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Abstract 
In this study, by starting from Maximum entropy (MaxEnt) distribution of time series, we intro-
duce a measure that quantifies information worth of a set of autocovariances. The information 
worth of autocovariences is measured in terms of entropy difference of MaxEnt distributions sub-
ject to different autocovariance sets due to the fact that the information discrepancy between two 
distributions is measured in terms of their entropy difference in MaxEnt modeling. However, 
MinMaxEnt distributions (models) are obtained on the basis of MaxEnt distributions dependent on 
parameters according to autocovariances for time series. This distribution is the one which has 
minimum entropy and maximum information out of all MaxEnt distributions for family of time se-
ries constructed by considering one or several values as parameters. Furthermore, it is shown that 
as the number of autocovariances increases, the entropy of approximating distribution goes on 
decreasing. In addition, it is proved that information worth of each model defined on the basis of 
MinMaxEnt modeling about stationary time series is equal to sum of all possible information in-
crements corresponding to each model with respect to preceding model starting with first model 
in the sequence of models. The fulfillment of obtained results is demonstrated on an example by 
using a program written in Matlab. 

 
Keywords 
Maximum Entropy Distribution, Time Series, Estimation of Missing Values, MinMaxEnt 
Distribution, Information Worth 

 
 

1. Introduction 
In many instances, the type of data available for modeling and that used for optimization is a set of observations 
measured over time of system variable(s) of interest [1]-[4]. A time series stated as only one realization of a 
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stochastic process is a set of data measured through time. In many areas from engineering to economics, patterns 
of time series are encountered. It is difficult to find a science program not required to study with a data set in 
form of time series. The characteristic property of a time series is that its future behavior can not be exactly es-
timated. It is not uncommon in economic analysis to develop a model and perform empirical analysis by assum-
ing that economic agents make decisions based on a set of available information [5]. In empirical analyses, 
however, the information is usually designated by a generic information set  . There is no attempt to quantify 
the amount of information in  . A quantification of the worth of such a set would not be an easy task even if 
one could identify all elements of   [6]. In this paper, we view the flow of information to a stochastic process 
from the autocovariance sets and consider measuring the amount of information when   is a set which consists 
of autocovariances obtained from the time series. For this reason, it is concerned with the analysis of the ordered 
data using the principle of maximum entropy when the information about the times series is given by autocova-
riances up to a lag m. According to the maximum entropy approach, given time series can be viewed as single 
trial from a stochastic process that is stationary up to its second-order statistics and has a zero mean. It is known 
that MaxEnt distribution of an observed time series is determined as a multivariate normal distribution whose 
dimension is equal to the number of observations [1]. By virtue of the entropy of normal distribution, entropy 
optimization (EO) functional is constructed as Hmax. It can be shown that as the number of constraints generated 
by autocovariances increases, value of Hmax decreases. In this investigation, firstly MaxEnt distribution for sta-
tionary time series subject to constraints generated by autocovariances set { }0 1, , , mr r r  is considered. It is 
proved that as number of lags of successive autocovariances increases, the entropy value of this distribution goes 
on decreasing but its information worth goes on increasing. Furthermore, by starting from MaxEnt distribution 
dependent on parameters, MinMaxEnt distribution which has minimum entropy and maximum information out 
of all MaxEnt distributions is defined. It should be noted that MinMaxEnt and MaxMaxEnt distributions as so-
lutions of Generalized Entropy Optimization (GEO) problem firstly are defined and generally investigated in 
[7]-[9]. In [10], GEO distribution dependent on parameters in time series is introduced and via this distribution 
an estimation method of missing value is proposed. In this study, it is shown that entropy value and information 
worth of MinMaxEnt distribution obtained on the bases of MaxEnt distribution dependent on parameters has the 
same above expressed properties at each fixed value of parameters as MaxEnt distribution. In addition, it is 
proved that information worth of each model defined on the basis of MinMaxEnt modeling about stationary time 
series is equal to the sum of all possible information increments corresponding to each model with respect to 
preceding model starting with first model in the sequence of models. The fulfillment of obtained results is dem-
onstrated on an example by the use of a program written in Matlab. 

