000. Refer to Appendix 1 for the R simu-
lation code. 

4.3. Tests for Detecting Heteroscedasticity 

This study considers nine (9) popularly used heteroscedastic test as evident in 
past works of literature. These tests include: Breusch-Godfrey test, studentized 
Breusch-Pagan test, White’s Test, Non-constant Variance Score Test, Park test, 
Spearman Rank, GLEJSER test, Goldfeld-Quandt test, Harrison-McCabe test.  

4.4. Park Test 

Park (1966) formalizes the graphical method by suggesting that 2
iσ  is some 

function of the explanatory variable iX . The functional form he suggested was: 

  2 2 e iv
i iX βσ σ=                         (3.3) 

or 2 2ln ln lni i iX vσ σ β= + +                   (3.4) 

where iv  is the stochastic disturbance term. Since 2
iσ  is generally not known, 

Park suggests using 2ˆiu  as a proxy and running the following regression: 

  2 2ˆln ln ln lni i i i iu X v X vσ β α β= + + = + +           (3.5) 

If β  turns out to be statistically significant, it would suggest that heterosce-
dasticity is present in the data. If it turns out to be insignificant, we may accept 
the assumption of variance homogeneity. The Park test is thus a two-stage pro-
cedure. In the first stage, we run the OLS regression disregarding the heterosce-
dasticity question. We obtain ˆiu  from this regression, and then in the second 
stage, we run the regression (3.5).  

Although empirically appealing, the Park test has some problems. [31] has 
argued that the error term iv  entering into (3.5) may not satisfy the OLS as-
sumptions and may itself be heteroscedastic. Nonetheless, as a strictly explora-
tory method, one may still use the Park test. 

4.5. Glejser Test 

The [32] is similar in spirit to the Park test. After obtaining the residuals ˆiu  
from the OLS regression, Glejser suggests regressing the absolute values of ˆiu  
on the X variable that is thought to be closely associated with 2

iσ  In his expe-
riments, Glejser used the following functional forms: 

  0 1ˆi i iu X vβ β= + +                        (3.6) 

  0 1ˆi i iu X vβ β= + +                       (3.7) 
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  0 1
1ˆi i

i

u v
X

β β= + +                        (3.8) 

  0 1
1ˆi i

i

u v
X

β β= + +                      (3.9) 

  0 1ˆi i iu X vβ β= + +                      (3.10) 

  2
0 1ˆi i iu X vβ β= + +                     (3.11) 

where iv  is the error term.  
Again, as an empirical or practical matter, one may use the Glejser approach. 

But Goldfeld and Quandt pointed out that the error term iv  has some problems in 
that its expected value is nonzero, it is serially correlated. Above all, we shall choose 
the best form of regression which gives the best fit from the viewpoint of correla-
tion coefficient and standard error of the coefficients. It’s reported that if 

0 0β =  and 1 0β ≠ , pure heteroscedasticity is suggested and, also if both 0β  
and 1β  differ from zero, it is an indication of mixed heteroscedasticity. This 
could be achieved by conducting statistical significance of both 0β  and 1β . 

4.6. Goldfeld-Quandt Test 

This is a simple and intuitive test. One orders the observations according to iX  
and omits c central observations. Next, two regressions are run on the two sepa-
rated sets of observations with ( ) 2n c−  observations in each. The c omitted 
observations separate the low-value X’s from the high-value X’s, and if heteros-
cedasticity exists and is related to iX , the estimates of 2σ  reported from the 
two regressions should be different. Hence, the test statistic is 2 2

2 1s s , where 2
1s  

and 2
2s  are the Mean Square Error of the two regressions, respectively. Their 

ratio would be the same as that of the two residual sums of squares because the 
degrees of freedom of the two regressions are the same. This statistic is 
F-distributed with ( ) 2n c k− −    degrees of freedom in the numerator as well 
as the denominator.  

The only remaining question for performing this test is the magnitude of c. 
Obviously, the larger c is, the more central observations are being omitted and 
the more confident we feel that the two samples are distant from each other. The 
loss of c observations should lead to loss of power. However, separating the two 
samples should give us more confidence that the two variances are in fact the 
same if we do not reject homoscedasticity. This trade off in power was studied 
by [32] using Monte Carlo experiments. Their results recommend the use of c = 
8 for n = 30 and c = 16 for n = 60. This is a popular test, but assumes that we 
know how to order the heteroscedasticity. In this case, we use iX . But what if 
there are more than one regressor on the right-hand side? In that case one can 
order the observations using îY . 

4.7. Breusch-Pagan Test 

The success of the Goldfeld-Quandt test depends not only on the value of c (the 
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number of central observations to be omitted) but also on identifying the correct 
X variable with which to order the observations. This limitation of this test can 
be avoided if we consider the Breusch-Pagan (BP) test (1979). Consider the 
k-variable linear regression model: 

  0 1 1i i k ki iy x x eβ β β= + + + +                (3.12) 

Assuming that the error variance 2
iσ  is described as follows: 

  ( )2
0 1 1i i m mif z zσ α α α= + + +              (3.13) 

that is, 2
iσ  is some function of the non-stochastic variables z’s; some or all of 

the x’s can serve as z’s. Specifically, assume that: 

  2
0 1 1i i m miz zσ α α α= + + +                    (3.14) 

that is, 2
iσ  is a linear function of the z’s. If 1 2 0mα α α= = = = , 2

0iσ α= , 
which is a constant. Therefore, to test whether 2

iσ  is homoscedastic, one can 
test the hypothesis that 1 2 0mα α α= = = = . This is the basic idea behind the 
Breusch-Pagan test. The actual procedure is tailored as follows: 

1) Obtain 0 1 1i i k ki iy x x eβ β β= + + + +  by OLS and compute the residuals; 

2) Obtain 2 21ˆ ie
n

σ = ∑ , which would be MLE of 2σ  under homoscedastic-

ity; 

3) Obtain another variable such that 
2

2ˆ
i

i
e

p
σ

= ; 

4) Obtain the regression such that 0 1 1i i m mi ip z z vα α α= + + + + , where iv  
is the residual term of this regression; 

5) Obtain the statistic: ( )1
2

BPG SSR= , where SSR is the Regression Sum of 

Squares; 
6) Assuming ie  are normally distributed, one can show that if there is ho-

moscedasticity and if the sample size n increases indefinitely, then: 
2

1~ mBP χ − .                        (3.15) 

4.8. White Test 

Another general test for homoscedasticity where nothing is known about the 
form of this heteroscedasticity is suggested by [5]. This test is based on the dif-
ference between the variance of the OLS estimates under homoscedasticity and 
that under heteroscedasticity. This test does not rely on normality assumption 
making it very easy to implement. Consider the following three-variable regres-
sion model 

  0 1 1 2 2i iy x x eβ β β= + + +                     (3.16) 

The White test is tailored as follows: 
1) Given a set of data, obtain the residual, ie  from (3.16); 
2) Run the following auxiliary regression: 

  2 2 2
0 1 1 2 2 3 1 4 2 5 1 2i ie x x x x x x vα α α α α α= + + + + + +         (3.17) 
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3) Obtain 2R  from this auxiliary regression; 
4) Under 0H  that there is no heteroscedasticity, it can be shown that the 

sample size (n) times 2R  obtained from the auxiliary regression asymptotically 
follows the chi-squared distribution with degree of freedom equal to the number 
of regressors (excluding the constant term) in the auxiliary regression. Mathe-
matically, we have: 

  2 2
;~ knR αχ                        (3.18) 

5) It is expected that the null hypothesis will be rejected when 2nR  exceeds 
the critical value obtained from chi-square table at a given level of significance. 

It is observed that if a model has several regressors, then introducing all the 
regressors, their squared (or higher-powered) terms, and their product can 
quickly consume degreed of freedom. Therefore, one must be very cautious of 
using the test; this is one of the demerits of this test. 

4.9. Spearman’s Rank Correlation Test 

This test ranks the ix ’s and the absolute value of OLS residuals, the ie ’s. Then it 
computes the difference between these rankings, that is, ( ) ( )rank ranki i id e x= − . 
For this simple linear regression model, we obtain the Spearman’s Rank Correla-
tion Coefficient as follows: 

  
( )

2
1

. 2

6
1

1i i

n
ii

e x

d
r

n n
=

 
 = −
 − 

∑                    (3.19) 

Having obtained (3.19), the next step is to test for the significance of the coef-
ficient using t-test as follows: 

  .

2
.

2

1
i i

i i

e x

e x

r n
T

r

−
=

−
                     (3.20) 

The statistic is t-distributed with (n − 2) degree of freedom under any level of 
significance. 

In a situation where the number of regressors are more than one (multiple li-
near regression case), that is, 0 1 1i i k ki iy x x eβ β β= + + + + , it’s suggested that 

1 2. . ., , ,
i i i ke x e x e xr r r  should be computed separately and the same t-test should 

be used for testing the significance of each of the correlation coefficient. This is 
the test intended to modify in the present research.  

The choice of statistical tests for this study is in connection with the existing 
literature, most especially in papers entitled “Heteroscedasticity as Basis of Di-
rection Dependence in Reversible Linear Regression Models” authored by [33], 
it’s reported that Bartlett’s, Goldfeld-Quandt, Breusch-Pagan, White and 
Koenker-Bassett Tests are the major tests predominantly used in multiple linear 
regression models. In addition, we decide judgmentally to include Spearman’s 
Rank Test making a total of six statistical tests for detecting homoscedasticity 
assumption. 
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4.10. Breusch-Godfrey Serial Correlation 

The Breusch-Godfrey serial correlation LM test is a test for heteroscedasticity in 
the errors in a regression model. It makes use of the residuals from the model 
being considered in a regression, and a test statistic is derived from these.  

This test is valid with lagged dependent variables and can be used to test for 
heteroscedasticity  

Procedure 
Step 1. Estimate.  

1 2 2 3 3 4 1 t t t t tY X X Y Uβ β β β −= + + + +                 (3.21) 

obtain the residuals (et). 
Step 2. Estimate the following auxiliary regression.  
model: 

1 2 2 3 3 4 1 1 1 2 2 3 3t t t t t te b b X b X b Y c e c e c e w− − − −= + + + + + + +       (3.22) 

Step 3. For large sample sizes, the test statistic is:  

( ) 2 2~ pn p R χ−                        (3.23) 

Step 4. If the test statistic exceeds the critical chi-square value we can reject the 
null hypothesis of no serial correlation in any of the ρ terms.  

Other tests are “Non-constant variance score test” and Harrison-McCabe test. 

4.11. Heteroscedasticity Correction 

From the section above, a general linear regression model with the assumption 
of heteroscedasticity can be expressed as follows: 

0 1 1 2 2  iy x x eβ β β= + + + +                   (3.24) 

Letting te µ=  

0 1 1 2 2  i ty x xβ β β µ= + + + +                  (3.25) 

( ) ( )2 2
t t tVar Eµ µ σ= =  for 1,2, ,t n=   

where: 
Noting that the t subscript attached to sigma squared indicates that the dis-

turbance for each of the n-units is drawn from a probability distribution that has 
a different variance. 

Given such a non-constant variance function  

( ) 2 2
i i i iVar e xασ σ= =                    (3.26) 

where α  is the unknown parameter in the model.  
Taking the natural logarithm  

( ) ( ) ( )2 2ln ln lni i ixσ σ α= +                 (3.27) 

Then taking exponential of equation  

( ) ( )2 2exp ln lni o ixσ σ α = +                 (3.28) 

Letting ( )2
1 ln iβ σ= , 2β α= , ( )lni iZ x=  
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[ ]2
1 2expi iZσ β β= +                     (3.29) 

[ ]2
1 2 2 3expi i isZ Zσ β β β= + + +               (3.29*) 

If the variance depends on more than one explanatory variable (a multiple re-
gression case) Taking the exponential function is best because it gives non-negative 
value of variance 2

iσ . 
From Equation (3.27) with ( )2

1 ln iβ σ= , 2β α= , ( )lni iZ x=  
Using the OLS technique to estimate the coefficients 1 2, , , sβ β β  of the va-

riance function 

( )2
1 2 2ln i i s isZ Zσ β β β= + + +                  (3.30) 

where ( )2 2lniZ x= , ( )3 3lniZ x=  and so on.  
We then took the square root of the exponential of the fitted estimate  

( )1 2 2
ˆ ˆ ˆˆ expi i s isZ Zσ β β β= + + +                (3.31) 

Then ˆiσ  is the weight required to transform the data set by dividing through.  
But; 

( ) 2
2 2

1 1 1i
i i

i i i

e
Var Var e σ

σ σ σ
 

= = × = 
 

             (3.32) 

Using the estimate of our variance function 2ˆiσ  in place of 2
iσ  in Equation 

(3.30) to obtain the Generalized Least Square Estimator of 1 2, , , sβ β β . 
We then defined the transformed variable as  

1 2
1, , , ,

ˆ ˆ ˆ ˆ
i i s

i i i is
i i i i

y x x
y x x x

σ σ σ σ
∗ ∗ ∗ ∗= = = =             (3.33) 

Therefore;  

1 2 2i i i i s is iy x x x eβ β β∗ ∗ ∗ ∗ ∗= + + + +               (3.34) 

which is the Weighted Least Squares model with homoscedasticity. 

5. Analysis and Results 
5.1. Comparative Analyses of Some Statistical Tests for  

Homoscedasticity Assumption 

As earlier mentioned, nine statistical tests are compared in this study with the 
use of the number of time (frequency) each test commits type II error and type I 
error as the case may be, such that the one with the least frequency type II error) 
when sigma = 0 shall be considered as the best among others and the test with 
the highest frequency (type I error) when sigma ≠ 0 shall be considered as the 
best among others. The null hypothesis is such that homoscedasticity assump-
tion is upheld. 

5.2. Performance of the Tests When Error Follows Exponential  
Heteroscedastic Structure (EHS) 

Table 1 presents the frequency of tests of significance at 1% level after 1000  
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Table 1. Performance of the tests when error follows exponential heteroscedastic structure (EHS) at 1%. 
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1% n = 30 sigma = 0 18 3 0 10 34 22 59 6 9 

