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Abstract 
This paper is concerned with some chaotic properties of a kind of coupled 
map lattices, which is proposed by Kaneko. First, this research discussed the 
sensitivity, infinite sensitivity, transitivity, accessibility, densely Li-Yorke sen-
sitivity and exact of coupled map lattices. Then, some sufficient conditions 

under which ( ), ,d F ∞
∞

∞
∞ ∆

∆  is Kato chaotic, positive entropy chaotic and Ru-

elle-Takens chaos are obtained. 
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1. Introduction 

In 1983, Kaneko [1] proposed coupled map lattices (Short for CMLs). Then, in 
biophysics, materials, chaos, image processing, CMLs are intensively discussed 
(Refer to literature [2]-[8] and others). In 2005, the literature [9] showed that 
CMLs have some topology and ergodic properties. In 2010, Juan Lu [10] pre-
sented a definition of distributional chaos on a sequence (DCS) for CML systems 
and stated two different sufficient conditions for having DCS. In 2010, Juan Luis 
[11] proved that this CML system has positive topological entropy for zero 
coupling constant. In 2016, Risong Li [12] [13] had obtained some relevant con-
clusions for the zero coupling constant and proved that the system has three 
kinds of chaos. In this paper, the following CML from [14] is considered. 

( ) ( ) ( )1, , , 11m n m n m nx f x f xε ε+ −= − +                (1) 

where ,m nx I∈ , { }0 0,1, 2,m∈ =  , { }, 1,0,1,n∈ = −  , I is a 
non-degenerate compact interval, f is a map on I, and [ ]0,1ε ∈  is a constant. 
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For t∈ , let { }, 1,t t t= +   and  
( ){ } ( ) ( ) ( ){ }0, : , 0, 1 , 0,0 , 0,1 ,n nΩ = ∈ = −   . For any sequence { }0,nφ φ

∞

∞
=  

on Ω , by induction, one can obtain a double-indexed sequence  

{ }, : 0,1, 2, ; , 1,0,1,m nx x m n= = = −   , which is said to be a solution of the 
above system (1) with initial condition φ . 

Let I be a subset of real number set, write  

{ } ( ){ }1 0 1, , , , : ,n nn
I a a a a a I n∞∞
∞ −=−∞
= = ∈ ∈    

and  

( ){ }1 0 1, , , , : , ,i ja a a a a I i j∞
∞ −∆ = = ∈ ∈    

which is called the diagonal set of I ∞∞ . 
For arbitrary, two sequences { }1 1,n n

x x
∞

=−∞
= , { }2 2,n n

x x I
∞ ∞

∞=−∞
= ∈ , it is easy to 

prove that  

( ) { }1 2 1, 2,, sup : , 1,0,1,n nd x x x x n= − = −              (2) 

is a metric on I ∞∞ . 
Let :f I I  be a continuous map and { }, 0: ,m nx x m n= ∈ ∈   be a so-

lution of the above system (1) with initial condition { }0,n Iφ φ
∞ ∞

∞∞
= ∈ . 

Let  

{ } ( ), , 1 ,0 ,1 0, , , , , ,m m n m m mn
x x x x x m

∞

−=−∞
= = ∀ ∈    

and  

{ } ( ) ( )1 1, 1, 1 1,0 1,1 0, , , , , ,m m n m m m mn
x x x x x F x m

∞

+ + + − + +=−∞
= = = ∀ ∈    

where { }0 0, 0,n n n
x xφ φ

∞

=−∞
= = =  and  

( ) ( ) ( )1, , , 1 01 , , .m n m n m nx f x f x m nε ε+ −= − + ∀ ∈ ∈   

Then, one can see that the above system (1) is equivalent to the following sys-
tem 

( )1 , , 0,1, 2,m m mx F x x I m∞
+ ∞= ∈ =                   (3) 

For the above system (3), the map F is said to be induced by the system (1). 
Obviously, a double-indexed sequence { }, 0: ,m nx m n∈ ∈   is a solution of the 
above system (1) if and only if the sequence { }{ }, 0

0
:m m n n m

x x m
∞∞

=−∞ =
= ∈  is a 

solution of the above system (3). 
Next section, the definitions of sensitive, infinite sensitive, transitive, accessi-

bility, densely Li-Yorke sensitive and exact will be reviewed. And then, in section 
3, it is proved that the system ( ), ,d F ∞

∞

∞
∞ ∆

∆  satisfies three definitions of chaos 
(Kato chaotic, positive entropy chaotic and Ruelle-Takens chaos) under the con-
ditions that f is chaos in these sense. 

