
Open Access Library Journal 
2020, Volume 7, e6349 
ISSN Online: 2333-9721 

ISSN Print: 2333-9705 

 
DOI: 10.4236/oalib.1106349  May 11, 2020 1 Open Access Library Journal 
 

 
 
 

Foresight Look on the Disinfection  
By-Products Formation 

Djamel Ghernaout1,2*, Noureddine Elboughdiri1,3 

1Chemical Engineering Department, College of Engineering, University of Ha’il, Ha’il, Saudi Arabia 
2Chemical Engineering Department, Faculty of Engineering, University of Blida, Blida, Algeria 
3Département de Génie Chimique de Procédés, Laboratoire Modélisation, Analyse, et Commande des Systèmes, Ecole Nationale 
d’Ingénieurs de Gabès (ENIG), Gabès, Tunisia 

 
 
 

Abstract 
In the water treatment industry, if there is a process that has attracted polem-
ic discussion in terms of pros and cons disinfection has attracted the main 
part for its disinfection by-products (DBPs) formation. This work focuses on 
DBPs precursors, link among disinfection and DBPs, DBPs elimination, and 
study futures. During the last half-century, chlorination has been shown highly 
toxic to human health. Indeed, as a classical disinfectant, chlorine generates a 
bigger number of halogenated by-products than other disinfectants. Unfor-
tunately, novel disinfection techniques and emerging pollutants in water can 
form fresh DBPs. DBPs surfacing lately are frequently with low levels and 
elevated poisoning. Further, as the oxidizing agent of the disinfectant in-
creases, the formation of conventional DBPs is reduced, but more toxic DBPs 
emerge. Membrane processes, such as ultrafiltration and nanofiltration, de-
picted greater performance in eliminating organic matter if paralleled with 
traditional techniques. As a perspective, research should concentrate on physi-
cal processes such as distillation and/or solar disinfection, and filtration for 
better water treatment instead of injecting chemicals into water highly pre-
viously chemically polluted. 
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1. Introduction 

In the potable water treatment industry, disinfection has a key contribution to 
demobilizing pathogens in water [1] [2] [3] [4]. It considerably decreases the 
diffusion of various waterborne infectious diseases comprising typhoid and cho-
lera, participating importantly in the safeguard of human health [5] [6] [7] [8]. 
Usual disinfection techniques comprise chlorination (chlorine and chloramines) 
[9] [10] [11], chlorine dioxide (ClO2) [12] [13], ozonation [14], electrochemical 
advanced oxidation processes (AOPs) [15] [16] [17] [18] [19], and ultraviolet 
(UV) disinfection [20] [21] [22] [23]. More novel disinfection processes have al-
so been suggested [24]-[31]. Nevertheless, the disinfection application is fre-
quently joined by the generation of disinfection by-products (DBPs) which can 
induce additional public health troubles [32] [33] [34] [35]. 

DBPs were first proposed in 1974 [36] [37]. During water treatment, it was 
proved that chlorination can produce greatly toxic trihalomethanes (THMs) like 
chloroform [1] [12]. Further, high THMs concentrations in potable water were 
related to harmful reproductive outcomes [38]. Chlorination could generate ad-
ditional poisonous DBPs like haloacetic acids (HAAs). Later, a bigger number of 
DBPs have been identified. Following chlorination or chloramination, haloamides, 
haloacetonitriles (HANs), and aldehydes also have been identified in drinking 
water [39] [40] [41]. In addition to chlorination, additional disinfection tech-
niques also generate DBPs. The ozone disinfection method could form bromi-
nated organic and inorganic compounds (bromate, iodate, and chlorate) [42]. 
Among them, bromate is a suspected human carcinogen [43]. Brominated organic 
compounds like dibromoacetonitrile (DBAN) can also be produced throughout 
ozonation in the occurrence of high bromide levels [44], which could generate 
subchronic toxicity in rats [1]. UV disinfection could form nitrite if the water 
being treated holds nitrate [45]. 