1% n = 30 sigma = 0.1 13 6 0 27 42 20 417 23 17 

1% n = 30 sigma = 0.3 11 8 1 33 74 54 727 48 20 

1% n = 30 sigma = 0.5 18 3 1 6 34 22 59 6 9 

1% n = 30 sigma = 0.7 6 37 1 178 90 84 413 69 12 

1% n = 30 sigma = 0.9 6 70 2 314 70 70 284 92 11 

1% n = 50 sigma = 0 16 6 3 6 37 40 68 13 12 

1% n = 50 sigma = 0.1 6 12 5 34 55 22 656 30 29 

1% n = 50 sigma = 0.3 11 12 9 53 129 89 950 49 33 

1% n = 50 sigma = 0.5 16 6 3 3 37 40 68 13 12 

1% n = 50 sigma = 0.7 6 81 4 348 100 117 707 67 32 

1% n = 50 sigma = 0.9 6 185 7 611 85 87 472 116 52 

1% n = 100 sigma = 0 9 9 12 25 9 30 6 73 11 

1% n = 100 sigma = 0.1 8 19 12 46 151 28 924 40 34 

1% n = 100 sigma = 0.3 11 14 16 74 350 74 1000 58 52 

1% n = 100 sigma = 0.5 11 9 11 8 30 25 73 9 10 

1% n = 100 sigma = 0.7 8 332 16 728 136 96 984 102 74 

1% n = 100 sigma = 0.9 11 643 16 929 93 55 903 146 119 

1% n = 200 sigma = 0 12 8 19 11 42 36 98 17 16 

1% n = 200 sigma = 0.1 14 46 19 69 460 18 999 37 37 

1% n = 200 sigma = 0.3 12 14 16 76 819 87 1000 52 49 

1% n = 200 sigma = 0.5 12 8 17 6 42 36 98 17 16 

1% n = 200 sigma = 0.7 9 818 18 962 355 71 999 115 94 

1% n = 200 sigma = 0.9 6 991 17 999 173 24 998 167 159 

1% n = 500 sigma = 0 11 8 16 8 31 29 91 11 12 

1% n = 500 sigma = 0.1 9 207 18 93 922 17 1000 39 38 

1% n = 500 sigma = 0.3 6 21 13 85 999 83 1000 60 56 

1% n = 500 sigma = 0.5 11 8 16 12 31 29 91 11 12 

1% n = 500 sigma = 0.7 11 999 22 1000 895 14 1000 140 135 

1% n = 500 sigma = 0.9 13 1000 23 1000 584 0 1000 192 188 

1% n = 1000 sigma = 0 10 15 12 11 29 31 88 7 9 

1% n = 1000 sigma = 0.1 13 595 12 203 999 10 1000 41 39 

1% n = 1000 sigma = 0.3 12 35 21 103 1000 85 1000 52 53 

1% n = 1000 sigma = 0.5 10 15 11 16 29 31 88 7 9 

1% n = 1000 sigma = 0.7 9 1000 19 1000 1000 0 1000 141 134 

1% n = 1000 sigma = 0.9 10 1000 26 1000 963 0 1000 194 189 

*Frequency of test significance after 1000 replications. 
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replications for errors that follow EHS. As observed from the simulation results 
in Table 1 and Figure 1, the OLS model was not contaminated with level hete-
roscedasticity, but yet tested with the nine various tests of heteroscedasticity to 
detect the true nature of the various test statistics at sample size of n = 30. At 
no presence of heteroscedasticity, the following tests returned the following 
rate in percent of type two error; Goldfeld-Quandt test 0.6%, Studentized 
Breusch-Pagan test 0.3%, White test with 0%, and so on. Making the White test 
the best in terms of detecting no presence of heteroscedasticity (i.e. sigma = 0). 
While the model was infused with the level of heteroscedasticity (i.e. sigma = 0.1, 
0.3, 0.5, 0.7 & 0.9) at sample size of 30. The Glejser test returned the highest re-
turned, the highest presence of heteroscedasticity with 417, 727, 59 and 413 cor-
rected tests results at 0.1, 0.3, 0.5 & 0.7 sigma levels respectively out of every 
1000 replications, thus implying that the Glejser test has the highest rate of type I 
error of 41.7%, 72.7%, 5.9% and 41.3% which makes Glejser the best test when 
sigma is 0.1, 0.3, 0.5 or 0.7 at sample size of 30. Howbeit, Non-constant Variance 
Score Test with 31.4% outperformed the celebrated Glejser test when sigma = 
0.9. 

Moreover, considering sample size 50, at no presence of heteroscedasticity 
(sigma = 0), the following tests returned the following rate in percent of type two 
error; Studentized Breusch-Pagan test 0.6%, Non-constant Variance Score test 
0.6%, White test with 0.3%, and so on (see Table 1 and Figure 1). Hence, White 
test the best in terms of detecting no presence of heteroscedasticity. The Glejser 
test returned the highest returned, the highest presence of heteroscedasticity 
with 656, 950, 68 and 707 corrected tests results at 0.1, 0.3, 0.5 & 0.7 sigma levels  
 

 
Figure 1. Sample size 50 results when error follows EHS at 1%. 

16 6 11 16 6 66 12 12 6

81

18
5

3 5 9 3 4 76 34 53

3

34
8

61
1

37 55

12
9

37

10
0

85

40 22

89

40

11
7

8768

65
6

95
0

68

70
7

47
2

13 30 49 13

67

11
6

12 29 33 12 32 52

sigma=0 sigma=0.1 sigma=0.3 sigma=0.5 sigma=0.7 sigma=0.9

1% ls, n=50

Breusch-Godfrey test studentized Breusch-Pagan tes White's Test

Non-constant Variance Score Test Park test Spearman Rank

GLEJSER test Goldfeld-Quandt test Harrison-McCabe test

https://doi.org/10.4236/ojs.2020.103029


Onifade O. C., Olanrewaju S. O. 
 

 

DOI: 10.4236/ojs.2020.103029 467 Open Journal of Statistics 
 

respectively out of every 1000 replications, thus implying that the Glejser test has 
the highest rate of type I error of 65.6%, 95.0%, 6.8% and 70.7% which makes 
Glejser the best test when sigma is 0.1, 0.3, 0.5 or 0.7 at sample size of 50. How-
ever, Non-constant Variance Score test with 61.1% outperformed the celebrated 
Glejser test when sigma = 0.9.  

In addition, considering sample size 100, at no presence of heteroscedasticity 
(sigma = 0), the following tests returned the following rate in percent of type two 
error; Breusch-Godfrey test 0.9%, Studentized Breusch-Pagan test 0.9%, Park 
test 0.9%, White test with 1.2%, Glejser test 0.6% and so on (see Table 1 and 
Figure 2). Hence, the celebrated White test at sigma = 0 was displayed by Glejser 
test being the best in terms of detecting no presence of heteroscedasticity when 
sample size is 100. The Glejser test returned the highest returned, the highest 
presence of heteroscedasticity with 924, 1000, 73 and 984 corrected tests results 
at 0.1, 0.3, 0.5 & 0.7 sigma levels respectively out of every 1000 replications, thus 
implying that the Glejser test has the highest rate of type I error of 92.4%, 100%, 
7.3% and 98.4% which makes Glejser the best test when sigma is 0.1, 0.3, 0.5 or 
0.7 at sample size of 100. However, Non-constant Variance Score test with 92.9% 
outperformed the celebrated Glejser test when sigma = 0.9.  

Furthermore, considering sample size 200, at no presence of heteroscedasticity 
(sigma = 0), the following tests returned the following rate in percent of type two  
 

 
Figure 2. Sample size 100 results when error follows EHS at 1%. 
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error; Breusch-Godfrey test 1.2%, Studentized Breusch-Pagan test 0.8%, Non- 
constant Variance Score test 1.1%, White test with 1.9% and so on (see Table 1). 
Hence, Studentized Breusch-Pagan test the best in terms of detecting no pres-
ence of heteroscedasticity. The Glejser test returned the highest returned, the 
highest presence of heteroscedasticity with 999, 1000, 98 and 998 corrected tests 
results at 0.1, 0.3, 0.5 & 0.7 sigma levels respectively out of every 1000 replica-
tions, thus implying that the Glejser test has the highest rate of type I error of 
99.9%, 100%, 9.8% and 99.8% which makes Glejser the best test when sigma is 
0.1, 0.3, 0.5 or 0.7 at sample size of 200. However, Non-constant Variance Score 
test with 99.9% outperformed the celebrated Glejser test 99.8% when sigma = 
0.9. 

Additionally, considering sample size 500, at no presence of heteroscedasticity 
(sigma = 0), the following tests returned the following rate in percent of type two 
error; Breusch-Godfrey test 1.2%, Studentized Breusch-Pagan test 0.8%, Non- 
constant Variance Score test 0.8%, White test with 1.6% and so on (see Table 1 
and Figure 3). Hence, Studentized Breusch-Pagan and Non-constant Variance 
Score tests are the best in terms of detecting no presence of heteroscedasticity. 
The Glejser test returned the highest returned, the highest presence of heteros-
cedasticity with 1000, 1000, 91, 1000 and 1000 corrected tests results at 0.1, 0.3, 0.5, 
0.7 & 0.9 sigma levels respectively out of every 1000 replications, thus implying 
 

 
Figure 3. Sample size 500 results when error follows EHS at 1%. 

11 9 6 11 11 138

207

21 8

999 1000

16 18 13 16 22 238

93 85

12

1000 1000

31

922

999

31

895

584

29 17
83

29 14 0

91

1000 1000

91

1000 1000

11 39 60
11

140
192

12 38 56
12

135
188

sigma=0 sigma=0.1 sigma=0.3 sigma=0.5 sigma=0.7 sigma=0.9

Breusch-Godfrey test studentized Breusch-Pagan Test White's Test

Non-constant Variance Score Test Park test Spearman Rank

GLEJSER test Goldfeld-Quandt test Harrison-McCabe test

https://doi.org/10.4236/ojs.2020.103029


Onifade O. C., Olanrewaju S. O. 
 

 

DOI: 10.4236/ojs.2020.103029 469 Open Journal of Statistics 
 

that the Glejser test has the highest rate of type I error of 100%, 100%, 9.1%, 100% 
and 100% which makes Glejser the best test when sigma is 0.1, 0.3, 0.5, 0.7 or 0.9 
at sample size of 500. Interestingly, Studentized Breusch-Pagan recorded 100% 
performance at sigma = 0.9 also, Non-constant Variance Score test recorded 100% 
performance at sigma = 0.7 & 0.9. Hence, Non-constant Variance Score test is al-
so best at sigma 0.7 and 0.9 also, Studentized Breusch-Pagan is best at sigma = 0.9. 