2. Information Worth of Autocovariances Set in MaxEnt Modeling 
In this section, MaxEnt distributions according to different number of autocovariances are considered and it is 
proved that the entropy values of these distributions constitute a monotonically decreasing sequence when the 
number of autocovariances increases. Moreover it is shown that the information generated by autocovariances 
set is expressed as sum of information worth of each autocovariance taken separately. 

Theorem 1. Let 0 1, , , mr r r  be autocovariances with 0,1, ,m  lags of observed stationary time series 
{ }0 1, , , Ny y y , ( )

kr
P y  be MaxEnt distribution subject to constraints generated by autocovariances set { }k =r  

{ }0 1, , , kr r r , 1, ,k m=  ; m < N and ( )max kH r  be the entropy value of this distribution. Then, entropy values 
of mentioned MaxEnt distributions form a monotonically decreasing sequence of the following form: 

( ) ( ) ( ) ( )max 0 max 1 max 2 max mH r H r H r H r> > > >                          (1) 

Proof. The Shannon entropy measure subject to constraints generated by autocovariances 0 1, , , mr r r  with 
0,1, ,m  of stationary time series { }0 1, , , Ny y y  is multivariate normal [1]. Therefore by increasing of the 
number of k of autocovariances vector { } { }0 1, , ,k kr r r=r  , the conditions to maximize Shannon measure is in-
creased and the domain of entropy measure becomes narrow. Consequently, entropy value of ( )max kH r  is 
strongly decreased and the inequalities (1) are satisfied. Theorem 1 is proved. 

If we denote by ( )kI r  information worth of autocovariance rk, due to the fact that the information discre-
pancy between two distributions is measured in terms of their entropy difference in MaxEnt modeling, then 

( ) ( ) ( )max 1 max , 1, , .k k kI r H r H r k m−= − =                             (2) 
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Furthermore, if information worth generated by autocovariances set { }1, , kr r  in the aggregate is denoted 
by ( )1, , kI r r , 1, ,k m=  , then 

( ) ( ) ( )1 max 0 max, , .k kI r r H r H r= −                               (3) 

Remark 1. The information ( )1, , kI r r , 1, ,k m=  , generated by autocovariances set { }1, , kr r  is ex-
pressed as sum of information worths of each autocovariances taken separately, 

( ) ( ) ( )1 1, , .k kI r r I r I r= + +                                 (4) 

From (3) by virtue of formula (2) follows 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 max 0 max

max 0 max 1 max 1 max 2 max 1 max

1

, ,

,

k k

k k

k

I r r H r H r

H r H r H r H r H r H r

I r I r
−

= −

= − + − + + −

= + +







 

consequently 

( ) ( ) ( )1 1, , .k kI r r I r I r= + +   

3. Information Worth of Dependent on Parameters  
In this section, according to different number of autocovariances MaxEnt distributions dependent on parameters 
are considered and it is proved that at each value of parameter, these distributions and their entropies possess the 
same properties as in section 2. 

Theorem 2. Let ( )
kr

P y  be MaxEnt distribution generated by autocovariances set { }0 1, , , mr r r  of given 
stationary time series { }0 1 1, , , , , ,s s Ny y y yγ− +   with missing value [ ],γ α β∈ , where { }min j i jyα ≠= , 

{ }max j i jyβ ≠= . Since 0 1, , , mr r r  depend on γ , MaxEnt distribution ( )
kr

P y  is also dependent on γ . The-
reafter, autocovariances set { }0 1, , , mr r r  will be represented as ( ) ( )0 , , mr rγ γ , MaxEnt distribution as 

( ) ( )
kr

P yγ  and entropy of this distribution as ( )( )max kH r γ . Thus, we have a family of time series dependent on 
γ . 

Between entropy values ( )( )max kH r γ  of MaxEnt distributions ( ) ( )
kr

P yγ , 0,1, ,k m=   the following in-
equalities are fulfilled: 

( )( ) ( )( ) ( )( ) ( )( )max 0 max 1 max 2 max mH r H r H r H rγ γ γ γ> > > >                    (5) 

In other words, entropy values of MaxEnt distributions dependent on γ  constitute a monotonically decreas-
ing sequence. 

Proof. According to Theorem 1, entropy values ( )max kH r  of MaxEnt distributions form a monotonically de-
creasing sequence of the form (1). Since ( ) ( )0 , , mr rγ γ  depend on γ . Consequently, inequalities (5) are sa-
tisfied. Theorem 2 is proved. 

Information worth ( )( )kI r γ  of autocovariance rk dependent on γ  is determined by the following equation 
similarly to (2), 

( )( ) ( )( ) ( )( )max 1 max , 1, , .k k kI r H r H r k mγ γ γ−= − =                         (6) 

Then, information worth generated by autocovariances set ( ) ( ){ }1 , , kr rγ γ  is denoted by  
( ) ( )( )1 , , kI r rγ γ , 1, ,k m=  , and 

( ) ( )( ) ( )( ) ( )( )1 max 0 max, , , 1, , .k kI r r H r H r k mγ γ γ γ= − =                      (7) 

Remark 2. The information ( ) ( )( )1 , , kI r rγ γ , 1, ,k m=  , generated by autocovariances set  
( ) ( ){ }1 , , kr rγ γ  is expressed as sum of information worths of each autocovariances taken separately, 

( ) ( )( ) ( )( ) ( )( )1 1, , .k kI r r I r I rγ γ γ γ= + +                            (8) 

From (7) by virtue of formula (6) follows 
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( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( )
( )( ) ( )( )

1 max 0 max 1

max 0 max 1 max 1 max 2

max 1 max

1

, , k

k k

k

I r r H r H r

H r H r H r H r

H r H r

I r I r

γ γ γ γ

γ γ γ γ

γ γ

γ γ
−

= −

= − + −

+ + −

= + +







 

( ) ( )( ) ( )( ) ( )( )1 1, , .k kI r r I r I rγ γ γ γ= + +   

4. Information Worth of MinMaxEnt Models Dependent on Autocovariances  
In this section, MinMaxEnt distributions (models) are obtained on the basis of MaxEnt distributions dependent 
on parameters and it is shown that as the number of autocovariances k goes on increasing, the entropy of ap-
proximating distribution (model) goes on decreasing. Furthermore, it is proved that information worth of each 
model defined on the basis of MinMaxEnt modeling about stationary time series is equal to the sum of all possi-
ble information increments corresponding to each model with respect to preceding model starting with first 
model in the sequence of models. 

Theorem 3. Let ( ) ( )
kr

P yγ  be MaxEnt distribution generated by autocovariances set ( ) ( ) ( ){ }0 1, , , kr r rγ γ γ  
of given stationary time series { }0 1 1, , , , , ,s s Ny y y yγ− +   with parameter [ ],γ α β∈ , at position s, where 

{ }min j i jyα ≠= , { }max j i jyβ ≠=  and entropy value of this distribution be ( )( )max kH r γ . Moreover, let kγ , 
1, ,k m=   be the value [ ],kγ α β∈  realizing MinMaxEnt distribution ( ) ( )

kr
P yγ , in other words 

[ ]
( )( ) ( )( )max max,

min , 1, ,k k kH r H r k m
γ α β

γ γ
∈

= =                          (9) 

Then, between entropy values of MinMaxEnt distributions the inequalities 

( )( ) ( )( ) ( )( ) ( )( )max 0 0 max 1 1 max 2 2 max m mH r H r H r H rγ γ γ γ> > > >                 (10) 

are satisfied. 
Proof. According to Theorem 2 for any γ , [ ],γ α β∈ , the inequalities (5) hold. For this reason, 

[ ]
( )( ) ( )( ) ( )( )max 0 max 0 0 max 1 0,

min H r H r H r
γ α β

γ γ γ
∈

= >                        (11) 

On the other hand, 

[ ]
( )( ) ( )( )max 1 max 1 1,

min H r H r
γ α β

γ γ
∈

=                              (12) 

[ ]
( )( ) ( )( )max 1 0 max 1 1,

min H r H r
γ α β

γ γ
∈

>                              (13) 

From inequality (11) by taken into account (12) and (13), the inequality 

( )( ) ( )( )max 0 0 max 1 1H r H rγ γ>                                (14) 

is got. If this process is consecutively repeated, then it is easy to get to the inequalities (10). Theorem 3 is 
proved. 

Remark 3. By using Theorem 3, it is possible to obtain information worth of MinMaxEnt distributions with 
the different number of autocovariances. 

By using Theorem 3, it is possible to obtain information worth of MinMaxEnt distributions with the different 
number of autocovariances. However, in order to simplify the description of results, we introduce the following 
symbols. Let kY , ( )1, ,k m=   be a model representing MinMaxEnt distribution ( ) ( )

k k
P γr y  for a stationary 

time series { }0 1 1, , , , , ,s s Ny y y yγ− +  . Moreover, let ( )I k , ( )1, ,k m=   be the information contained by 
model kY  about this time series, then 

( ) ( ) ( )0 , 1, ,k
kI H Y H Y k m= − =                              (15) 

and 
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( ) ( ) ( )1
0 1 , 1, ,k

kI H Y H Y k m−
−= − =                             (16) 

From (15) and (16), 
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )

1
0 0 1

1 = , 1, ,

k k
k k

k k k

k

I I H Y H Y H Y H Y

H Y H Y I k m
I

−
−

−

− = − − −

= − =

=

  

( ) ( )1k k
kI I I−− =                                    (17) 

where kI  is the information increment corresponding to each model kY  with respect to preceding model 1kY − . 
By virtue of the obtained results, the following theorem can be asserted. 

Theorem 4. Information worth ( )mI  of model Ym defined on the basis of MinMaxEnt modelling about sta-
tionary time series { }0 1 1, , , , , ,s s Ny y y yγ− +   is equal to sum of all possible information increments  

( ) ( ) ( ) ( )1
1

k k
k k kI I I H Y H Y−

−= − = − , 1, ,k m=   corresponding to each model with respect to preceding model 
1kY −  starting with first model ( )1 k m≤ ≤  in the sequence of models 0 1, , , mY Y Y . 

Proof. By using the new notations 0 1, , , mY Y Y  inequalities (10) can be represented as 

( ) ( ) ( ) ( )0 1 2 mH Y H Y H Y H Y> > > >                           (18) 

Equation (10) shows that as the number of autocovariances k increases, the entropy of approximating distri-
bution (model) goes on decreasing but it never goes below the entropy of probability distribution satisfying the 
same conditions as MinMaxEnt distribution. According to (15) and (17) 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

0 1

0 1 1 2 1

1 2

m

m m

m

I H Y H Y

H Y H Y H Y H Y H Y H Y
I I I

−

= −

= − + − + + −

= + + +





 

or 

m
m IIII +++ 21

)( =                                  (19) 

According to (18) in (19), 0kI > , 1, ,k m=  . Theorem 4 is proved. 

5. Applications  
The developed MinMaxEnt models 0 1, , , mY Y Y  can be applied to estimate the missing value in time series. 
According to Theorem 4, information worth generated by mY  is greater than information worth generated by 

1mY − . Consequently, mγ  generating the model mY  is the better estimation than 1mγ −  generating the model 
1mY −  in the sense of information worth. On an example it is shown that mentioned estimated value is the best 

also in the sense of mean square error (MSE). To realize required operations, a program in MATLAB is written. 
For this purpose, we have considered data set generated from autoregressive process ( )4AR  as follows: 

( )1 2 3 41.90 2.01 1.84 6 0.80 , 0,0.5t t t t t t tX X X X X Nε ε− − − −= − + − +                (20) 

and the data set is given in Table 1. By using the data in Table 1, estimations based on MinMaxEnt models are 
obtained for missing values in each position via constraints generated by 0 1 2, ,r r r  autocovariances and 

0 1 2 3, , ,r r r r  autocovariances. From Table 1 it is seen that, MinMaxEnt estimations 3tγ  determined by the set 
consisting of 0 1 2 3, , ,r r r r  autocovariances are better than MinMaxEnt estimations 2tγ  determined by the set 
consisting of 0 1 2, ,r r r  autocovariances in each position. Moreover, ( )

0 1 2 3, , ,r r r rMSE  calculated by MinMaxEnt  
estimations with autocovariances is 0.2564 and it is lower than ( )

0 1 2, , 3.6605r r rMSE =  calculated by MinMax-  

Ent estimations with 0 1 2, ,r r r  autocovariances and ( )
0 1, 8.0426r rMSE =  calculated by MinMaxEnt estimations 

with 0 1,r r  autocovariances. 
Furthermore, in Table 2 the entropy and information worth of different autocovariance sets are given. These 

quantities calculated from the data set verify Theorem 4. It can be seen that as the number of constraints which 
is generated by autocovariances increases, the value of Hmax decreases. 



A. Shamilov, C. Giriftinoglu 
 

 
226 

Table 1. The data generated from AR(4) and its estimations with different autocovariance sets. 

t ( )X t  2tγ  3tγ  t ( )X t  2tγ  3tγ  

1 −7.6164 −3.7049 −4.5863 26 −2.5809 −0.4340 −2.2861 

2 −7.9251 −5.9152 −8.2637 27 −1.8546 0.0249 −1.8094 

3 −2.3466 −3.1335 −1.5912 28 4.7113 2.7239 4.5856 

4 −1.0788 −2.6884 −1.1953 29 5.2406 2.9464 5.1481 

5 −6.3050 −4.4728 −6.1961 30 −1.0943 0.4262 −0.8107 

6 −7.7206 −4.9192 −7.7193 31 −2.4052 −0.1378 −2.3785 

7 −2.2376 −2.6242 −2.2308 32 4.0709 3.0661 4.3309 

8 0.33865 −1.6810 −0.0090 33 7.9505 4.9433 7.7333 

9 −4.5611 −3.2248 −4.3121 34 3.5777 3.7644 3.5249 

10 −7.3435 −4.7417 −7.6510 35 0.8252 3.1348 0.8623 

11 −3.3723 −2.9111 −3.2169 36 −2.4052 −0.1378 −2.3785 

12 0.13548 −1.8088 −0.0447 37 4.0709 3.0661 4.3309 

13 −3.7786 −3.4259 −3.7174 38 7.9505 4.9433 7.7333 

14 −8.2637 −5.3028 −8.1113 39 3.5777 3.7644 3.5249 

15 −5.2458 −4.0749 −4.8305 40 0.8252 3.1348 0.8623 

16 −0.2230 −2.2286 −0.1069 41 11.292 8.1259 11.159 

17 −2.1272 −2.2977 −1.8858 42 7.5889 6.6536 7.3807 

18 −5.4257 −2.6645 −5.2509 43 3.3139 5.2987 3.5224 

19 −1.0920 −0.1997 −1.3106 44 6.5842 6.0319 6.2192 

20 5.5526 3.1233 5.2295 45 10.412 7.5539 10.267 

21 4.5110 3.1064 3.9525 46 7.2051 6.1065 7.1059 

22 −0.8572 1.2503 −0.9899 47 2.0869 3.6081 2.1044 

23 0.0716 1.1921 −0.2413 48 3.1468 3.5739 3.1619 

24 4.7447 2.7488 4.8959 49 7.1153 5.0748 7.1544 

25 3.4163 1.6973 3.3217 50 5.9239 4.4184 4.9659 

 
Table 2. Entropy and information worth of different autocovariance sets. 

( )max 0H r  ( )max 0 1,H r r  ( )max 0 1 2, ,H r r r  ( )max 0 1 2 3, , ,H r r r r  ( )1I r  ( )2I r  ( )3I r  ( )1 2 3, ,I r r r  

171.94 155.74 153.80 117.37 16.20 1.94 36.43 54.57 

6. Conclusions  
In this study, the following results are established. 
• MaxEnt distributions according to different number of autocovariances are considered and it is proved that 

the entropy values of these distributions constitute a monotonically decreasing sequence when the number of 
autocovariances increases. Moreover it is shown that the information generated by autocovariances set is ex-
pressed as sum of information worth of each autocovariance taken separately. 

• According to different number of autocovariances, MaxEnt distributions dependent on parameters are con-
sidered and it is proved that at each value of parameter these distributions and their entropies possess the 
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same properties as the MaxEnt distributions. 
• MinMaxEnt distributions (models) are obtained on the basis of MaxEnt distributions dependent on parame-

ters and it is shown that as the number of autocovariances k goes on increasing, the entropy of approximating 
distribution (model) goes on decreasing. Furthermore, it is proved that information worth of each model de-
fined on the basis of MinMaxEnt modeling about stationary time series is equal to the sum of all possible 
information increments corresponding to each model with respect to preceding model starting with first 
model in the sequence of models. 

• