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Abstract 
Hospitals are significant sources of contaminants derived from the diagnostic, 
laboratory, and research activities as well as medicine excretion by patients, 
which comprise active components of drugs and metabolite, chemicals, resi-
dues of pharmaceuticals, radioactive markers, iodinated contrast media, etc. 
Discharging hospital wastewater, especially those without convenient treatment 
could reveal the public in danger of infection. Particularly, below the Corona-
virus Disease 2019 (COVID-19) pandemic context in China and the world, it 
is vital to avoid the health dangers to humans and nature. This work summa-
ries scientific propositions for management, technology selection, and opera-
tion of hospital wastewater disinfection in China, which is crucial for suggest-
ing worldwide disinfection planning for hospital wastewater during COVID-19 
pandemic. Further, this work briefly reviews some techniques used for killing 
viruses such as photocatalytic methods and ferrate(IV). Numerous novel signs 
of progress have as well been performed in hospital wastewater treatment en-
gineering, like radiation disinfection technique, reverse polymerization disin-
fection process, plasma disinfection method, and thermal gasification disin-
fection procedure. 
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1. Introduction 

Hospitals are primary sources of contaminants followed from the diagnostic, la-
boratory, and research activities as well as medicine excretion by patients, which 
include active component of drugs and metabolite, chemicals, residues of phar-
maceuticals, radioactive markers, iodinated contrast media, etc. [1] [2]. Further, 
it is evaluated that 75% of the wastes generated by hospitals are general health 
care wastes, while the remaining 25% are regarded as hazardous infectious waste 
[1]. Incorrect disposal of infectious hospital wastes and wastewater can provoke 
grave hazards to public health and nature [3] [4] [5]. 

An unknown case of pneumonia was first reported in Hubei, China [6]. By 
January 7th, 2020, Chinese scientists had isolated a Severe Acute Respiratory Syn-
drome Coronavirus 2 (SARS-CoV-2) from patients in Wuhan [7]. Following the 
severe acute respiratory syndrome coronavirus (SARS-CoV-1) outbreak in 2002 
and the Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak 
in 2012, SARS-CoV-2 is the third coronavirus to surface during these two decades, 
which has put global public health institutions on high alert [8] [9]. The trans-
mission routes of SARS-CoV-2 comprise droplet transmission and contact trans-
mission; airborne transmission may be possible in specific circumstances and set-
tings in which procedures or support treatments that generate aerosols are per-
formed [1]. 

The drainage of hospital wastewaters mostly those without suitable treatment 
could reveal the public in danger of infection. Indeed, below the COVID-19 pan-
demic context in the globe, it is vital to decrease the health dangers to the public 
and nature. Therefore, it is obligatory to suitably disinfect the hospital wastewa-
ter prior to being transported or discharged. Methodical researches regarding 
the disinfection of hospital wastewaters, particularly distinct disinfection propo-
sitions throughout the COVID-19 pandemic, stay scarce until now [1]. Conse-
quently, this work focuses on disinfection techniques for the treatment of hos-
pital wastewater and discusses propositions for hospital wastewater disinfection 
during the COVID-19 pandemic in the world. 

2. Hospital Wastewater Disinfection  

Disinfection techniques using ozone, ultraviolet (UV) light, liquid chlorine, chlo-
rine dioxide, and sodium hypochlorite are usually applied for killing pathogens 
in hospital wastewater [10] [11] [12]. Figure 1 illustrates the wastewater disin-
fection strategy in the hospital [1]. A disinfection technique possesses distinctive 
interests and drawbacks (Table 1). Employing a particular kind of disinfection 
technology has to be decided through taking into account simultaneously eco-
nomic and feasible details, like the quantity of wastewater, safety circumstances, 
the supply of disinfectants, investment and operation prices, etc. (Figure 2) [1]. 

2.1. Chlorination Pretreatment 

Bleaching powder is frequently utilized for the chlorination pre-treatment [1].  
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Figure 1. Flow chart of hospital wastewater disinfection technique [1]. 

 

 
Figure 2. Selection of disinfection techniques for hospital wastewater in varying strategies 
[1]. 
 
Table 1. Comparison of disinfection techniques for hospital wastewater [1] [13] [14] [15]. 