Lastly, considering sample size 1000, at no presence of heteroscedasticity (sigma 
= 0), the following tests returned the following rate in percent of type two error; 
Breusch-Godfrey test 1.0%, Studentized Breusch-Pagan test 1.5%, Non-constant 
Variance Score test1.1%, White test 1.2%, Goldfeld-Quandt test 0.7% and so on 
(see Table 1 and Figure 4). Hence, Goldfeld-Quandt test is the best in terms of 
detecting no presence of heteroscedasticity. The Glejser test returned the highest 
returned, the highest presence of heteroscedasticity with 1000, 1000, 88, 1000 
and 1000 corrected tests results at 0.1, 0.3, 0.5, 0.7 & 0.9 sigma levels respectively 
out of every 1000 replications, thus implying that the Glejser test has the highest 
rate of type I error of 100%, 100%, 8.8%, 100% and 100% which makes Glejser the 
best test when sigma is 0.1, 0.3, 0.5, 0.7 or 0.9 at sample size of 1000. Interesting-
ly, Studentized Breusch-Pagan and Non-constant Variance Score tests recorded 
100% performances at sigma = 0.7 & 0.9 also, Park test recorded 100% perfor-
mance at sigma = 0.7. Hence, Studentized Breusch-Paganand Non-constant Va-
riance Score tests are also best at sigma 0.7 and 0.9 while Park test is also best at 
sigma = 0.7. 

Table 2 presents the frequency of tests of significance at 5% level after 1000 
replications for errors that follow EHS. As observed from the simulation results  
 

 
Figure 4. Sample size 1000 results when error follows EHS at 1% 
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Table 2. Performance of the tests when error follows exponential heteroscedastic structure at 5%. 
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5% n = 30 sigma = 0 66 34 7 35 137 128 241 41 50 

5% n = 30 sigma = 0.1 71 49 11 88 175 102 614 72 60 

5% n = 30 sigma = 0.3 56 67 15 97 276 149 884 105 79 

5% n = 30 sigma = 0.5 66 34 8 40 137 128 241 41 50 

5% n = 30 sigma = 0.7 37 161 15 288 246 190 783 131 70 

5% n = 30 sigma = 0.9 34 263 11 476 201 163 649 161 87 

5% n = 50 sigma = 0 47 40 28 43 151 139 257 61 59 

5% n = 50 sigma = 0.1 57 68 35 82 269 118 819 87 78 

5% n = 50 sigma = 0.3 56 68 39 126 410 187 988 103 94 

5% n = 50 sigma = 0.5 47 40 33 40 151 139 257 61 59 

5% n = 50 sigma = 0.7 47 285 29 502 274 209 964 171 112 

5% n = 50 sigma = 0.9 49 493 29 740 231 172 877 199 163 

5% n = 100 sigma = 0 57 48 55 128 48 139 40 273 58 

5% n = 100 sigma = 0.1 48 94 58 154 455 76 973 103 101 

5% n = 100 sigma = 0.3 51 78 61 171 720 177 1000 118 112 

5% n = 100 sigma = 0.5 58 48 48 43 139 128 273 57 63 

5% n = 100 sigma = 0.7 49 600 63 834 410 156 1000 178 157 

5% n = 100 sigma = 0.9 47 888 50 968 269 83 998 230 206 

5% n = 200 sigma = 0 55 63 68 63 150 123 301 59 55 

5% n = 200 sigma = 0.1 62 183 65 146 732 77 1000 128 123 

5% n = 200 sigma = 0.3 51 66 61 181 965 180 1000 137 133 

5% n = 200 sigma = 0.5 55 63 63 69 150 123 301 59 55 

5% n = 200 sigma = 0.7 49 940 49 986 713 84 1000 198 191 

5% n = 200 sigma = 0.9 47 999 48 1000 463 40 1000 254 251 

5% n = 500 sigma = 0 50 55 57 55 143 136 293 45 44 

5% n = 500 sigma = 0.1 42 484 55 229 976 52 1000 101 98 

5% n = 500 sigma = 0.3 50 83 51 184 1000 185 1000 141 136 

5% n = 500 sigma = 0.5 50 55 56 49 143 136 293 45 44 

5% n = 500 sigma = 0.7 65 999 72 1000 991 15 1000 224 224 

5% n = 500 sigma = 0.9 58 1000 71 1000 872 11 1000 281 278 

5% n = 1000 sigma = 0 35 67 47 50 142 116 283 49 49 

5% n = 1000 sigma = 0.1 40 801 60 342 1000 30 1000 107 108 

5% n = 1000 sigma = 0.3 51 124 62 214 1000 181 1000 129 128 

5% n = 1000 sigma = 0.5 35 67 50 52 142 116 283 49 49 

5% n = 1000 sigma = 0.7 38 1000 66 1000 1000 0 1000 229 223 

*Frequency of test significance after 1000 replications. 
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in Table 2 and Figure 5, the OLS model was not contaminated with level hete-
roscedasticity, but yet tested with the nine various tests of heteroscedasticity to 
detect the true nature of the various test statistics at sample size of n = 30. At no 
presence of heteroscedasticity, the following tests returned the following rate in 
percent of type two error; Goldfeld-Quandt test 4.1%, Studentized Breusch-Pagan 
test 3.4%, White test with 0.7%, and so on. Making the White test the best in 
terms of detecting no presence of heteroscedasticity (i.e. sigma = 0). While the 
model was infused with the level of heteroscedasticity (i.e. sigma = 0.1, 0.3, 0.5, 
0.7 & 0.9) at sample size of 30. The Glejser test returned the highest returned, the 
highest presence of heteroscedasticity with 614, 884, 241, 783 and 649 corrected 
tests results at 0.1, 0.3, 0.5, 0.7 & 0.9 sigma levels respectively out of every 1000 
replications, thus implying that the Glejser test has the highest rate of type I er-
ror of 61.4%, 88.4%, 24.1%, 78.3% and 64.9% which makes Glejser the best test 
when sigma is 0.1, 0.3, 0.5, 0.7 or 0.9 at sample size of 30. 

Moreover, considering sample size 50, at no presence of heteroscedasticity 
(sigma = 0), the following tests returned the following rate in percent of type two 
error; Studentized Breusch-Pagan test 4.7%, Non-constant Variance Score test 
4.3%, White test 2.8% and so on (see Table 2). Hence, White test the best in 
terms of detecting no presence of heteroscedasticity. The Glejser test returned 
the highest returned, the highest presence of heteroscedasticity with 819, 988, 
257, 964 and 877 corrected tests results at 0.1, 0.3, 0.5, 0.7 & 0.9 sigma levels  
 

 
Figure 5. Sample size 30 results when error follows EHS at 5%. 
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respectively out of every 1000 replications, thus implying that the Glejser test has 
the highest rate of type I error of 81.9%, 98.8%, 25.7%, 96.4% and 87.7% which 
makes Glejser the best test when sigma is 0.1, 0.3, 0.5, 0.7 or 0.9 at sample size of 
50. 

In addition, considering sample size 100, at no presence of heteroscedasticity 
(sigma = 0), the following tests returned the following rate in percent of type two 
error; Breusch-Godfrey test 5.7%, Studentized Breusch-Pagan test 4.8%, Park 
test 4.8%, White test 5.5%, Glejser test 4.0% and so on (see Table 2 and Figure 
6). Hence, the celebrated White test at sigma = 0 was outperformed by Glejser 
test being the best in terms of detecting no presence of heteroscedasticity when 
sample size is 100. The Glejser test also returned the highest returned, the high-
est presence of heteroscedasticity with 973, 1000, 273, 1000 and 998 corrected 
tests results at 0.1, 0.3, 0.5, 0.7 & 0.9 sigma levels respectively out of every 1000 
replications, thus implying that the Glejser test has the highest rate of type I er-
ror of 97.3%, 100%, 27.3%, 100% and 99.8% which makes Glejser the best test 
when sigma is 0.1, 0.3, 0.5, 0.7 or 0.9 at sample size of 100. 