This work focuses on the recent findings in DBPs precursors, link among dis-
infection and DBPs, DBPs elimination techniques, and study futures. 

2. DBPs Precursors 

DBPs precursors comprise both organic and inorganic matters and possess a 
fundamental contribution in generating such hazardous chemicals [1] [46] [47]. 

The main attention on precursors concentrated on natural organic matter 
(NOM), which is the primary organic precursor [1] [48] [49]. NOM was de-
scribed as the complex matrix of organic material existing in natural water and 
possesses an evident impact on the disinfection process [50] [51] [52] [53]. It 
comprises humic substances [54] [55] [56] [57] and non-humic substances [58] 
[59] [60] [61] [62]. Humic substances are a crucial DBPs precursor and consti-
tute an additional research interest [63]. The high molecular weight (MW) hy-
drophobic NOM fraction was more reactive with chlorine, while the low MW 
hydrophilic NOM fraction was more reactive to bromine and iodine [1] [63]. 
Fractionation of NOM depicted that the hydrophilic acid portion was the most 
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reactive precursor for THMs, but least reactive for HAAs [1]. Further, ClO2 
reacted with the humic fraction of NOM usually in the aromatic part of the mo-
lecule, and the carbonyls concentration considerably augmented with the reac-
tion time between ClO2 and carbonyl precursors [1]. The chlorination of NOM 
led to increasing in assimilable organic carbon (AOC) production via the oxida-
tion and chlorine substitution on aromatic molecules [10] [12]. AOC was useful 
to microbial growth, inducing a hazard to the biological safety of potable water 
[1] [49]. Moreover, NOM can generate high levels of poisonous aromatic DBPs 
which were afterward transformed into aliphatic DBPs during chlorination/ 
chloramination [1] [50] [52]. Traditional water treatment reduced most of the 
hydrophobic NOM with high MWs [63]. However, the low MW hydrophilic 
NOM was hard to remove, dominating residual organics [63]. Thus, it is funda-
mental to follow the reduction of the hydrophilic NOM part with low MW. 
AOPs [15] [31] [64] [65] [66] combined with biofiltration or biological activated 
carbon (BAC) [67] [68] [69] remains a more techno-economically practical 
choice to mineralize NOM [70]. 

Algogenic organic matter (AOM) [68] [71]-[76], a significant autochthonous 
organic derivative of algae, augmented the hazard of DBPs generation [77]. AOM 
was rich in nitrogen and protein; while, NOM was abundant in aromatic content 
[1]. Algae augmented dissolved (DON) in water and conducted to the augmen-
tation of the possibility to form nitrogenous DBPs (N-DBPs) and other total or-
ganic halides (TOXs) [1]. In water, AOM could induce DBPs generation, taking 
up 20% - 50% of the DBP formation potential (DBPFP) in usual treatment cir-
cumstances [1]. The origin of AOM was divided into extracellular organic mat-
ter (EOM) intracellular organic matter and (IOM). EOM and IOM of algae are 
known to participate in the production of DBPs. EOM and IOM were mostly 
classified in low-MW (<1 kDa) and high-MW (>100 kDa) portions, possessing 
a significant contribution in the generation of carbonaceous DBPs (C-DBPs) 
and N-DBPs in both chlorination and chloramination [1]. EOM and IOM 
conducted to the bigger production of N-DBPs and haloaldehydes than NOM 
throughout chlorination, while the quantity of N-DBPs and C-DBPs produced 
from chloramination of EOM and IOM was much less than that from NOM. 
Juxtaposed with EOM, IOM had a bigger portion of total organic nitrogen, larg-
er proportions of higher MW compounds, more hydrophobic contents, as well 
as higher fractions of free amino acids but lower fractions of aliphatic amines 
[1]. 