Disinfection technology Interests Drawbacks 

Liquid chlorine Low energy consumption High storage risk 

UV light Low investment and operation costs 
Inadequate depth of penetration 
and occupational health risks 

Chlorine dioxide 
High efficiency and low operation 
costs 

Inconvenient storage and 
transport 

Sodium hypochlorite 
Low toxicity, simple equipment, stable 
operation, easy control, and low 
operation and preparation costs 

High energy consumption, 
strong corrosiveness, and high 
pollution 

Ozone 
The ability of decoloring and  
deodorizing and quick  
decomposition of microorganisms 

High operation costs and  
hazardous disinfection 
by-products (DBPs) 

 
For each ward and restroom of an infectious disease hospital or the infectious 
disease area of a general hospital, 1 kg of bleaching powder containing 25% of 
available chlorine per 10 beds should be added 3 to 4 times before further disin-
fection. The optimal addition time is at the end of the peak period of the re-
stroom use. The added bleaching powder has to be flushed into the septic tank 
with flowing water and the residual chlorine has to be measured at the outlet of 
septic tank in case of violation of the water quality standard [1]. 
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2.2. Chlorine-Containing Disinfectants 

Chlorine is a type of powerful oxidizer [16] [17] [18], which is one of the earliest 
employed disinfection agents in disinfecting hospital wastewater [19]. When uti-
lizing chlorine as the disinfectant, a vacuum siphon fixed-ratio chlorine dosing 
setup is frequently adopted in the hospital wastewater treatment [20] [21] [22] 
system. The pipes of the chlorination [23] [24] system are installed in open areas, 
and buried pipes are located in pipe trenches with good support and sufficient 
slope. When the water collection pipe in the hospital wastewater treatment [25] 
[26] [27] system is higher than the public wastewater pipe outside the hospital or 
the water level (usually a height difference of 600 mm is required), a siphon-type 
fixed-ratio chlorine disinfection system could be used. When wastewater needs 
to be lifted in order to be discharged, a wastewater pump is required to be set up 
in front of the disinfection mixture contact tank. The disinfectant addition equip-
ment and the lift pump could operate synchronously [1]. The water level of the 
water collection tank controls the automatic activation of the wastewater pump 
and the simultaneous operation of the dosing system. Usually, 30 mg/L - 50 mg/L 
and 15 mg/L - 25 mg/L chlorine are injected into wastewater following primary 
treatment and wastewater after secondary treatment, respectively [1]. Whilst the 
real quantity of chlorine introduced into the wastewater can be regulated fol-
lowing the residual chlorine remaining in the outlet of the wastewater treatment 
[28] [29] [30] system and the quantity of reducing substances in the wastewater. 
The most important reaction of chlorine disinfection is [1]: 

Cl2 + H2O = HClO + HCl                      (1) 

2.2.1. Liquid Chlorine 
When employing liquid chlorine for disinfecting wastewater, a vacuum chlori-
nator should be utilized and the outlet of the chlorine injection pipe must be 
submerged in the wastewater [1]. It is severely forbidden to directly inject chlo-
rine to the wastewater without a chlorinator or employing pipes that are not re-
sistant to chlorine gas corrosion, like polyvinyl chloride (PVC), and metal pipes 
like copper, iron, and other pipes which are not resistant to chlorine solutions. 
Copper pipes and hard PVC pipes have to be utilized to transport chlorine gas 
and chlorine-containing disinfectant solutions, respectively [31]. Because of com-
paratively elevated storage danger, the liquid chlorine disinfection method re-
mains not convenient in regions with a high population [1]. 

2.2.2. Chlorine Dioxide 
Heretofore, chlorine dioxide is recognized as one of the efficacious disinfectants 
with increase oxidization potential even below acidic circumstances [32]. The 
solubility of chlorine dioxide is five times that of chlorine and the oxidization 
capability of chlorine dioxide is 2.63 times that of chlorine gas. The quantity of 
chlorine dioxide utilized to treat hospital wastewater is 1/2.5 that of the available 
chlorine [1]. The dosing setup of chlorine dioxide for disinfecting wastewater is 
consistent with the sodium hypochlorite disinfection technology, i.e. a double 
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siphon automatic fixed-ratio dosing chlorine system is adopted for chlorine dio-
xide disinfection. When employing a chlorine dioxide generator, the quantity of 
chlorine dioxide must be greater than 50%, and it must guarantee secure opera-
tion and automatic injection of disinfectants with a definite fraction [33]. Chlo-
rine dioxide can initiate the denaturation of enzyme and protein [34]. It ruins 
the anabolic pathways of protein and therefore neutralizes the microbe, compris-
ing bacteria, viruses, fungi, spores, and Clostridium botulinum. The chlorine dio-
xide possesses the capability of decoloring, deodorization, oxidation, and augment-
ing the oxygen quantity in wastewater. Because of its chemical structure, the chlo-
rine dioxide is unsuitable to be stored or transported, for all that it still possesses 
merits of lower prices of operation as well as preparation [13].  