Furthermore, considering sample size 200, at no presence of heteroscedasticity 
(sigma = 0), the following tests returned the following rate in percent of type two 
error; Breusch-Godfrey test 5.5%, Studentized Breusch-Pagan test 6.3%, Non- 
constant Variance Score test 6.3%, White test 6.8%, Harrison-McCabe test 5.5% 
and so on (see Table 2). Hence, Harrison-McCabe and Breusch-Godfrey tests 
are the best in terms of detecting no presence of heteroscedasticity. The Glejser 
test returned the highest returned, the highest presence of heteroscedasticity 
with 1000, 1000, 301, 1000 and 1000 corrected tests results at 0.1, 0.3, 0.5, 0.7 & 
0.9 sigma levels respectively out of every 1000 replications, thus implying that 
the Glejser test has the highest rate of type I error of 100%, 100%, 30.1%, 100%  
 

 
Figure 6. Sample size 100 results when error follows EHS at 5%. 
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and 100% which makes Glejser the best test when sigma is 0.1, 0.3, 0.5, 0.7 or 0.9 
at sample size of 200. Interestingly, Non-constant Variance Score test recorded 
100% performance at sigma 0.9. Hence, Non-constant Variance Score test is also 
best at sigma 0.9. 

Additionally, considering sample size 500, at no presence of heteroscedasticity 
(sigma = 0), the following tests returned the following rate in percent of type two 
error; Breusch-Godfrey test 5.0%, Studentized Breusch-Pagan test 5.5%, Non- 
constant Variance Score test 5.8%, White test with 5.7%, Harrison-McCabe 4.4% 
and so on (see Table 2 and Figure 7). Hence, Harrison-McCabe test is the best 
in terms of detecting no presence of heteroscedasticity. The Glejser test returned 
the highest returned, the highest presence of heteroscedasticity with 1000, 1000, 
293, 1000 and 1000 corrected tests results at 0.1, 0.3, 0.5, 0.7 & 0.9 sigma levels 
respectively out of every 1000 replications, thus implying that the Glejser test has 
the highest rate of type I error of 100%, 100%, 29.3%, 100% and 100% which 
makes Glejser the best test when sigma is 0.1, 0.3, 0.5, 0.7 or 0.9 at sample size of 
500. Interestingly, Studentized Breusch-Pagan recorded 100% performance at 
sigma = 0.9 also, Non-constant Variance Score test recorded 100% performance 
at sigma = 0.7 & 0.9. Hence, Non-constant Variance Score test is also best at 
sigma 0.7 and 0.9 also, Studentized Breusch-Pagan is best at sigma = 0.9. 

Lastly, considering sample size 1000, at no presence of heteroscedasticity (sigma 
= 0), the following tests returned the following rate in percent of type two error; 
Breusch-Godfrey test 3.5%, Studentized Breusch-Pagan test 6.7%, White test 4.7% 
and so on (see Table 2 and Figure 8). Hence, Breusch-Godfrey test is the best in 
terms of detecting no presence of heteroscedasticity. The Glejser test returned 
the highest returned, the highest presence of heteroscedasticity with 1000, 1000,  
 

 
Figure 7. Sample size 500 results when error follows EHS at 5%. 
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Figure 8. Sample size 1000 results when error follows EHS at 5%. 
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ity with 295, 353, 353, 353 and 354 corrected tests results at 0.1, 0.3, 0.5, 0.7 & 0.9 
sigma levels respectively out of every 1000 replications, thus implying that the 
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Table 3. Performance of the tests when error follows LHS at 1%. 
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1% n = 30 sigma = 0 3 34 22 10 59 6 18 9 0 

1% n = 30 sigma = 0.1 22 52 71 115 295 86 8 40 0 

1% n = 30 sigma = 0.3 21 123 106 141 353 116 2 53 1 

1% n = 30 sigma = 0.5 21 125 108 143 353 117 2 56 1 

1% n = 30 sigma = 0.7 23 128 107 141 353 119 2 56 1 

1% n = 30 sigma = 0.9 23 125 104 142 354 118 2 56 1 

1% n = 50 sigma = 0 6 37 40 6 68 13 16 12 3 

1% n = 50 sigma = 0.1 28 87 87 217 352 108 11 71 0 

1% n = 50 sigma = 0.3 30 153 195 259 389 123 8 84 4 

1% n = 50 sigma = 0.5 30 144 187 266 391 123 7 83 4 

1% n = 50 sigma = 0.7 30 146 191 266 392 123 7 83 4 

1% n = 50 sigma = 0.9 30 142 190 266 393 124 7 84 3 

1% n = 100 sigma = 0 9 30 25 6 73 9 11 10 12 

1% n = 100 sigma = 0.1 64 132 140 326 474 114 13 105 25 

1% n = 100 sigma = 0.3 63 193 300 388 522 138 10 114 26 

1% n = 100 sigma = 0.5 64 191 302 391 522 138 10 116 26 

1% n = 100 sigma = 0.7 64 190 304 393 520 138 10 116 26 

1% n = 100 sigma = 0.9 64 191 304 394 520 138 10 116 27 

1% n = 200 sigma = 0 8 42 36 11 98 17 12 16 19 

1% n = 200 sigma = 0.1 117 218 231 461 643 137 9 128 28 

1% n = 200 sigma = 0.3 122 283 467 538 687 154 11 143 29 

1% n = 200 sigma = 0.5 120 288 470 540 690 154 11 144 29 

1% n = 200 sigma = 0.7 120 280 473 542 690 155 11 144 29 

1% n = 200 sigma = 0.9 120 272 474 543 689 155 11 144 29 

1% n = 500 sigma = 0 8 31 29 8 91 11 11 12 16 

1% n = 500 sigma = 0.1 379 434 400 676 887 154 8 154 22 

1% n = 500 sigma = 0.3 378 515 709 745 914 167 9 166 28 

1% n = 500 sigma = 0.5 375 514 722 751 915 166 9 167 29 

1% n = 500 sigma = 0.7 375 524 724 753 914 166 9 166 29 

1% n = 500 sigma = 0.9 375 525 724 753 915 165 9 166 29 

1% n = 1000 sigma = 0 15 29 31 11 88 7 10 9 12 

1% n = 1000 sigma = 0.1 676 732 618 870 977 165 6 162 23 

1% n = 1000 sigma = 0.3 691 742 901 912 984 173 5 174 25 

1% n = 1000 sigma = 0.5 691 749 911 914 984 173 5 171 26 

1% n = 1000 sigma = 0.7 691 745 912 914 983 173 5 171 26 

1% n = 1000 sigma = 0.9 691 747 913 915 983 173 5 171 26 

*Frequency of test significance after 1000 replications. 
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Table 4. Performance of the tests when error follows LHS at 5%. 
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5% n = 30 sigma = 0 34 137 128 35 241 41 66 50 7 

