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Abstract 
The measurements on actual traffic have revealed the existence of meta-stable 
states with high flow. Such nonlinear phenomena have not been observed in 
the classic Nagel-Schreckenberg traffic flow model. Here we just add a con-
straint to the classic model by introducing a velocity-dependent randomiza-
tion. Two typical randomization strategies are adopted in this paper. It is 
shown that the Matthew effect is a necessary condition to induce traffic me-
ta-stable states, thus shedding a light on the prerequisites for the emergence 
of hysteresis loop in the fundamental diagrams. 
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1. Introduction 

In the past decades, a lot of attention has been devoted to the study of traffic 
flow. Since the seminal work of Nagel and Schreckenberg in the early 1990s [1], 
a number of cellular automata models describing traffic flow have been pro-
posed in order to consider the real traffic scenes such as road blocks, intersec-
tions, adverse weather conditions, and so on. These cellular automata models 
can be used in real-time simulation very effectively, and they successfully repli-
cate many nonlinear phenomena which are consistent with the actual traffic. 

In recent years, the cellular automata models have been extended to inves-
tigate the meta-stable states in traffic systems [2]-[8]. The meta-stable states 
are usually represented as a hysteresis loop in the fundamental diagram. The 
latter is a consequence of phase separation within a certain density range. The 
slow-to-start rule can reduce the outflow of the traffic congestion area and keep 
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the inflow unchanged, so the congestion area gradually expands, resulting in 
phase separation [9] [10]. The slow-to-start rule was once considered as a ne-
cessary condition to induce traffic meta-stable states. 

The study of meta-stable states is of great practical significance. On the 
smooth road, using cruise constant velocity can keep the vehicles running at a 
constant velocity and reduce fuel consumption. Based on this fact, D. Chowd-
hury et al. proposed a cruise-control limit model, which successfully reproduced 
the meta-stable states in traffic system [11]. This meta-stable state strategy has 
been applied to Lincoln and Holland tunnels in New York City to reduce fre-
quent traffic congestions. Both the slow-to-start and the cruise-control limit can 
keep the vehicles in a meta-stable state with high flow, rather than transition to a 
congestion state, which effectively relieves the traffic pressure. 

2. Model 

For the sake of completeness, let us briefly recall the evolution rules of the classic 
Nagel-Schreckenberg model. This set of rules describes the principles that the 
vehicles must follow when driving on a one-dimensional ring road. The road is 
divided into a series of cells. Each cell is either empty or occupied by just one ve-
hicle with a discrete velocity ( ) [ ]max0,iv t v∈ . Here maxv  is the velocity limit of 
the vehicles. The density ρ  of the road is defined as the ratio of the number N 
of vehicles to the length L of the road, i.e., N Lρ = . 

The configurations of the vehicles are updated in parallel according to the fol-
lowing four rules. R1: Acceleration, ( ) ( )( )max1 3 min 1,i iv t v t v+ = + ; R2: Brak-

ing, ( ) ( ) ( )( )2 3 min 1 3 ,i i iv t v t d t+ = + ; R3: Randomization (with probability 

p), ( ) ( )( )1 max 2 3 1,0i iv t v t+ = + − ; R4: Location updating,  

( ) ( ) ( )1 1i i ix t x t v t+ = + + . Here ( )ix t  and ( )iv t  are the position and the ve-

locity of ith vehicle at time t. The parameter ( )id t  is the empty cells between 
vehicle i and the nearest neighbor vehicle 1i +  in front of it. 

Although these rules seem simple, they can simulate some complex traffic 
phenomena such as the free flow and ghostly congestion. Rule 1 characterizes a 
driver’s trait to drive as fast as possible without exceeding the maximum velocity 
limit. Rule 2 is designed to avoid collisions between vehicles. Rule 3 requires 
drivers to slow down randomly and change their visual angle, so as to effectively 
alleviate visual fatigue. The randomization is crucial for the spontaneous emer-
gence of traffic jams. 