2.2.3. Sodium Hypochlorite 
Sodium hypochlorite disinfectant can be produced employing standard NaClO 
generator, which can greatly decrease the prices. A double siphon automatic 
fixed-ratio dosing chlorine system is commonly adopted for sodium hypochlo-
rite disinfection. The quantity of available chlorine in sodium hypochlorite is 
around 5% - 20%. The mechanism of sodium hypochlorite disinfection is [1]: 

NaClO + H2O = HOCl + NaOH                   (2) 

Confronted with different chlorine-containing disinfectants, employing so-
dium hypochlorite is distinguished with comparatively lower poisoning, easier 
equipment, more stable working, simpler control, and lower operation and pro-
duction prices. All these render such a disinfection process handier in smaller scale 
hospitals [15]. However, sodium hypochlorite disinfection possesses bigger energy 
consumption, strong corrosiveness, and greater contamination [35]. Consequent-
ly, when utilizing on-site manufactured sodium hypochlorite for killing patho-
gens, a secure and reliable sodium hypochlorite generator with elevated electrical 
efficiency, low water consumption, low salt and electricity consumption, long 
operating life, and convenient operation must be used. If raw salt is utilized as 
the raw material, the salt solution has to be precipitated and filtered before being 
introduced to the sodium hypochlorite generator. Containers, pipes, equipment, 
and accessories that contact the sodium hypochlorite solution must be con-
structed of corrosion-resistant materials [1]. 

2.3. Ozone 

As a disinfectant known for its elevated bactericidal impact, ozone has been largely 
employed in water supply engineering and wastewater treatment [36] [37] [38] 
especially in developed countries [39] [40] [41]. The wastewater flows into the 
first-stage sedimentation tank and then flows to the second-stage purification 
tank after purification. After adequate treatment, it flows to the regulating sto-
rage tank. It is then pumped into the contact tower by the sewage pump, and 
fully exposed to about 15 mg/L - 20 mg/L ozone in the tower during 10 - 15 min 
before being discharged. Frequently, a hospital with 300 beds is advised to con-
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struct an ozone treatment system with a wastewater treatment capacity of 18 t/h 
to 20 t/h [1]. Because the ozone disinfection possesses the potential of decoloring 
and deodorizing, the wastewater after treatment becomes bright and transparent 
without odor. Furthermore, the molecule structure of ozone is unstable, which 
implicates that strong oxidative atomic oxygen generated by the decay of the 
ozone molecule would quickly degrade pathogens, like bacteria and viruses in 
wastewater. For all that ozone disinfection can ameliorate the water quality in a 
shorter period with greater performance, the running prices of ozone production 
remain elevated [42]. In addition, the DBPs [43] [44] [45], which are formed via 
the chemical response with bromide and iodide, are dangerous to human health 
[46] [47] [48]. Moreover, an over-dose of ozone is ready to provoke bad smell 
and additional contamination. Consequently, ozone disinfection stays mostly con-
venient for the smaller-scale wastewater treatment systems, especially the waste-
water treatment systems with comparatively increased effluent quality [1]. 

2.4. Ultraviolet (UV) Irradiation 

Ultraviolet light (UV) refers to the electromagnetic wave with a length between 
200 nm and 400 nm [49] [50] [51]. The UV was first used in the disinfection of 
drinking water in 1910 [1]. The UV may be classified into four wavebands fol-
lowing distinct wavelengths, comprising UV-A (315 nm - 400 nm), UV-B (280 
nm - 315 nm), UV-C (200 nm - 280 nm), and vacuum UV (100 nm - 200 nm) 
[52]. To that, vacuum UV could not be employed in disinfection since it is ab-
sorbed by the wastewater. The bands with a wavelength between 200 nm and 300 
nm can destroy the structure of both deoxyribonucleic acid (DNA) and ribo-
nucleic acid (RNA) of the bacteria, viruses, and single-celled microorganisms 
and therefore block the protein synthesis [9] [53] [54]. Therefore, UV-B and 
UV-C have the best bactericidal impact. The band with wavelength of 253.7 
(~254) nm is optimal for UV disinfection [55]. Juxtaposed with chlorine disin-
fection, the investment and operation prices of UV disinfection stay considera-
bly smaller. Nevertheless, disinfection with UV-C is occasionally weak because 
the depth of penetration is unsuitable and there are occupational health dangers 
[14]. 

