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Abstract 

Groundwater vulnerability for nitrate pollution of groundwater in the Brus-
sel’s Capital Region was modelled using data-driven modelling approaches. 
The land use in the study area is heterogeneous. The South South-Eastern 
part of the region is forested, while the remaining part is urbanised. Ground-
water nitrate concentration data were determined at 48 measurement stations 
distributed over the study area. In addition, oxygen and nitrogen isotope 
concentration of the nitrates were determined. The data show that the 
groundwater body is degraded, particularly in the urbanised part of the study 
area. The contamination with nitrates at degraded stations is slightly de-
creasing, while the opposite is true for the nitrate contamination at the less 
degraded stations. We modelled the contamination and trends of nitrate 
contamination using linear and non-linear statistical modelling techniques. 
In total, we defined 23 spatially distributed proxy variables that could explain 
nitrate contamination of the groundwater body. These proxy variables were 
defined at the grid size of 10 m, and averaged over the influence zone of each 
measurement station. The influence zones were identified using a simplified 
particle tracking algorithm from the groundwater piezometric map. The cal-
culated influence zones were consistent with results obtained from a detailed 
numerical groundwater flow and transport model. Stepwise regression al-
lowed explaining 56% of the observed variability of nitrate contaminations, 
while non-linear artificial neural network modelling allows explaining nearly 
60% of the variability. The dominant explaining variables are the percentage 
of impermeable surface, the percentage of the sewage system that is in a de-
gradation state, the number of urban infrastructure construction permits with 
a high pollution risk, the size of the influence zone, and the depth of the 
groundwater sampling. These results illustrate the important role of urban 
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infrastructure on groundwater degradation and are consistent with the iso-
topic signature of nitrates determined on the sampling stations. The overlay 
of the nitrate contamination data with the DRASTIC vulnerability model 
shows that this latter conceptual model captures partially the spatial signature 
of the observed contamination. 
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1. Introduction 

Groundwater pollution vulnerability defines the sensitivity of a groundwater 
body of being adversely affected by an imposed contaminant load [1]. This con-
cept entails two notions: intrinsic and specific vulnerability. Intrinsic vulnerabil-
ity defines the vulnerability of groundwater to contaminants generated by hu-
man activities, depending on the inherent geological, hydrological and hydro-
geological characteristics of an area (soil type, topography, recharge, vadose 
zone, etc.), but independent of the nature of contaminants. For specific vulnera-
bility, specific physicochemical properties from contaminants are considered [2]. 
Groundwater pollution risk can be defined as the process of estimating the pos-
sibility that a particular event may occur under a given set of circumstances [3] 
and the assessment is achieved by overlaying hazard and vulnerability [4].  

Several approaches exist for assessing groundwater vulnerability. They can be 
grouped into methods based on the use of 1) process-based simulation models, 
2) statistical models and 3) overlay and index methods [2] [5]. Alternatively, 
they can be classified according to the degree of integration of monitoring data 
in the vulnerability assessment [6]. Hence, distinction can be made between 
vulnerability assessment methods based on generic data, based on groundwater 
monitoring data, or hybrid methods based both on monitoring and generic data.  

The first and most straightforward method for modelling vulnerability con-
sists of the mapping of pollution as assessed from a monitoring program. In this 
approach the actually observed pollution is used as a metric of vulnerability. The 
rational of this model relies on the logic that if pollution is observed, the 
groundwater body should be vulnerable. Yet, the inverse is not necessarily true.  

In Europe, groundwater sites are monitored on a regular basis for a broad set 
of physicochemical parameters. This monitoring activity is deployed to comply 
with the current different regulations related to water (e.g. Water Framework 
Directive in Europe). The data collected in the different monitoring programs 
can therefore directly be used for making a first assessment of vulnerability. 
Mapping of the pollution can be done using standard GIS software or using 
more advanced geostatistical procedures. For instance, [7] illustrated how time 
dynamics of pollution parameters can be integrated into the mapping approach. 
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However, monitoring programs suffer from many drawbacks such as limited 
spatial support, low space-time resolution of observed pollution, limited number 
of pollution parameters and in particular a high cost [8]. In addition, the results 
of monitoring programs do not directly allow identifying the origin of the pollu-
tion, and does not allow a clear distinction between specific and intrinsic vulne-
rability. The observed pollution is therefore often a biased metric of the real 
vulnerability. Groundwater pollution maps therefore only yield a partial image 
of the real groundwater vulnerability.  