In the classic Nagel-Schreckenberg traffic flow model, the meta-stable states 
will not occur, because the indiscriminate randomization makes the homoge-
neous structure of the system difficult to maintain. In this paper, we do not 
modify the evolution rules of Nagel-Schreckenberg model, but add a specific 
function to control the random slowing probability of each vehicle. The de-
termination of random slowing probability is placed before the acceleration step. 
R0: ( ) ( )( )0i ip t p g v t= . Here ( )g x  is a bounded sine or cosine function. 
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3. Main Results 

For simplicity, only one type of vehicles is considered in this paper and therefore 
the same maximum velocity max 5v =  is applied to all vehicles. For a realistic 
description of highway traffic, the length of a cell is set to 7.5 m, which is inter-
preted as the length of one vehicle plus the average gap between two adjacent 
vehicles in a jam. 

First, we show the differences of fundamental diagrams for three different 
control strategies, as shown in Figure 1(a). For the sine or cosine control strate-
gy, its peak value 0p  is set to 0.35. As a contrast, the middle curve in Figure 
1(a) is controlled by a constant control strategy, i.e., 0.25p = , because the ef-
fective value of the sine or cosine wave is 0.707 times of its peak value. 

The cosine control strategy mainly limits the low-velocity vehicles, but has no 
limit to the vehicles with maximum velocity. At the low density, only vehicles 
with the cosine control strategy can drive at maximum velocity, as shown in 
Figure 1(b). 

Under the control of the sinusoidal law, the vehicles traveling at maximum 
velocity are most restricted, while the stationary vehicle can start at any time as 
long as there is free space in front of it. Therefore, in the middle and high densi-
ty areas, the traffic flow under the control of sine function is significantly higher 
than the other two strategies, as shown in Figure 1(a). 

On one hand, the cosine control strategy requires that the vehicles running at 
the maximum velocity do not slow down randomly, which corresponds to the 
phenomenon of “rich get richer” in life. On the other hand, it demands the sta-
tionary vehicles to slow start, which is equivalent to the phenomenon of “poor 
get poorer” in life. In this sense, the cosine control strategy is equivalent to Mat-
thew effects, which is conducive to the separation of phases and the emergence 
of meta-stable states. 

In Figure 2, 0p  is set to 0.3 because the maximum flows obtained from the 
two different control strategies are 1872 vehicles per hour and 2160 vehicles per 
hour respectively, which is consistent with the current single lane capacity of ex-
pressways. In Figure 2(a), we obtain two different fundamental diagrams start-
ing with two different initial configurations, labeled as homogeneous and ran-
dom initializations, respectively. The upper branch corresponds to the calcula-
tion starting with a homogeneous initialization, while the lower branch is ob-
tained starting from a random configuration. In certain regions, the traffic flow 
is no longer a single value function of density, which is known as meta-stable re-
gions. It is obvious that Matthew effects induce meta-stable states in traffic sys-
tems. However, for the sine control strategy the two curves in Figure 2(b) show 
a typical second-order phase transition with a perfect match between homoge-
neous and random initializations. 

4. Minor Perturbation 

In this section, we show the effect of a minor perturbation on the traffic system.  
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Figure 1. Flow-density and average velocity-density diagrams under three different 
control strategies (a) The fundamental diagrams for different randomization 
functions. As a contrast, the middle curve adopts a constant control strategy. (b) 
Under the same conditions, the evolution of average velocity with density. 

 

 

Figure 2. The fundamental diagrams obtained from two different control strategies. 
(a) the cosine control strategy; (b) the sine control strategy. The hollow dots are 
obtained from a homogeneous initial state, while the solid dots from a random 
initial configuration. The parameter p0 is set to 0.3. 

 
Figure 3(a) shows that when there is no perturbation the queue of vehicles is 
orderly and runs at the maximum velocity. A minor perturbation leads to the 
spontaneous emergence and cascading effects of traffic congestions. In this uni-
form and dense region, the gap between adjacent vehicles just meets the demand 
of maximum velocity driving. In the region all following vehicles have to slow 
down to avoid rear end collision once a vehicle in front is disturbed. After being 
disturbed, the orderly pace of the vehicles is broken. This kind of damage is ir-
reversible, and cannot be repaired by itself with the passage of time, resulting in 
a sharp decline in traffic flow, as shown in Figure 3(b). According to the control 
function of randomization, the slower the velocity is, the greater the random 
slowing probability is. The chain reaction of following vehicles eventually leads 
to the expansion of traffic congestion. 

For the random initial configuration, at the same traffic density there are al-
ready traffic congestions in the lane. After being disturbed, the chain reaction of 
subsequent vehicles leads to new traffic congestions. The new traffic congestions 
here relieve the traffic pressure elsewhere, so the width of the early traffic con-
gestions in the system becomes narrow as shown in Figure 4(a). This mechan-
ism of “as one falls, another rises” leads to the fluctuation of traffic flow, as 
shown in Figure 4(b). 

For the sine control strategy, at the same traffic density some small traffic 
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congestions are randomly scattered on the lane, as shown in Figure 5(a). Ac-
cording to the control function of randomization, the slower the velocity is, the 
smaller the random slowing probability is. Static vehicles start fast, high-velocity 
vehicles slow down fast, so traffic congestions happen and disappear from time 
to time. Figure 5(a) is also disturbed after 100 evolution time steps. However, 
we can not even find the disturbed position accurately. This kind of spa-
tial-temporal distribution, which has little difference before and after the per-
turbation, will not cause the great change of traffic flow naturally, as shown in 
Figure 5(b). Compared with Figure 4(b), the traffic flow here is more stable and 
the anti-interference ability is stronger.  

5. Conclusion 

In this paper, the main factors and limiting conditions of meta-stable and hyste-
retic phenomena are explored. Although the Nagel-Schreckenberg model itself 
cannot reflect the meta-stable and hysteretic phenomena found in real traffic, it 
can capture more complex traffic phenomena with a little modification. For any 
traffic flow model, it is a challenge to describe the possibility of hysteresis loop. 
Our study generalizes some of the previous results and extends the possibility of  

 

 

Figure 3. Spatiotemporal evolutions under a minor disturbance and corresponding 
change of flow. (a) The spatial-temporal diagrams at 0.15ρ =  for the upper 
branch of the cosine control strategy. The vehicles are moving from left to right. A 
vehicle is plotted by a black dot. The time axis is vertical down. After the system 
reaches a steady state, a randomly selected vehicle is forbidden to move within 5 
time steps. (b) Under the same conditions, the evolution of traffic flow with time. 

 

 

Figure 4. Spatiotemporal evolutions under a minor disturbance and corresponding 
change of flow. (a) The spatial-temporal diagrams at 0.15ρ =  for the lower 
branch of the cosine control strategy. The vehicles are moving from left to right. A 
vehicle is plotted by a black dot. The time axis is vertical down. After the system 
reaches a steady state, a randomly selected vehicle is forbidden to move within 5 
time steps. (b) Under the same conditions, the evolution of traffic flow with time. 
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Figure 5. Spatiotemporal evolutions under a minor disturbance and corresponding 
change of flow. (a) The spatial-temporal diagrams at 0.15ρ =  for the sine 
control strategy. The vehicles are moving from left to right. A vehicle is plotted 
by a black dot. The time axis is vertical down. After the system reaches a steady 
state, a randomly selected vehicle is forbidden to move within 5 time steps. (b) 
Under the same conditions, the evolution of traffic flow with time. 

 
meta-stable states in traffic systems to a general criterion. Only when the Mat-
thew effect is embedded in the evolution rules, the meta-stable state will appear 
as scheduled. Our results will pave the way for the research with the same dy-
namic background in the real traffic systems. 
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