5% n = 30 sigma = 0.1 89 228 184 211 516 168 48 122 14 

5% n = 30 sigma = 0.3 93 335 264 253 602 195 46 139 12 

5% n = 30 sigma = 0.5 93 327 255 257 605 196 46 139 10 

5% n = 30 sigma = 0.7 93 335 249 257 608 198 47 139 10 

5% n = 30 sigma = 0.9 93 333 251 260 608 198 47 138 10 

5% n = 50 sigma = 0 40 151 139 43 257 61 47 59 28 

5% n = 50 sigma = 0.1 100 287 235 326 593 187 48 166 33 

5% n = 50 sigma = 0.3 104 374 359 383 662 224 43 183 40 

5% n = 50 sigma = 0.5 103 367 365 382 659 223 43 186 40 

5% n = 50 sigma = 0.7 103 359 368 382 656 222 45 186 40 

5% n = 50 sigma = 0.9 103 363 367 383 655 222 45 187 40 

5% n = 100 sigma = 0 48 139 128 40 273 57 58 63 55 

5% n = 100 sigma = 0.1 164 354 305 446 706 194 55 187 69 

5% n = 100 sigma = 0.3 174 429 471 498 747 218 45 204 69 

5% n = 100 sigma = 0.5 172 436 482 498 748 220 46 206 68 

5% n = 100 sigma = 0.7 172 439 483 498 750 219 47 206 69 

5% n = 100 sigma = 0.9 172 436 479 499 749 219 47 206 68 

5% n = 200 sigma = 0 63 150 123 63 301 59 55 55 68 

5% n = 200 sigma = 0.1 266 491 405 580 858 216 45 212 78 

5% n = 200 sigma = 0.3 278 543 611 635 878 244 45 236 80 

5% n = 200 sigma = 0.5 277 552 622 638 873 248 45 239 80 

5% n = 200 sigma = 0.7 277 547 625 639 873 249 45 243 83 

5% n = 200 sigma = 0.9 278 543 627 639 874 249 45 243 83 

5% n = 500 sigma = 0 55 143 136 55 293 45 50 44 57 

5% n = 500 sigma = 0.1 551 719 595 764 969 215 43 215 66 

5% n = 500 sigma = 0.3 562 750 809 816 980 232 46 231 67 

5% n = 500 sigma = 0.5 564 751 820 825 980 235 47 233 66 

5% n = 500 sigma = 0.7 566 748 822 826 980 235 46 233 65 

5% n = 500 sigma = 0.9 565 752 822 827 980 235 46 233 66 

5% n = 1000 sigma = 0 67 142 116 50 283 49 35 49 47 

5% n = 1000 sigma = 0.1 821 916 782 915 997 253 36 251 66 

5% n = 1000 sigma = 0.3 831 921 946 939 999 263 43 256 70 

5% n = 1000 sigma = 0.5 830 915 951 943 999 261 45 257 70 

5% n = 1000 sigma = 0.7 830 915 951 943 999 262 45 258 70 

5% n = 1000 sigma = 0.9 830 910 952 944 999 262 45 259 71 

*Frequency of test significance after 1000 replications. 
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Figure 9. Sample size 30 results when error follows LHS at 1%. 
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Figure 10. Sample size 50 results when error follows LHS at 1%. 

 

 
Figure 11. Sample size 100 results when error follows LHS at 1%. 
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error; Breusch-Godfrey test 0.8%, Non-constant Variance Score test 1.1%, 
Spearman Rank test 1.7%, White test 2.9%, Harrison-McCabe test 1.9% and so 
on (see Table 3 and Figure 12). Hence, the earlier celebrated Harrison-McCabe 
and Non-constant Variance Score test at sigma = 0 were outperformed by 
Breusch-Godfrey test being the best in terms of detecting no presence of hete-
roscedasticity when sample size is 200. The Park test returned the highest re-
turned, the highest presence of heteroscedasticity with 643, 687, 690, 690 and 
689corrected tests results at 0.1, 0.3, 0.5, 0.7 & 0.9 sigma levels respectively out of 
every 1000 replications, thus implying that the Park test has the highest rate of 
type I error of 64.3%, 68.7%, 69.0%, 69.0% and 68.9% which makes Park the best 
test when sigma is 0.1, 0.3, 0.5, 0.7 or 0.9 at sample size of 200. 

Additionally, considering sample size 500, at no presence of heteroscedasticity 
(sigma = 0), the following tests returned the following rate in percent of type two 
error; Breusch-Godfrey test 0.8%, Non-constant Variance Score test 0.8%, 
Spearman Rank test 1.11%, White test 2.9%, Harrison-McCabe test 1.6% and so 
on (see Table 3 and Figure 13). Hence, Non-constant Variance Score and 
Breusch-Godfrey tests are the best in terms of detecting no presence of heteros-
cedasticity when sample size is 500. The Park test returned the highest returned, 
the highest presence of heteroscedasticity with 887, 914, 915, 914 and 915 cor-
rected tests results at 0.1, 0.3, 0.5, 0.7 & 0.9 sigma levels respectively out of every 
1000 replications, thus implying that the Park test has the highest rate of type I 
error of 88.7%, 91.4%, 91.5%, 91.4% and 91.5% which makes Park the best test 
when sigma is 0.1, 0.3, 0.5, 0.7 or 0.9 at sample size of 500. 

Lastly, considering sample size 1000, at no presence of heteroscedasticity 
(sigma = 0), the following tests returned the following rate in percent of type two  
 

 
Figure 12. Sample size 200 results when error follows LHS at 1%. 
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Figure 13. Sample size 500 results when error follows LHS at 1%. 
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Figure 14. Sample size 1000 results when error follows LHS at 1%. 

 

 
Figure 15. Sample size 30 results when error follows LHS at 5%. 
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60.8% which makes Park the best test when sigma is 0.1, 0.3, 0.5, 0.7 or 0.9 at 
sample size of 30. 

Moreover, considering sample size 50, at no presence of heteroscedasticity 
(sigma = 0), the following tests returned the following rate in percent of type two 
error; Breusch-Godfrey test 4.0%, Spearman Rank tests 6.1%, White test 13.9%, 
Harrison-McCabe test 2.8% and so on (see Table 4). Hence, Harrison-McCabe 
test the best in terms of detecting no presence of heteroscedasticity. The Park 
test returned the highest returned, the highest presence of heteroscedasticity 
with 593, 662, 659, 656 and 655 corrected tests results at 0.1, 0.3, 0.5, 0.7 & 0.9 
sigma levels respectively out of every 1000 replications, thus implying that the 
Park test has the highest rate of type I error of 59.3%, 66.2%, 65.9%, 65.6% and 
65.5% which makes Park the best test when sigma is 0.1, 0.3, 0.5, 0.7 or 0.9 at 
sample size of 50. 

In addition, considering sample size 100, at no presence of heteroscedasticity 
(sigma = 0), the following tests returned the following rate in percent of type two 
error; Breusch-Godfrey test 4.8%, Non-constant Variance Score test 4.0%, 
Spearman Rank test 5.7%, White test 13.9%, Harrison-McCabe test 5.5% and so 
on (see Table 4 and Figure 16). Hence, the celebrated Harrison-McCabe test at 
sigma = 0 was outperformed by Non-constant Variance Score test being the best 
in terms of detecting no presence of heteroscedasticity when sample size is 100. 
The Park test returned the highest returned, the highest presence of heterosce-
dasticity with 706, 747, 748, 750 and 749 corrected tests results at 0.1, 0.3, 0.5, 0.7 
& 0.9 sigma levels respectively out of every 1000 replications, thus implying that 
the Park test has the highest rate of type I error of 70.6%, 74.7%, 74.8%, 75.0%  
 

 
Figure 16. Sample size 100 results when error follows LHS at 5%. 
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and 74.9% which makes Park the best test when sigma is 0.1, 0.3, 0.5, 0.7 or 0.9 
at sample size of 100. 

Additionally, considering sample size 500, at no presence of heteroscedasticity 
(sigma = 0), the following tests returned the following rate in percent of type two 
error; Breusch-Godfrey test 5.5%, Non-constant Variance Score test 5.5%, 
Spearman Rank test 4.5%, White test 13.6%, Harrison-McCabe test 5.7% and so 
on (see Table 4 and Figure 17). Hence, Spearman rank test is the best in terms 
of detecting no presence of heteroscedasticity when sample size is 500. The Park 
test returned the highest returned, the highest presence of heteroscedasticity 
with 969, 980, 980, 980 and 980 corrected tests results at 0.1, 0.3, 0.5, 0.7 & 0.9 
sigma levels respectively out of every 1000 replications, thus implying that the 
Park test has the highest rate of type I error of 96.9%, 98.0%, 8.0%, 8.0% and 8.0% 
which makes Park the best test when sigma is 0.1, 0.3, 0.5, 0.7 or 0.9 at sample 
size of 500. 

Lastly, considering sample size 1000, at no presence of heteroscedasticity 
(sigma = 0), the following tests returned the following rate in percent of type two 
error; Breusch-Godfrey test 6.7%, Non-constant Variance Score test 5.0%, 
Spearman Rank test 4.9%, White test 11.6%, Harrison-McCabe test 4.7% and so 
on (see Table 4 and Figure 18). Hence, Spearman rank test is the best in terms 
of detecting no presence of heteroscedasticity when sample size is 1000. The 
Park test returned the highest returned, the highest presence of heteroscedastic-
ity with 997, 999, 999, 999 and 999 corrected tests results at 0.1, 0.3, 0.5, 0.7 & 0.9 
sigma levels respectively out of every 1000 replications, thus implying that the  
 

 
Figure 17. Sample size 500 results when error follows LHS at 5%. 
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Figure 18. Sample size 1000 results when error follows LHS at 5%. 
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sample size of 1000. 

6. Summary, Conclusions and Recommendations 
6.1. Summary 

This study focuses on comparative analysis that determines the asymptotic be-
haviour of some selected statistical tests for homoscedasticity assumption by 
Monte Carlo simulations, and seeks to recommend the best statistical test for 
detecting heteroscedasticity in a multiple linear regression scenario with varying 
variances. 