3. Propositions for Disinfecting Hospital Wastewaters  
through COVID-19 Pandemic 

A few months ago, during the current COVID-19 pandemic in China, RNA of 
SARS-CoV-2 has been detected in feces of patients, which prompted worry to 
the disinfection of wastewater of appointed hospitals [1]. Researchers [1] ac-
cepted that transmission could as well happen by means of fomites in the nearest 
environment around the infected person. Following former investigations, about 
the pathogen transmission in wastewater system, scientists [1] affirmed that be-
low specific conditions, the wastewater system possesses the capacity to allow 
airborne transmission of SARS-CoV-2. Such findings are compatible with the 

https://doi.org/10.4236/oalib.1106373


D. Ghernaout, N. Elboughdiri 
 

 

DOI: 10.4236/oalib.1106373 7 Open Access Library Journal 
 

fact in a study that SARS-CoV-2 from a single stool specimen has been cultured 
[56]. Further, it is as well mentioned that wastewater discharged from a COVID-19 
particular hospital was SARS-CoV-2 RNA positive, showing that the virus might 
infect the drainage system [1]. On the other hand, disinfecting hospital wastes is 
as well in an elevated emergency because the waste formation augments expo-
nentially throughout this period, which may augment disease diffusion and pro-
voke a gigantic hazard on both medical staffs and patients without appropriate 
collection and disinfection [1]. 

There are only a few pieces of research on the demobilization of SARS-Cov-2 
to that extent [9]. However, researchers mentioned that the genome of the 
SARS-CoV-2 strains are phylogenetically nearest to the bat SARS-related coro-
naviruses, and the Spike protein has a 78% nucleotide identity with the human 
SARS-Co-1 [1]. Because of the resemblances among SARS-CoV-1 and SARS-CoV-2, 
the SARS-CoV-2 could as well be vulnerable to either ecological agents or disin-
fectants. Thus, disinfection techniques embraced throughout the SARS epidemic 
may be utilized as a perfect reference to killing SARS-Cov-2 in hospital waste-
water. SARS coronavirus (SARS-CoV-1) can subsist for 2 days, 3 days, and 17 
days in the hospital wastewater, stool, and urine at 20˚C, respectively [57]. All 
SARS viruses can be neutralized in 30 min at 20˚C with more than 0.5 mg/L re-
sidual free chlorine or 2.19 mg/L residual chlorine dioxide left [1]. Scientists jux-
taposed disinfection effectiveness of numerous methods and noted that chlorine 
and UV irradiation were the most performant pursued by chlorine dioxide, for 
all that efficacy of ozonation was not exemplary. Such a finding was in accord 
with those observed by Wang et al. [57]. 

Until January 27, 2020, there have been 1512 COVID-19 designated hospitals 
all over China [1]. In Wuhan, the local Ministry of Ecology and Environment 
(MEE) has settled a crisis program for disposal of wastewater from temporary 
treatment centers, which are freshly constructed COVID-19 specified hospitals 
for cases with moderate symptoms in Wuhan. Chlorine disinfection (liquid chlo-
rine, chlorine dioxide, and sodium hypochlorite), which has long been employed 
in hospital wastewater disinfection in China, is embraced in such an agenda. The 
available chlorine is advised to be about 50 mg/L. For disinfecting the septic tank, 
the residence period has to be more than 1.5 h with residual chlorine over 6.5 
mg/L and fecal coliform colonies less than 100 per liter [1]. Further, UV irradia-
tion [52] and heating [25] are as well proposed for disinfecting wastewater in 
different COVID-19 selected hospitals due to fewer DBPs and perfect disinfec-
tion efficacy [58] [59] [60]. Water standards of wastewater discharged from the 
hospital have to satisfy the requirements listed in Table 2 [1]. 

4. Killing Influenza A Virus H1N1 via Disinfection Method 

Since any patient, health care worker, or visitor is apt to transmit influenza to vul-
nerable individuals inside hospitals, hospital-acquired influenza has been a clin-
ical worry. Disinfecting and cleaning medical equipment, surgical instruments, 
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Table 2. Indicators of disinfection efficacy of hospital wastewater [1]. 