Alternatively, vulnerability can be assessed by means of vulnerability models, 
which integrates the loading, transport, retention and attenuation processes of 
pollution towards the groundwater body in a mathematical formalism. Use can 
be made of process-based models [9], statistical based models [10] [11] or ge-
neric parametric vulnerability models, like the DRASTIC model [12]. In the class 
of statistical models, use can be made of statistical models based on observation 
data, or statistical models based on more complex system models, i.e. the 
so-called meta-models [13] [14]. The generic parametric methods represent 
definitely the most utilized approach.  

The methods based on the monitoring data or on the modelling data have the 
potential to predict vulnerability. Most of them can even predict the full statis-
tical distribution (i.e. the expected value and the higher moments) of the vulne-
rability, which allows to assess the accuracy of the assessment (the precision 
cannot be assessed as vulnerability cannot be “measured” in a direct way). The 
accuracy and hence the uncertainty will be region and case specific. Hence me-
thods can be selected and optimized in terms of the uncertainty associated with 
the vulnerability assessment method. Alternatively, methods can be combined, 
following the logic that each method allows a partial assessment of the vulnera-
bility of a groundwater body. Such combined methods rely on operational data 
fusion techniques. Data fusion is a method that can be used to combine opti-
mally various sources of information about groundwater quality and vulnerabil-
ity in a consistent and accurate model prediction. Among different data fusion 
techniques, a Bayesian Data Fusion (BDF) approach was recently proposed by 
[15]. It was especially designed for spatial predictions problems and provides a 
consistent framework of fusing an arbitrary large number of information sources 
that are related to a same variable of interest in order to provide a unique spatial 
prediction. The main advantage of a Bayesian approach is to put the problem of 
data fusion into a clear probabilistic framework. Recently, the BDF method was 
also successfully applied to map groundwater pollution in Belgium [16] and the 
Democratic Republic of Congo [17]. 

Most of these recent vulnerability assessment methodologies reviewed in the 
previous sections have been developed at the regional scale, national or conti-
nental scale, focusing on rural and nature environments. Yet few of these me-
thods have been tested in strongly urbanized and human impacted environ-
ments. There is therefore scope to analyze more in detail the vulnerability as-
sessment methodologies for urban and peri-urban environments. This is partic-
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ularly important given the strong concentration of the global population in urban 
environments, and the many groundwater function and services developed in ur-
ban settings such as the provision of drinking water to the urban population. The 
study presented in this paper should therefore be considered in this context.  

In this study, we present the use of a statistical based modelling approach for 
assessing groundwater vulnerability of the Brusselean groundwater body in the 
Brussel’s Capital Region, in Belgium. We focus on the nitrate pollution problem, 
since the local authorities need to comply with the European Nitrate directive, 
and therefore sufficient nitrate monitoring data are available to implement sta-
tistical modelling approaches. We compare linear and non-linear models. We 
consider the loading of the independent explanatory variables in these models as 
indicators of possible pollution sources. The development of a statistical based 
modelling technique should be considered as an initial step towards a hybrid 
model that combines process knowledge or data based empirical models with 
monitoring data. 

2. Material and Methods 

2.1. The Study Region 

The Brussel’s Capital Region (BCR) is situated in the center of Belgium and en-
compasses 19 communities, a. o. the city of Brussels (Figure 1).  

The land use is dominated by urbanization. Forty eight percent of the surface 
area is urbanized. The non-urbanized area is dominated by forest cover (11% of 
total area) situated in the South Eastern part of the region, and public parks and 
gardens (8% of total area). The river Zenne, which is an affluent of the Scheldt 
river, intersects the region. The river is covered in the major part of the city. The 
relief is gently sloping from the river banks onwards. Details on the land use of 
the BCR can be consulted at http://www.geo.irisnet.be/en/maps/new/. 

The hydrogeology of the BCR is illustrated in Figure 2. The valley of the 
Zenne and the left bank is dominated by Lower Eocene clayey formations, while 
on the right bank the Middle Eocene Brussels sandy formations outcrops. The  
 

 
Figure 1. Situation of the Brussel’s capital region in the centre of Belgium. 
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Figure 2. Hydrogeology of the Brusssel’s capital region (Source [18]). 
 
Brussels sandy formation is partially covered by a less permeable Middle Eocene 
clayey formation (Maldegem Formation). The unconfined Brusselean ground-
water body situates within the Brussels sandy aquifer. This groundwater body is 
locally exploited for drinking water provision purposes at an average rate of 2.5 
mio m3/year.  