2. Preliminaries  

After T. Y. Li and J. A. Yorke [15] first put forward the mathematical definition 
of “chaos”, many other definitions of chaos appeared later. For example, sensi-
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tivity, infinite sensitivity, transitivity, accessibility, densely Li-Yorke sensitivity, 
Kato chaotic, positive entropy chaotic, Ruelle-Takens chaos, and so on. 

Definition 1. Let ( ),X ρ  be a metric space and :f X X  be a conti-
nuous function. f is said to be 

1) transitive if for any nonempty open subsets 1 2,U U Y⊂ , ( )1 2
nf U U ≠ ∅  

for some integer n∈  (see [16]). 
2) sensitive if there exist 0η >  such that for any x X∈  and 0ε > , there 

exists ( ),y B x ε∈  and n∈  such that ( ) ( )( ),n nf x f yρ  (see [17]). 
3) infinitely sensitive if there exist 0η >  such that for any x X∈  and 

0ε > , there exists ( ),y B x ε∈  and n∈  such that  
( ) ( )( )limsup ,n n

n
f x f yρ η

→∞
≥  (see [17]). 

4) accessible if for any 0ε >  and any two nonempty open subsets 

1 2,U U X⊂ , there are two points 1x U∈  and 2y U∈  such that  
( ) ( )( ),n nf x f yρ ε<  for some integer 0n >  (see [16]). 

5) exact if for any open subset U X⊂ , there is m∈  such that 
( )mf U X=  (see [18]).  

Remark 1. [19] There is another equivalent definition of transitivity. 
:f X X  is said to be transitivity, if there is an 0x X∈  such that 

( )0fOrb x X= . Where, ( ) ( ){ }0 0 | 0,1, 2,n
fOrb x f x n= =   is called the orbit of 

the point 0x .  

Definition 2. 1) A dynamic system ( ),X f  (or the map :f X X→ ) is 
Li-Yorke sensitive, if for any x X∈  has ( )x Q fδ∈  for some 0δ > . 

2) A dynamic system ( ),X f  (or the map :f X X→ ) is densely Li-Yorke 
sensitive if ( )Q fδ  is dense in X for some 0δ > . Among them, 

( ) ( ) ( ) ( ){ }: 0, , such that , ,Q f x X y B x x y LY fδ ρε ε δ= ∈ ∀ > ∃ ∈ ∈  

( ) ( ) ( ) ( )( ){
( ) ( )( )

, , : limsup ,

and liminf , 0

n n

n

n n

n

LY f x y X X f x f y

f x f y

ρ δ ρ δ

ρ

→∞

→∞

= ∈ × >

= 


 

Definition 3. 1) A dynamic system ( ),X f  (or the map :f X X→ ) is Ka-
to chaotic if it is sensitive and accessible (see [20]). 

2) A dynamic system ( ),X f  (or the map :f X X→ ) is chaotic in the 
sense of Ruelle and Takens (short for R-T chaotic) if it is transitive and sensitive 
(see [21]).  

Proposition 1. A dynamic system ( ),X f  (or the map :f X X→ ) is 
Li-Yorke sensitive if and only if ( )P f Xδ =  for some 0δ > . Among them,  

( ) ( ) ( ) ( )( ){ }: 0, , , such that ,n nP f x X y B x n f x f yδ ε ε ρ δ= ∈ ∀ > ∃ ∈ ∃ ∈ >  

Proposition 2. [17] A dynamical system ( ),X f  is infinitely sensitive if and 
only is it is sensitive.  

Proposition 3. [22] A dynamical system ( ),X f  is dense Li-Yorke sensitivi-
ty, then it is Topological mixing (or its topological entropy is positive).  
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3. Main Results  

In this section, let X I= . The metric ρ  in I is defined by  
( ) ( ), ,a b a b a b Iρ = − ∀ ∈ . The metric d in I ∞∞  is defined by (2). 

Theorem 1. If f is transitive, then the system ( ), ,d F ∞
∞

∞
∞ ∆

∆  is transitive.  