Soluble microbial products (SMPs) are one more type of precursors that could 
give rise to more dichloroacetic acid (DCAA) and N-DBPs. Further, they possess 
a bigger DBPFP than NOM [1]. In an investigation on Chlorella sp., it was 
proved that with elevating algae cultivation time in wastewater, the collection of 
SMPs increased the production of DBPs and the trend of DBP generation was as 
follows: chloroform > DCAA > trichloroacetic acid (TA) [1]. The majority of 
identified N-DBP precursors tended to be of low MW and low electrostatic 
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charge relative to most NOM. Consequently, it was not simple to eliminate them 
by traditional water treatment methods like coagulation [78] [79] [80] [81], 
while biodegradation and nanofiltration (NF) stay excellent options [82]-[87]. 
On the other hand, there were more contaminants from wastewater which may 
become DBPs precursors [7] [8] [88] [89] [90] [91] [92]. As an illustration, ter-
tiary amine-containing pharmaceuticals or other quaternary amine-containing 
constituents of personal care products could work as N-nitrosodimethylamine 
(NDMA) precursors. A group of pharmaceuticals and personal care products 
(PPCPs) containing amine groups served as nitrosamine precursors during chlo-
ramine disinfection [93]. Moreover, phenols in raw water could lead to the gen-
eration of comparatively dangerous phenolic DBPs [57]. Biophysical and chem-
ical processes also conduct to the formation of DBP precursors, leading to more 
DBPs generation in the reclaimed water [94] [95] [96] [97] [98]. 

The inorganic precursor bromide also magnetized awareness, as it conducted 
to the production of mixed bromochloro- and brominated DBP species through-
out chlorination and chloramination [1]. Such chemicals are more carcinogenic 
and cytotoxic than their chlorinated counterparts [99] [100]. Bromide could be 
transformed into bromate throughout ozonation [100]. The occurrence of bro-
mide also had an impact on the generation of iodo-DBPs (I-DBPs). As the reac-
tion rate of HOI to IO− 

3  influenced the production of I-DBPs, pre-oxidation 
procedures with powerful oxidants like ozone and ferrate were employed for 
controlling I-DBPs [101]. 

3. Link among Disinfection and DBPs 

As a classical disinfectant, chlorine generates a bigger number of halogenated 
by-products than other disinfectants [44]. THMs, HAAs, and halonitromethanes 
(HNMs) are mostly formed throughout the chlorination. Chlorine injection 
could also produce nitrosamines, HANs, aldehydes and some aromatic DBPs in 
the occurrence of particular precursors. Further, pre-oxidation via chlorine 
could lead to chlorate formation [42]. With a view to ameliorating disinfection, 
numerous disinfectants comprising ozone, ClO2, and chloramines have been uti-
lized [1]. Implementing such agents diminishes the yield of the four regulated 
THMs, trihalogenated HAAs, and TOX; however, many priority DBPs produced 
from such chemicals could give rise to other troubles [102]. 

If juxtaposed with chlorination, chloramination usually forms lower levels of 
regulated DBPs [103]. However, chloramination could conduct to the generation 
of DBPs with greater toxicity, like HANs and HNMs, as well as NDMA, a kind 
of nitrosamine [104]. Furthermore, the fraction of Br-DBPs, which are more 
dangerous than their chlorinated analogs, was frequently bigger throughout 
chloramination than that throughout chlorination [105]. As a consequence, the 
formation of fresh DBPs has to be considered if substituting chlorine disinfec-
tion by chloramine [1]. 

Chlorine dioxide stays an efficacious disinfectant that forms fewer DBPs. 
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THMs generated via ClO2 when juxtaposed to Cl2 [106]. Nevertheless, ClO2 
conducts to the formation of HANs, aldehydes, and many inorganic DBPs like 
chlorites and chlorates. ClO2 is commonly integrated with chlorine disinfection; 
in this context, ClO2 oxidation prior to chlorination may decrease the generation 
of THMs and TOX [107]. However, in the occurrence of bromide, the part of 
Br-DBPs augmented after ClO2/Cl2 pre-oxidation. The ratio of ClO2 has a consi-
derable contribution to producing DBPs. With augmenting chlorine content in 
mixed oxidants, the generation of chlorite was diminished while more chlorate 
was produced. There is an optimum ClO2: chlorine ratio which generates the 
smallest level of HANs and TCNM [108]. Consequently, it remains requested to 
set such a ratio following the water quality, so as to dominate the production of 
DBPs [1]. 