6.2. Conclusions 
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analyses show the comparative results of the null hypothesis such that homos-
cedasticity assumption is upheld under four error structures for sample sizes; 30, 
50, 100, 200, 500 and 1000 when 2σ  was varied as follows; 0, 0.1, 0.3, 0.5, 0.7 
and 0.9. 

In the analyses, the homoscedasticity assumption was tested under four dif-
ferent error distributions namely; Exponential Heteroscedastic Structure (EHS), 
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(SHS) and Quadratic Heteroscedastic Structure (QHS), for different sample sizes 
as the 2σ  was varied. However, two major error structures results were re-
ported in course of our study namely Exponential Heteroscedastic Structure 
(EHS) and Linear Heteroscedastic Structure (LHS). The Linear Heteroscedastic 
Structure (LHS) results were adopted as it explains the results in Square-Root 
Heteroscedastic Structure (SHS) and Quadratic Heteroscedastic Structure (QHS). 
Following our findings, Table 5 and Table 6 present the summary of the best 
tests across all board.  

As observed from Table 5 and Table 6:  
- when the OLS model was not contaminated with level heteroscedasticity (i.e. 

sigma = 0) White test returned the best test at sample size 30 and 50 for er-
rors following EHS while;  

- Harrison-McCabe test returned the best for errors following LHS. Still on 
sample size 30 and 50;  

- when the model was infused with the level of heteroscedasticity (i.e. sigma = 
0.1, 0.3, 0.5, 0.7 & 0.9), the Glejser test and Park test returned the best test for 
EHS and LHS respectively at sigma = 0.1, 0.3, 0.5, 0.7 & 0.9 except for EHS at 
sigma = 0.9 Non-constant Variance Score test returned best (0.01 level only);  

 
Table 5. Summary of the best tests (Sample Size 30, 50 and 100). 

N  
EHS LHS 

Sigma 0.01 0.05 0.1 0.01 0.05 0.1 

30 

0 White White White Harrison-McCabe Harrison-McCabe Harrison-McCabe 

0.1 Glejser Glejser Glejser Park Park Park 

0.3 Glejser Glejser Glejser Park Park Park 

0.5 Glejser Glejser Glejser Park Park Park 

0.7 Glejser Glejser Glejser Park Park Park 

0.9 Non-constant Variance Score Glejser Glejser Park Park Park 

50 

0 White White White Harrison-McCabe Harrison-McCabe Harrison-McCabe 

0.1 Glejser Glejser Glejser Park Park Park 

0.3 Glejser Glejser Glejser Park Park Park 

0.5 Glejser Glejser Glejser Park Park Park 

0.7 Glejser Glejser Glejser Park Park Park 

0.9 Non-constant Variance Score Glejser Glejser Park Park Park 

100 

0 Glejser Glejser Glejser 
Non-constant  
Variance Score 

Non-constant  
Variance Score 

Non-constant  
Variance Score 

0.1 Glejser Glejser Glejser Park Park Park 

0.3 Glejser Glejser Glejser Park Park Park 

0.5 Glejser Glejser Glejser Park Park Park 

0.7 Glejser Glejser Glejser Park Park Park 

0.9 Non-constant Variance Score Glejser Glejser Park Park Park 
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Table 6. Summary of the best tests (Sample Size 200, 500 and 1000). 

n Sigma 
EHS LHS 

0.01 0.05 0.1 0.01 0.05 0.1 

200 

0 
Studentized 

Breusch-Pagan 
Harrison-McCabe/ 
Breusch-Godfrey 

Breusch-Godfrey Breusch-Godfrey Spearman rank Spearman rank 

0.1 Glejser Glejser Glejser Park Park Park 

0.3 Glejser Glejser Glejser Park Park Park 

0.5 Glejser Glejser Glejser Park Park Park 

0.7 Glejser Glejser Glejser Park Park Park 

0.9 
Non-constant Variance 

Score 
Glejser/Non-constant 

Variance Score 
Glejser/Non-constant 

Variance Score 
Park Park Park 

500 

0 
Studentized Breusch- 
Pagan/Non-constant 

Variance Score 
Harrison-McCabe Harrison-McCabe 

Non-constant 
Variance Score/ 

Breusch-Godfrey 
Spearman rank Spearman rank 

0.1 Glejser Glejser Glejser Park Park Park 

0.3 Glejser Glejser Glejser/Park Park Park Park 

0.5 Glejser Glejser Glejser Park Park Park 

0.7 
Glejser/Non-constant 

Variance Score 
Glejser/Non-constant 

Variance Score 
Glejser/Non-constant 

Variance Score 
Park Park Park 

0.9 

Glejser/Non-constant 
Variance 

Score/Studentized 
Breusch-Pagan 

Glejser/Non-constant 
Variance 

Score/Studentized 
Breusch-Pagan 

Glejser/Non-constant 
Variance 

Score/Studentized 
Breusch-Pagan 

Park Park Park 

1000 

0 Goldfeld-Quandt Breusch-Godfrey Breusch-Godfrey Spearman rank Spearman rank Spearman rank 

0.1 Glejser Glejser/Park Glejser/Park Park Park Park 

0.3 Glejser/Park Glejser/Park Glejser/Park Park Park Park 

0.5 Glejser Glejser Glejser Park Park Park 

0.7 

Glejser/Non-constant 
Variance 

Score/Studentized 
Breusch-Pagan 

Glejser/Non-constant 
Variance 

Score/Studentized 
Breusch-Pagan/Park 

Glejser/Non-constant 
Variance 

Score/Studentized 
Breusch-Pagan/Park 

Park Park Park 

0.9 

Glejser/Non-constant 
Variance 

Score/Studentized 
Breusch-Pagan 

Glejser/Non-constant 
Variance 

Score/Studentized 
Breusch-Pagan 

Glejser/Non-constant 
Variance 

Score/Studentized 
Breusch-Pagan/Park 

Park Park Park 

 
- Furthermore, at sample size 100 Glejser test returned the best test when sig-

ma is 0, 0.1, 0.3, 0.5 & 0.7 and Non-constant Variance Score test returned 
best when sigma is 0.9 for EHS. While;  

- Park test returned the best test when sigma is 0.1, 0.3, 0.5, 0.7 & 0.9 and 
Non-constant Variance Score test returned best when sigma is 0 for LHS; 

- In addition, at sample size 200 the Glejser test and Park test returned the best 
test for EHS and LHS respectively when sigma = 0.1, 0.3, 0.5, 0.7 & 0.9 except 
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for EHS at sigma = 0.9 for 0.01 level Non-constant Variance Score test re-
turned best;  

- However, when sigma = 0 (no heteroscedasticity) the following tests returned 
best: Studentized Breusch-Pagan (EHS at 0.01 level); Harrison-McCabe/ 
Breusch-Godfrey (EHS at 0.05 level); Breusch-Godfrey (EHS at 0.1 level); 
Breusch-Godfrey (LHS at 0.01); and Spearman rank (LHS at 0.05 & 0.1); 

- Moreover, at sample size 500 the Glejser test and Park test returned the best 
test for EHS and LHS respectively when sigma = 0.1, 0.3, 0.5, 0.7 & 0.9 also 
Non-constant Variance Score at sigma = 0.7 or 0.9 and Studentized Breusch- 
Pagan returned best when sigma = 0.9 for EHS;  

- However, when sigma = 0 (no heteroscedasticity) the following tests returned 
best: Studentized Breusch-Pagan/Non-constant Variance Score (EHS at 0.01 
level); Harrison-McCabe (EHS at 0.05 level); Harrison-McCabe (EHS at 0.1 
level); Non-constant Variance Score/Breusch-Godfrey (LHS at 0.01); and 
Spearman rank (LHS at 0.05 & 0.1); 

- Lastly, at sample size 1000 the Glejser test and Park test returned the best test 
for EHS and LHS respectively when sigma = 0.1, 0.3, 0.5, 0.7 & 0.9;  

- Also the following test returned best: Park (EHS at sigma 0.3 and 0.01 level); 
Non-constant Variance Score/Studentized Breusch-Pagan (EHS; sigma 0.7 & 
0.9 at 0.01 level); Park (EHS; sigma 0.3 & 0.9 at 0.05 and 0.1 levels); and 
Non-constant Variance Score/Studentized Breusch-Pagan/Park (EHS; sigma 
0.7 & 0.9 at 0.05 and 0.1 levels);  

- However, when sigma = 0 (no heteroscedasticity) the following tests returned 
best: Goldfeld-Quandt (EHS at 0.01 level); Breusch-Godfrey (EHS at 0.05 and 
0.1 levels); and Spearman rank (LHS at 0.01, 0.05 & 0.1 levels). 