Proof. Since f is transitive, then there exist a I∈  satisfying ( )fOrb a I= . Then 

for any b I∈  and any 0ε > , ( ) ( ), fB b Orb aε ≠ ∅ . That is, there exists a 

0 0k >  such that ( )( ) ( )0 0,k kf a b f a bρ ε= − < . Take  

( )0 , , , ,x a a a ∞
∞= ∈∆  . It is easy to see, for any k ∈ ,  

( ) ( ){ }0
k k

n
F x f a

∞

=−∞
= . Then,  

( ) ( ){ }0
k

F n k
Orb x f a

∞

=−∞ ∈
=


. For any ( ), , , ,y b b b ∞

∞= ∈∆   and above 

0 0k > ,  

( )( ) ( ){ } ( )0 0 0
0 , sup : .k k kd F x y f a b n f a b ε= − ∈ = − <  

So, ( ) ( )0, FB y Orb xε ≠ ∅ . 
Thus, the system ( ), ,d F ∞

∞

∞
∞ ∆

∆  is transitive.  
Theorem 2. If f is sensitive, then the system ( ), ,d F ∞

∞

∞
∞ ∆

∆  is sensitive.  
Proof. Take ( ){ }1 0 0, , , , : ,nx x x x a I n I∞ ∞

∞ − ∞∆ = = ∈ ∈ ⊂   ,  

{ }, , , ,x a a a∀ =   , { }, , , ,y b b b ∞
∞= ∈∆  , x y≠ . It is easy to know that, for 

k∀ ∈ ,  

( ) ( ){ } ( ) ( ){ }, .k k k k

n n
F x f a F y f b

∞ ∞

=−∞ =−∞
= =  

So, for k∀ ∈ ,  

( ) ( )( ) ( ){ } ( ){ }( )
( ) ( ){ }

( ) ( )

, ,

sup , , 1,0,1,

.

k k k k

n n

k k

k k

d F x F y d f a f b

f a f b k

f a f b

∞ ∞

=−∞ =−∞
=

= − = −

= −

   

Since f is Sensitive, so there exists a 0 0ε >  such that for any p I∈  and any 
0δ > , there exists a ( ), ,pq B pδ δ∈  and ,pn δ ∈  such that  
( ) ( ), ,

, 0,p pn n
pf p f qδ δ
δ ε> . So for any fixed ( ), , , ,x p p p ∞

∞= ∈∆   and any 
0δ > , taking ( ), , ,, , , ,p p py q q qδ δ δ

∞
∞= ∈∆  , one has that,  

( ) { }, , , ,, sup , , , , ,p p p pd x y p q p q p q p qδ δ δ δ δ= − − − = − <   

that is ( ),y B x δ∈ . And because  

( ) ( )( ) ( ) ( ), , , ,
, 0, ,p p p pn n n n

pd F x F y f p f qδ δ δ δ
δ ε= − >  

so F ∞
∞∆

 is sensitive.  
Corollary 1. If f is chaotic in the sense of Ruelle and Takens, then the system 

( ), ,d F ∞
∞

∞
∞ ∆

∆  is chaotic in the sense of Ruelle and Takens.  
Proof. According to Theorem 1, Theorem 2 and the definition of R-T chaos, 
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the conclusion is obvious.  
According to Proposition 2 and Theorem 2, the following Corollary is hold. 
Corollary 2. If f is infinitely sensitive, then the system ( ), ,d F ∞

∞

∞
∞ ∆

∆  is sensi-
tive.  

In fact, there is a stronger conclusion. 
Theorem 3. If f is infinitely sensitive, then the system ( ), ,d F ∞

∞

∞
∞ ∆

∆  is infi-
nitely sensitive.  

Proof. Since f is infinitely sensitive, then there exists a 0δ >  such that for 
any a I∈  and any ε , there exists ( ), ,ab B aε ε∈  and ,an ε ∈  such that 

( ) ( )( ), ,

,
,limsup ,a a

a

n n
a

n
f a f bε ε

ε
ερ δ

→∞
≥ . So for any fixed ( ), , , ,x a a a ∞

∞= ∈∆  , 
and any 0ε > , taking ( ), , ,, , , ,a a ax b b bε ε ε

∞
∞= ∈∆  , one has that  

( ) { }, , , ,, sup , , , , ,a a a ad x y a b a b a b a bε ε ε ε ε= − − − = − <   

that is ( ),y B x ε∈ . And because  

( ) ( )( ) ( ) ( )( ), , , ,

, ,
,limsup , limsup , .a a a a

a a

n n n n
a

n n
d F x F y d f a f bε ε ε ε

ε ε
ε δ

→∞
= ≥  

So F ∞
∞∆

 is infinitely sensitive.  
Theorem 4. If f is accessible, then the system ( ), ,d F ∞

∞

∞
∞ ∆

∆  is accessible.  
Proof. For any open subset  

( ) ( ){ }1 1 0 1 1, , , , , ,nx x x x a U I n I∞ ∞
− ∞∞

∆ = = ∈ ⊂ ∈ ⊂    

and  

( ) ( ){ }2 1 0 1 2, , , , , , ,ny y y y b U I n I∞ ∞
− ∞∞

∆ = = ∈ ⊂ ∈ ⊂    

since f is accessible, then, for the above 1 2,U U I⊂ , there exist 1 2,a U b U∈ ∈  
such that  

( ) ( )( ) ( ) ( ),k k k kf a f b f a f bρ ε= − <  

for some 0k > . Take  

( ) ( ) ( ) ( )1 2, , , , , , , , , ,x a a a y b b b∞ ∞

∞ ∞
= ∈ ∆ = ∈ ∆     

then  

( ) ( )( ) ( ) ( ), , .k k k kd F x F y f a f b ε= <  

So, the system ( ), ,d F ∞
∞

∞
∞ ∆

∆  is accessible.  