Ozonation could avert the formation of some DBPs [14]; however, pre-ozonation 
elevates the DBPFP of specific HAAs throughout coming chlorination [109]. If 
contrasted with chlorine disinfection, ozonation usually produced DBPs with 
bigger toxicity. Ozonation frequently formed carbonyl-containing by-products 
comprising aldehydes and short-chained carboxylic acids [1]. Further, bromate 
is produced by ozone in the existence of bromide. If ozonation is merged with 
BAC filtration, the generation of DBPs could be dominated to some extent via 
reducing precursors. BAC may efficiently decrease DBPFP, as well as the yields 
of DBPs such as N-nitrosamines, haloacetaldehydes (HALs), and haloacetamides 
(HAcAms), which were generated throughout ozonation [110] [111]. Taking 
into account the merits of this incorporation, O3/BAC could be utilized as an al-
ternative disinfection method to chlorination [1] [12] [14]. 

In summary, as the oxidizing agent of the disinfectant increases, the formation 
of conventional DBPs is reduced, but more toxic DBPs emerge. When adopting 
the disinfection technique, it has to be considered with the particular water qual-
ity to decide if fresh DBPs may be given rise [1]. 

4. DBPs Elimination 

For dominating DBPs, several techniques work on eliminating precursors such 
as coagulation, membrane filtration, AOPs, and their merged methods [1]. 

As the most frequent and economically realizable methods, coagulation and 
flocculation were employed to reduce NOM from potable water [1] [49] [51] 
[112]. However, more efficacious and economical technologies stay requested to 
eliminate both NOM and organic matter (OM) due to water quality troubles 
[72] [81]. Many investigations have been dedicated to reducing DBP precursors 
by enhancing the action of coagulation [49] [50] [113]. Numerous fresh coagu-
lants have been utilized in the water treatment industry [114] [115], like pre- 
hydrolyzed ferric and alum coagulants [116], Mg/Al hydrotalcite, dendrimers, 
hyperbranched polymers, carbon nanotubes, and cyclodextrins [1] [117]-[123]. 
Further, the bromide level could be decreased efficiently via enhanced coagula-
tion [49]. On the other hand, a few coagulants like chitosan can participate in 
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producing N-DBPs [1]. 
Membrane processes depicted greater performance in eliminating NOM if 

paralleled with traditional techniques [85] [86] [87]. Membrane processes such 
as ultrafiltration (UF) and UF-nanofiltration (NF) can be efficacious in decreas-
ing DBP precursors [124]. In addition, filtration could be integrated with ozona-
tion to retain NOM [1]. 

For dealing with DBPs, AOPs involve ozonation, UV disinfection, oxidation 
with hydrogen peroxide (H2O2), activated carbon and their integrations [33] [34] 
[35]. Vacuum ultraviolet (VUV, 185 + 254 nm) reaches better performance than 
UV254 (only 254 nm) in decomposing HANs [1] [23]. Many hybridizations of 
UV with additional treatment technologies are applied such as UV-H2O2 founded 
AOP that was the most tried. UV/H2O2 possesses the capability to dominate effi-
ciently nitrosamines [125]. UV/H2O2/micro-aeration techniques are performant 
in decomposing totally DCAA [126]. When juxtaposed with a downstream BAC 
filter, the UV/H2O2 method can reduce THM and HAAs formation greatly since 
BAC could efficaciously eliminate biodegradable DBPs [127]. UV may be also 
hybridized with Cl2. Indeed, UV/Cl2 is more performant than UV alone in deal-
ing with I-THM generation [1]. Fresh AOPs comprising UV/PS, UV/TiO2, UV/ 
Cl2, TiO2/O3, O3/H2O2, and MnO2/O3 have been implemented for dominating 
the production of DBPs [1]. 