2.2. The Nitrate Monitoring Data Set 

The Brusselean groundwater body needs to comply with current EU environ-
mental regulations, amongst others with the EU nitrate directive. Given the un-
confined nature of the water body, the water body is potentially subjected to 
pollution from point sources (infiltration holes, animal storage facilities, cemete-
ries, waste water treatment facilities) or from diffuse sources (natural minerali-
zation of soils, leaking sewage systems, fertilization of public parks, urban agri-
culture, …). Therefore a nitrate monitoring program was initiated, encompass-
ing 48 monitoring points. The positions of these monitoring stations are given in 
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Figure 3 and Figure 4. We consider in this study the monitored yearly averaged 
nitrate data since 2006. We mapped the mean average annual concentration and  
 

 
Figure 3. Nitrate contamination observed in the Brussels groundwater body as observed 
in 50 monitoring stations. In the background, data are projected on a DRASTIC vulnera-
bility map. The latter has been parametrized using standard generic data. 
 

 
Figure 4. Tau Kendall trend statistics of observed mean annual nitrate concentration in 
BCR. The colors indicate the direction of the Tau Kendall statistic (orange-red: positive 
trend; green-dark green: negative trend). The size of the dots indicates the strength (sig-
nificance level) of the Tau Kendall statistic. 
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analyzed the statistical trend. The statistical trend analyses were made using the 
Tau Kendall trend test [17]. A selection of water samples was also analyzed for 
the stable N and O isotopes. Isotope data were analyzed by means of the Baye-
sian source identification model SIAR (Stable Isotope Analysis in R) [19].  

2.3. The Statistical Modelling Approach 

Statistical models were developed to predict nitrate groundwater pollution in 
terms of easily available spatial attributes. The dependent variable in these mod-
els was the mean of the annual average nitrate concentration at a given location. 
The independent variables were the values of the representative ancillary va-
riables within the influence zone of the monitoring station. In total 23 spatially 
distributed ancillary attributes were defined. Ancillary variables were defined on 
a regular 10 m resolution grid. The selected attributes belonged to 4 categories. 
The natural hydrogeological environment category comprised variables that are 
directly related to the basic hydrogeological setting (depth of the aquifer, size of 
the influence zone of the monitoring well, part of the influence zone confined 
with Middle Eocene clayey formation, etc.). Second, the urban density category 
included variables such as population density in the influence zone, percentage 
of impermeable surface in the influence zone, etc. The authorization category 
included variables related to specific urbanization permits (e.g. authorization for 
animal exploitation). The last category, encompassed variables related to the 
status of the sewage system.  

Previous studies illustrated the sensitivity of statistical modelling results on 
the size and shape of the influence zones of each monitoring point [21]. Influ-
ence zones, and hence the independent parameters that are considered in the 
statistical model, should be defined using hydrogeological criteria, similarly as 
with methods to delineate groundwater well protection zones. In this study, we 
used a GIS based simplified approach to model the influence zones. We mod-
elled particle transport from the monitoring wells, using the slope of the flipped 
aquifer depth map as a proxy for the hydraulic gradient. We considered generic 
data of the aquifer thickness, porosity and transmissivities, and modelled steady 
state flow magnitude and direction in the GIS environment. Subsequently, we 
injected conservative particles in the flow field and evaluated the particle dis-
placement after 5, 10 and 20 years. We added a porous tuff parameter corres-
ponding to a longitudinal dispersivity of 30 m and lateral dispersivity of 10 m. 
The envelopes of particles displaced after 5, 10 and 20 years were superposed to 
define the influence zone of each monitoring well.  

We implemented linear statistical models using multiple stepwise regression, 
and non-linear artificial neural networks with one neuron layer and 3 neurons, 
implemented in JMP SASTM (see e.g. see  
https://www.jmp.com/support/help/14-2/neural-networks.shtml or  
https://www.jmp.com/support/help/14-2/multivariate-methods.shtml#). We used 
the Akaike Information Criterion (AIC) to analyze the robustness of the model 
and to identify the most appropriate model structure. We separated the data set, 
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so that data from 38 stations could be used for model identification (i.e. the 
model calibration data set) and 10 stations for model validation (i.e. the model 
validation data set). 

3. Results and Discussion 

The mean annual average nitrate concentration in the monitoring wells exceeds 
the WHO nitrate drinking water norm for nitrate significantly in the Northern 
urbanized part of the groundwater body (Figure 3). Lower concentrations are 
observed in the less urbanized Southern part, which is dominated by the pres-
ence of the Zoniën forest. Major water exploitation wells and drainage galleries 
for drinking water provision are concentrated in the Southern part of the study 
area. The spatial structure of the observed nitrate contamination is generally 
consistent with the vulnerability predicted from the DRASTIC model, suggesting 
that nitrate contamination can partially be explained by natural hydrogeological 
properties determining the groundwater vulnerability. Yet, there is a strong cor-
relation with land use as the urbanized part of the region is concentrated on the 
alluvial part of the study region.   

Generally, only small trends can be observed in the nitrate concentration time 
series, and only a part of them are significant from a statistical point of view 
(Figure 4). Results show that the heavily contaminated monitoring points in the 
Northern part are mostly characterized by a decreasing trend, while the lower 
contaminated monitoring points in the Southern part are characterized by an 
increasing trend. 

Results of the dual isotope analysis are shown in Figure 5. The results together  
 

 
Figure 5. Dual isotope plot of nitrate in the Brusselean groundwater body of BCR. The dual isotope results are projected on 
the possible intervals of pollution sources. Black: Nitrate precipitation source; Red: Nitrate mineral fertilizer source; Green: 
Ammonia fertilizer source in rain; Dark blue: Soil N mineralisation source; Light blue: Manure and sewage source. 
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with the more detailed SIAR analysis (results not shown) suggest a strong influ-
ence of manure or sewage and soil mineralization to the overall nitrate ground-
water loading. Given the small contribution of agriculture in the BCR land use, 
the contribution of manure in the overall loading is not likely. Hence, the iso-
tope analysis suggests merely a contribution from leaking sewage systems to the 
observed nitrate loading. Waste water in BCR is majorly collected in a unitary 
sewage network system, and the status of the unitary system is poor. Some of the 
sewage lines are more than 100 years old and are partially degraded. The waste 
water manager recently mapped the status of the sewage network. It is estimated 
that more than 500 km of the total of 1900 km of sewage lines are in a poor sta-
tus. Hence leaking of organic matter loaded waste water towards the groundwa-
ter body is likely.   

The simplified methodology for delineating the influence zones of the moni-
toring wells was compared with the results of a delineation method using the 
numerical and mechanistic hydrogeological model code FEFLOW [20]. Results 
suggest a conservative estimate of the influence zone with the simplified metho-
dology (Figure 6). The methodology can therefore be used to weigh the spatial 
attributes of the independent variables for constructing the statistical models.  

 

 
Figure 6. Comparison of the estimates of the influence zone for 4 monitoring wells in the 
BCR between the simplified GIS based method and a method based on a detailed hydro-
geological model implemented in the FEFLOW software. 
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The Akaike Information Criterion (AIC) and R2 were used to identify the in-
dependent parameters to be included in the linear multiple regression and ANN 
models. Results of the AIC and R2 in terms of the number of independent pa-
rameters are shown in Figure 7. A linear model with 5 parameters allows to de-
scribe 56% of the observed variation in nitrate concentrations of the calibration 
data set (Figure 7, Figure 8). When more than 6 parameters are used, the in-
creasing AIC suggests an overfitting of the data.  

It is well known that many processes determining nitrate pollution of groundwa-
ter are often non-linear. To incorporate possible non-linearity, the model with  
 

 
Figure 7. Akaike Information Criterion (AIC) and R2 in terms of the number of most 
significant explanatory variables in the multiple regression model. 
 

 
Figure 8. Simulated versus observed mean annual nitrate concentration data as simulated 
with the multivariate linear regression model (calibration data set). 
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five parameters was refined using a non-linear artificial neural network (ANN) 
model. With this ANN model, we are able to explain 79% of the variation in 
mean annual nitrate concentration in training mode, and 60% in validation 
mode. This is consistent with other studies showing that non-linear statistical 
models increase the explanatory power of the model [21]. 

The 5 most significant parameters explaining observed nitrate concentrations 
in the linear model are 1) the percentage of impermeable surface in the influence 
zone of the monitoring well; 2) the density of sewage water collectors that are 
classified as moderate in these influence zones; 3) the number of environmental 
permits considered being at risk in the influence zone; 4) the size of the influ-
ence zone; and 5) the depth of the monitoring well. The individual effect of these 
parameters on the predicted mean nitrate concentration for both the linear and 
the non-linear model is illustrated in Figure 9. The first three parameters are 
directly related to urban infrastructure in the study area. The impact of urban 
infrastructure on groundwater quality is consistent with observations in other 
studies, showing that urban development is often associated with a degradation 
of groundwater quality [22] [23]. This is also consistent with the isotope analysis 
suggesting the influence of degrading sewage infrastructure on the groundwater 
quality. The impact of the size of the influence zone illustrates a possible dilution 
effect when the size of the influence zone increases. The effect of the depth of the 
monitoring well is consistent with the observation that nitrate pollution plumes 
are more concentrated close to the soil surface and are more diluted when 
piercing deeper in the geological formation.  

Process based models, indicator models and statistical models can be used to 
asses nitrate contamination vulnerability of groundwater. In this study, we pre-
ferred statistical models to asses the vulnerability. Indeed, most of the approach-
es in the literature deal with nitrate contamination in rural and peri-urban envi-
ronments, where nitrate contamination from agricultural origin may significantly  
 

 
Figure 9. Individual effects of the 5 explanatory variables on predicted mean nitrate con-
centration. RNA: Artificial Neural Network model; RLM: Multiple linear regression mod-
el; Perc_surf_imperm: the percentage of impermeable surface; lg_col_4: the density of 
sewage water collectors that are classified as moderate; nb_permis: the number of envi-
ronmental permits considered being at risk; surface_ZI: the size of the influence zone; 
prof_rel_m: the depth of the monitoring well. 
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contribute to the degradation of groundwater quality. The processes of nitrate 
fate and transport in agricultural soils and subsoils are well known and are inte-
grated in validated nitrate fate and transport models.  

These models can be used to assess the degradation status in rural and pe-
ri-urban environments. In urban environments however, the sources and path-
ways of nitrate contamination are much more complex. Process based modelling 
approaches are therefore less appropriate for modelling vulnerability of groundwa-
ter systems in these environments.  

Statistical and machine learning approaches are appropriate to model nitrate 
contamination of groundwater in complex environments, when sufficient data 
on the contamination and the possible explanatory variables are available. The 
individual effects give some insight on the relevance of explanatory variables in 
the overall process. The overall model structure identified in the present study 
may be rather generic, since it aligns with other studies on nitrate contamination 
in urban environments. Yet, the specific model parameters of the statistical 
models are study site specific and should at best be recalibrated for each new 
study. 

4. Conclusions 

In this study, we implemented statistical models to predict the groundwater ni-
trate contamination of the unconfined Brusselean groundwater body in the ur-
ban environment of the Brussel’s Capital Region. This groundwater body is de-
graded, with nitrate concentration levels exceeding the drinking water norms in 
the northern part of the region. The spatial structure of the nitrate contamina-
tion is consistent with the predicted vulnerability by means of the DRASTIC 
model. The temporal structure exhibits small trends that are moderate signifi-
cant, with an increasing trend for the points with low concentrations and a de-
creasing trend for the points with high concentrations. The explanatory variables 
suggest a strong impact of urban infrastructure on groundwater nitrate degrada-
tion. This is consistent with many other studies reported in literature and with 
the dual isotopic analysis of detected nitrate in this groundwater body. This also 
illustrates the importance of the maintenance and/or rehabilitation of urban in-
frastructure to preserve groundwater quality. Groundwater restauration in the 
studied urban environment should primarily focus on the rehabilitation of the 
degraded part of the sewage water network.  

The statistical models were able to explain 56% of total variation of observed 
nitrate contamination when a linear model structure is used. This level could in-
crease to 60% in validation mode when a non-linear model structure was used. 
The proposed models can therefore be used to predict spatially distributed ni-
trate contamination of the groundwater body in terms of available spatially dis-
tributed ancillary variables. The predicted contamination can hence be consi-
dered as a proxy for the groundwater vulnerability. The statistical basis of the 
models developed in this study allows also to assess the uncertainty of the con-
tamination predictions, and these uncertainty assessments are based on a solid 
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theoretical basis. Statistical models for predicting vulnerability have therefore a 
comparative advantage to parametric models as they are data based and as they 
allow to add a quality label to the vulnerability prediction.  

The statistical models presented in this study focus on nitrate contamination. 
It is expected that similar approaches can be developed for other contaminants. 
The statistical models can therefore be used to improve the overall mapping of 
groundwater quality by assimilating available and new groundwater monitoring 
data with predictions coming to the statistical models. Use can be made of ad-
vanced data fusion techniques to generate such type of models. The presented 
approaches can therefore be used to support the monitoring program, by identi-
fying the locations which currently are poorly sampled, or by interpolation when 
monitoring data are missing. The resulting maps may be valuable for steering 
the many groundwater protection or restauration programs in such urban envi-
ronments. 
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