Corollary 3. If f is Kato chaotic, then the system ( ), ,d F ∞
∞

∞
∞ ∆

∆  is Kato chao-

tic.  
Proof. According to Theorem 2 and Theorem 4, the conclusion is obvious.  
Theorem 5. If f is exact, then the system ( ), ,d F ∞

∞

∞
∞ ∆

∆  is exact.  
Proof. Since f is exact, for any open subset D I⊂ , there exist m∈  such 

that ( )mf D I= . That is, for any a D∈ , there exists an 0m >  such that 

( )( ),mB f a Iε ≠ ∅  for any 0ε > . So there is a b X∈  such that  

( )( ) ( ),m mf a f a bρ ε ε= − < . 
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Take ( )* ∞

∞
∆  is arbitrary open subset of ∞

∞∆ , and ( ) ( )*
0 , , , ,x a a a

∞

∞
= ∈ ∆  . 

Clearly, for any k ∈ , ( ) ( ){ }0
k k

n
F x f a

∞

=−∞
= . For any  

( )0 , , , ,y b b b ∞
∞= ∈∆  , ( )( ) ( )0 0,m md F x y f a b ε= − < . That is to say, there 

exist an m∈ , ( )( )*mF
∞ ∞

∞∞
∆ = ∆ . So, the system ( ), ,d F ∞

∞

∞
∞ ∆

∆  is exact.  

In [23] we had proved that, f is Li-Yorke sensitive implies that the system 

( ), ,d F ∞
∞

∞
∞ ∆

∆  is Li-Yorke sensitive. Inspired by this, the following conclusion 
can be drawing. 

Theorem 6. If f is densely Li-Yorke sensitive, then the system ( ), ,d F ∞
∞

∞
∞ ∆

∆  
is densely Li-Yorke sensitive.  

Proof. Since f is densely Li-Yorke sensitive, then for any ( )a Q fδ∈  and any 
0ε > . Then there exists a ( ),b B a ε∈  such that ( ) ( ), ,a b LY fρ δ∈ . Take 
{ }*

n n
x x a ∞

=−∞
= = , { }*

n n
y y b ∞

=−∞
= = . One has that  

( ) ( )( ) ( ) ( )( )* *limsup , limsup ,n n n n

n n
d F x F y d f a f b δ

→∞ →∞
= >  

and  

( ) ( )( ) ( ) ( )( )* *liminf , liminf , 0n n n n

n n
d F x F y d f a f b

→∞ →∞
= =  

Thus there is an ( )*x Q Fδ∈ . 
Any fixed x ∞

∞∈∆ , write ( ), 1 ,0 ,1, , , ,m m mx x x x−=   , where 

, , 1,m p m px x p+= ∈ . Because :f I I  is densely Li-Yorke sensitive, then for 
any 0ε >  and the above ,0mx , ( ) ( ),0 ,mB x Q fδε ≠ ∅ . Take  

( ) ( ),0 ,ma B x Q fδε∈  , then  

( ) { }*
, ,, sup .m p m pd x x x a x a ε= − = − <  

So ( )* ,x B x ε∈ . This suggests that ( )Q Fδ
∞
∞= ∆ . 

So, the system ( ), ,d F ∞
∞

∞
∞ ∆

∆  is densely Li-Yorke sensitive.  

According to Proposition 3 and Theorem 6 the following is right. 
Corollary 4. If f is dense Li-Yorke sensitivity, then the system ( ), ,d F ∞

∞

∞
∞ ∆

∆  
it is Topological mixing (or its topological entropy is positive).  

4. Conclusion  

Inspired by the literature [23], this paper further studies the chaoticity of 
coupled map lattices. Some sufficient conditions of sensitivity, accessibility and 
transitivity are obtained. However, the study of coupled map lattices is still a hot 
topic. Based on the conclusions of this paper and others, one can consider some 
questions, such as the form of CMLs, the measurement of CMLs, and discuss the 
chaos of CMLs in other systems, which are worthy of studying. 
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