6.3. Recommendations 

From the aforementioned, the following are recommended: 
1) White and Harrison-McCabe tests should be employed to check for ho-

moscedasticity in EHS and LHS respectively for sample size 30 and 50 (Small 
samples). 

2) others can be employed as follows Glejser (EHS at n = 100), Non-constant 
Variance Score (LHS at n = 100), Studentized Breusch-Pagan (EHS at n = 200, 
0.01 level), Harrison-McCabe/Breusch-Godfrey (EHS at n = 200, 0.05 level), 
Breusch-Godfrey (EHS at n = 200, 0.1 level), Breusch-Godfrey (LHS at n = 200, 
0.01), Spearman rank (LHS at n = 200, 0.05 & 0.1), Studentized Breusch-Pagan/ 
Non-constant Variance Score (EHS at n = 500, 0.01 level) (Moderate samples).  

3) Harrison-McCabe (EHS at n = 500, 0.05 level), Harrison-McCabe (EHS at n 
= 500, 0.1 level), Non-constant Variance Score/Breusch-Godfrey (LHS at n = 500, 
0.01), Spearman rank (LHS at n = 500, 0.05 & 0.1), Goldfeld-Quandt (EHS at n = 
1000, 0.01 level), Breusch-Godfrey (EHS at n = 1000, 0.05 and 0.1 levels), 
Spearman rank (LHS at n = 1000, 0.01, 0.05 & 0.1 levels) (Large samples). 

4) Glejser and Park tests should be employed to check for heteroscedasticity in 
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EHS and LHS respectively. 
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Appendix 1 

Performance of the Tests when Error follows Quadratic Structure (QHS) at 1% 
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1% n = 30 sigma = 0 3 34 22 10 59 6 18 9 0 

1% n = 30 sigma = 0.1 22 52 71 115 295 86 8 40 0 

1% n = 30 sigma = 0.3 21 123 106 141 353 116 2 53 1 

1% n = 30 sigma = 0.5 21 125 108 143 353 117 2 56 1 

1% n = 30 sigma = 0.7 23 128 107 141 353 119 2 56 1 

1% n = 30 sigma = 0.9 23 125 104 142 354 118 2 56 1 

1% n = 50 sigma = 0 6 37 40 6 68 13 16 12 3 

1% n = 50 sigma = 0.1 28 87 87 217 352 108 11 71 0 

1% n = 50 sigma = 0.3 30 153 195 259 389 123 8 84 4 

1% n = 50 sigma = 0.5 30 144 187 266 391 123 7 83 4 

1% n = 50 sigma = 0.7 30 146 191 266 392 123 7 83 4 

1% n = 50 sigma = 0.9 30 142 190 266 393 124 7 84 3 

1% n = 100 sigma = 0 9 30 25 6 73 9 11 10 12 

1% n = 100 sigma = 0.1 64 132 140 326 474 114 13 105 25 

1% n = 100 sigma = 0.3 63 193 300 388 522 138 10 114 26 

1% n = 100 sigma = 0.5 64 191 302 391 522 138 10 116 26 

1% n = 100 sigma = 0.7 64 190 304 393 520 138 10 116 26 

1% n = 100 sigma = 0.9 64 191 304 394 520 138 10 116 27 

1% n = 200 sigma = 0 8 42 36 11 98 17 12 16 19 

1% n = 200 sigma = 0.1 117 218 231 461 643 137 9 128 28 

1% n = 200 sigma = 0.3 122 283 467 538 687 154 11 143 29 

1% n = 200 sigma = 0.5 120 288 470 540 690 154 11 144 29 

1% n = 200 sigma = 0.7 120 280 473 542 690 155 11 144 29 

1% n = 200 sigma = 0.9 120 272 474 543 689 155 11 144 29 

1% n = 500 sigma = 0 8 31 29 8 91 11 11 12 16 

1% n = 500 sigma = 0.1 379 434 400 676 887 154 8 154 22 

1% n = 500 sigma = 0.3 378 515 709 745 914 167 9 166 28 

1% n = 500 sigma = 0.5 375 514 722 751 915 166 9 167 29 

1% n = 500 sigma = 0.7 375 524 724 753 914 166 9 166 29 

1% n = 500 sigma = 0.9 375 525 724 753 915 165 9 166 29 

1% n = 1000 sigma = 0 15 29 31 11 88 7 10 9 12 
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Continued 

1% n = 1000 sigma = 0.1 676 732 618 870 977 165 6 162 23 

1% n = 1000 sigma = 0.3 691 742 901 912 984 173 5 174 25 

1% n = 1000 sigma = 0.5 691 749 911 914 984 173 5 171 26 

1% n = 1000 sigma = 0.7 691 745 912 914 983 173 5 171 26 

1% n = 1000 sigma = 0.9 691 747 913 915 983 173 5 171 26 

*Frequency of test significance after 1000 replications. 

 
Performance of the Tests when Error follows Quadratic Structure (QHS) at 5% 
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5% n = 30 sigma = 0 34 137 128 35 241 41 66 50 7 

5% n = 30 sigma = 0.1 89 228 184 211 516 168 48 122 14 

5% n = 30 sigma = 0.3 93 335 264 253 602 195 46 139 12 

5% n = 30 sigma = 0.5 93 327 255 257 605 196 46 139 10 

5% n = 30 sigma = 0.7 93 335 249 257 608 198 47 139 10 

5% n = 30 sigma = 0.9 93 333 251 260 608 198 47 138 10 

5% n = 50 sigma = 0 40 151 139 43 257 61 47 59 28 

5% n = 50 sigma = 0.1 100 287 235 326 593 187 48 166 33 

5% n = 50 sigma = 0.3 104 374 359 383 662 224 43 183 40 

5% n = 50 sigma = 0.5 103 367 365 382 659 223 43 186 40 

5% n = 50 sigma = 0.7 103 359 368 382 656 222 45 186 40 

5% n = 50 sigma = 0.9 103 363 367 383 655 222 45 187 40 

5% n = 100 sigma = 0 48 139 128 40 273 57 58 63 55 

5% n = 100 sigma = 0.1 164 354 305 446 706 194 55 187 69 

5% n = 100 sigma = 0.3 174 429 471 498 747 218 45 204 69 

5% n = 100 sigma = 0.5 172 436 482 498 748 220 46 206 68 

5% n = 100 sigma = 0.7 172 439 483 498 750 219 47 206 69 

5% n = 100 sigma = 0.9 172 436 479 499 749 219 47 206 68 

5% n = 200 sigma = 0 63 150 123 63 301 59 55 55 68 

5% n = 200 sigma = 0.1 266 491 405 580 858 216 45 212 78 

5% n = 200 sigma = 0.3 278 543 611 635 878 244 45 236 80 

5% n = 200 sigma = 0.5 277 552 622 638 873 248 45 239 80 

5% n = 200 sigma = 0.7 277 547 625 639 873 249 45 243 83 

5% n = 200 sigma = 0.9 278 543 627 639 874 249 45 243 83 
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Continued 

5% n = 500 sigma = 0 55 143 136 55 293 45 50 44 57 

5% n = 500 sigma = 0.1 551 719 595 764 969 215 43 215 66 

5% n = 500 sigma = 0.3 562 750 809 816 980 232 46 231 67 

5% n = 500 sigma = 0.5 564 751 820 825 980 235 47 233 66 

5% n = 500 sigma = 0.7 566 748 822 826 980 235 46 233 65 

5% n = 500 sigma = 0.9 565 752 822 827 980 235 46 233 66 

5% n = 1000 sigma = 0 67 142 116 50 283 49 35 49 47 

5% n = 1000 sigma = 0.1 821 916 782 915 997 253 36 251 66 

5% n = 1000 sigma = 0.3 831 921 946 939 999 263 43 256 70 

5% n = 1000 sigma = 0.5 830 915 951 943 999 261 45 257 70 

5% n = 1000 sigma = 0.7 830 915 951 943 999 262 45 258 70 

5% n = 1000 sigma = 0.9 830 910 952 944 999 262 45 259 71 

*Frequency of test significance after 1000 replications. 
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