5. Study Futures 

Tang et al. [1] focused on the research trends in terms of three aspects: 1) ana-
lytical techniques; 2) toxicity and health effects; 3) water quality standards and 
control methods. 

Figure 1 illustrates the first year in which each DBP species given in the key-
words appear in the literature. Since the first publication concerning DBPs were 
released in 1974 [36] [37], novel categories of DBPs have constantly been de-
tected until these days. As shown in Figure 1, DBPs found later usually have a 
tendency to be more poisonous than DBPs of primitive researches. 

Novel disinfection techniques and emerging pollutants in water can form 
fresh DBPs [11] [88]. DBPs surfacing lately are frequently with low levels and 
elevated poisoning [1] [5] [7] [8] [89]. 

Due to the influences on human health, lower limits on numerous DBPs have 
been decided. Such regulated DBPs are mostly established following classical 
chlorination. However, employing different disinfectants (like chloramine, ClO2, 
and O3) conducts to the emergence of a fresh set of DBPs with worse poisoning, 
which are famous as unregulated DBPs [112]. It is vital to add hazardous 
emerging DBPs to the water quality standards, which can participate in attaining 
the target of rendering potable water safer. To satisfy the requirements of regula-
tions, several types of research have been performed on dominating DBPs. DBPs 
dominating techniques are mostly incubated in two sides: enhancing disinfec-
tion engineering and pre-treatment techniques. As it forms a few DBPs, UV  
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Figure 1. The historical review of DBPs from 1974 to 2018 [1]. 

 
disinfection is advocated to substitute classical disinfection processes. In addi-
tion, UV could be hybridized with ozonation. Indeed, Integrated O3-UV AOP is 
more performant than either ozone or UV treatment alone and is efficient in 
eliminating OM [23]. Additional integrated methods like O3/BAC, permanga-
nate oxidation, and powdered activated carbon adsorption (PM-PAC) were 
found efficient in dealing with DBPs [14]. Integrating diverse disinfection pro- 
cesses is viewed as a crucial choice to ameliorate disinfection engineering in the 
next years. Further, several fresh disinfection processes came out like solar dis-
infection via photocatalysis that is an encouraging technique possessing the ca-
pacity to eliminate both microorganisms and DBP precursors [68]. On the other 
hand, many nanomaterials could be utilized as disinfectants thanks to their an-
timicrobial characteristics and decrease the risk of grave DBPFP through the 
classical disinfection process [128]. Aside from enhancing disinfection engi-
neering [129], it is more vital to eliminate DBPs precursors. Coagulation stays 
the most broadly implemented and economical treatment process [130]. AOP 
remains an encouraging technology for removing precursors, in which UV, 
H2O2, and O3 are employed commonly. Membrane processes should be adopted 
for safe potable water [15] [19] [64] [65] [118]. For distinct DBPs, several tech-
nologies may be merged to obtain satisfying elimination [1] [70] [131] [132]. 
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6. Conclusions 

In the water treatment industry, if there is a process that has attracted polemic 
discussion in terms of pros and cons disinfection has attracted the main part for 
its disinfection by-products formation. This work concerns DBPs precursors, 
link among disinfection and DBPs, DBPs elimination, and study futures. From 
this work, the main conclusions emerge. 

During the last half-century, chlorination has been shown highly toxic to hu-
man health. Indeed, as a classical disinfectant, chlorine generates a bigger num-
ber of halogenated by-products than other disinfectants. Unfortunately, novel 
disinfection techniques and emerging pollutants in water can form fresh DBPs. 
DBPs surfacing lately are frequently with low levels and elevated poisoning. 
Further, as the oxidizing agent of the disinfectant increases, the formation of 
conventional DBPs is reduced, but more toxic DBPs emerge. Membrane pro- 
cesses, such as UF and NF, depicted greater performance in eliminating organic 
matter if paralleled with traditional techniques. As a perspective, research should 
concentrate on physical processes such as distillation, solar disinfection, and fil-
tration for better water treatment instead of injecting chemicals into water pre-
viously highly-chemically polluted. 
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