Indicator Value range 

Fecal coliforms (Most probable number, MPN/L) ≤900 

Enteric pathogens Not detected 

Mycobacterium tuberculosis Not detected 

Disinfection contact time 
≥1.5 h (Chlorination) 

≥0.5 h (Chlorine dioxide method) 

Total residual chlorine (mg/L) 
≥6.5 (Chlorination) 

≥4.0 (Chlorine dioxide method) 

 
and hospital environment stay significant actions to avert transmission of influen-
za virus from hospitals to persons. Jeong et al. [61] assessed the efficiency of disin-
fection techniques, which can be readily run at hospitals, in killing influenza A vi-
rus H1N1 (H1N1). They assessed the influences of 0.1 mol/L NaOH, 70% ethanol, 
70% 1-propanol, solvent/detergent (S/D) using 0.3% tri (n-butyl)-phosphate and 
1.0% Triton X-100, heat, and ethylene oxide (EO) treatments in neutralizing 
H1N1. Demobilizing H1N1 was kinetically controlled via the treatment of disin-
fectants to virus solution. Further, a surface test procedure, which implied dry-
ing a quantity of a virus on a surface and then implementing the demobilization 
processes for 1 min of contact time, was employed to check the virucidal effec-
tiveness.H1N1 was fully demobilized to unnoticeable degrees in 1 min of 70% 
ethanol, 70% 1-propanol, and S/D treatments in the surface tests as well as in the 
suspension tests. H1N1 was totally demobilized in 1 min of 0.1 mol/L NaOH 
treatment in the suspension tests and as well efficiently demobilized in the sur-
face tests with the log reduction factor of 3.7. H1N1 was demobilized to unnoti-
ceable degrees within 5 min, 2.5 min, and 1 min of heat treatment at 70˚C, 80˚C, 
and 90˚C, respectively in the suspension tests. Also, H1N1 was fully demobilized 
by EO treatment in the surface tests. Consequently, usual disinfectants, heat, and 
EO were efficacious in demobilizing H1N1. Such findings were useful in apply-
ing efficient disinfecting procedures to avert hospital-acquired infections. 

5. Photocatalytic Killing of Viruses 

Obtaining efficacious disinfection of waterborne pathogens with reduced poi-
sonous DBPs [62] [63] [64] requires an easy, cost-efficient, and environmental-
ly-friendly technology [65] [66] [67] [68]. Lately, photocatalytic water disinfec-
tion has magnetized ever-growing worldwide interest thanks to its strong oxida-
tive potential and encouraging capacity in solar energy usage [69] [70] [71]. Among 
waterborne pathogens, viruses, which have been found with very small sizes, 
high risks of illness, and resistant to environmental inactivation/decomposition, 
constitute a grave menace to public health [59] [72] [73]. During the last three 
decades (Figure 3), attempts have been dedicated to using photocatalysis to reach 
real viral demobilization [21] [54] [74]. Despite that photocatalysis has been 
completely examined for killing bacteria, photocatalytic disinfection of viruses 
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Figure 3. Progresses on typical types of photocatalysts for viral inactivation [75]. 
 

with quite different compositions, structures, and resistance to oxidative stress 
compared to bacteria was not consistently detailed (Figure 4). Zhang et al. [75] 
suggested a summary of antiviral impacts of a large variety of photocatalysts, 
comprising TiO2-based, metal-containing (other than TiO2), and metal-free 
photocatalysts. Further, they recapitulated the advance of photocatalytic reactors 
for viral demobilization to encourage handy utilizations for disinfecting water 
(Figure 5). Moreover, they discussed the pivotal pathways that dictate the effec-
tiveness of photocatalytic viral disinfection. 

Zheng et al. [76] employed bacteriophage f2 and its host E. coli 285 as the 
model microorganisms and examined the disinfection efficiency of prepared 
Cu-TiO2 nanofibers below visible light. They found that the prepared Cu-TiO2 
nanofibers depicted an excellent capability in eliminating bacteriophage f2 and 
E. coli below visible light. Initial pH did not influence the photocatalytic disin-
fection efficacy importantly. In a particular domain, the reduction performance 
of bacteriophage f2 augmented with the elevation of catalyst dosage, light inten-
sity, and temperature; however, it diminished with the elevation of the initial virus 
level. In virus/bacteria mixed combination, bacteriophage f2 manifested more 
powerful resistance to photocatalytic oxidation than E. coli and the reduction of 
bacteriophage f2 was clearly influenced by being mixed with E. coli; however, the 
elimination of E. coli nearly stayed unaltered after being mixed with bacterio-
phage f2. Competitive adsorption in the mixed system contributed to E. coli 
demobilization, whilst the free reactive oxygen species (ROSs) in the bulk phase 
greatly participated in phage f2 demobilization. 

6. Ferrate(IV) for Neutralizing Viruses 

In water and wastewater treatment, coagulation [77] [78] [79], oxidation [49] 
[50] [54], and disinfection [9] [48] [59] are primary methods [64] [68] [80]. A 
chemical that could be utilized for all the above-mentioned targets is ferrate(VI). 
Talaiekhozani et al. [81] reviewed ferrate(VI) formation, measurement, stability, 
mutagenicity, and utilization in coagulation [82] [83] [84], oxidation, and disin-
fection. Diverse electrochemical devices that could be employed for ferrate(VI) 
generation have been presented [85] [86] [87]. 

Ferrate(VI) salt could disinfect water and oxidize organic and inorganic pollu-
tion concurrently [81] [88]. Indeed, ferrate(VI) could neutralize pathogens in 
two fashions: 1) as ferrate(VI) is a powerful oxidizer, it could oxidize cell wall, 
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Figure 4. TiO2 photocatalysts for viral demobilization below UV irradiation: (a) impact 
of TiO2 crystalline structures, (b) effect of TiO2 specific morphology (bacterium Escheri-
chia colivs. phage Qβ), and (c) immobilized TiO2 used for viral inactivation [75]. 
 

 
Figure 5. Typical improvements of TiO2 photocatalysts for ameliorated viral demobiliza-
tion [75]. 
 
protoplasm, DNA, and different vital microorganism organs which eliminates 
them at once [37] [38]. 2) Ferrate(VI) is progressively transformed to Fe(III) [89] 
[90] [91] which is a powerful coagulant; thus, colloids comprising microbes are 
coagulated and eliminated from the water [92] [93] [94]. Small amounts of fer-
rate(VI) could coagulate colloids and oxidize soluble pollutants simultaneously 
[74] [80] [81]. Such features oblige potassium ferrate as a suitable replacement 
for diverse conventional disinfectants [74] [80] [95]. In the dosage varying from 
0 to 50 mg/L, ferrate(VI) could neutralize all microbes in water [81]. Ferrate(VI) 
could totally disinfect water carrying E. coli [81]. Concerning viruses elimina-
tion, numerous researches have established the capacity of ferrate(VI) for killing 
such pathogens. The potential of ferrate(VI) to remove the f2 coliphage virus was 
proved [81]. Indeed, 99% of f2 coliphage is neutralized in water carrying 1 mg/l 
ferrate (VI), pH of 7.8 after 22 min. Such a contact period is decreased to 5.7 and 
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0.77 min when pH is diminished to 6.9 and 5.9, respectively. Further, 99.9% eli-
mination yield was reached with ferrate(VI) injection of 10 mg/L, pH of 7.8, and 
the retention period of 30 min. Such a green product remains much more effica-
cious as a disinfectant than chlorine, whilst no potassium ferrate sediments were 
found in the disinfection region. The production of sediments in the disinfection 
method stays an additional major drawback of employing chlorine besides DBPs 
formation. 

7. Conclusion 

Hospital wastewater (as well as the sludge) must be treated and disinfected com-
pletely prior to discharge [1]. Without disinfection, they should not be left to be 
randomly discharged or utilized as agricultural fertilizers. Employing any infil-
tration wells/pits to discharge wastewater and sludge, or the discharge into sani-
tary protection zone of drinking water sources must as well be harshly barred. 
Further, the government must adopt actions to ameliorate the management of 
hospital wastewater, particularly throughout the COVID-19 pandemic. The hos-
pital must set up a recycling system and assign special personnel to take charge, 
and strengthen the management of each department to ban waste loss. Personnel 
implicated in the disposal of disposable medical supplies must be qualified and 
strengthened in personal protection. Lately, several novel signs of progress have 
as well been performed in hospital wastewater treatment engineering, like radia-
tion disinfection technique, reverse polymerization disinfection process, plasma 
disinfection method, and thermal gasification disinfection procedure. Such tech-
nologies possess important promotion value; however, because of the elevated in-
vestment costs, such techniques have not been employed at a large scale. With 
ameliorating hospital wastewater disinfection processes, the prices of disinfection 
will persist to lower, and side contamination to nature will be progressively domi-
nated. In the course of the disinfection, the ecological contamination or influ-
ences on human health could be greatly decreased if the procedure accurately com-
plies with the requirements. With a view to improving more secure, efficient, eco-
nomical disinfection technologies, the local natural and real circumstances must 
be taken into account in the next investigations [1]. 
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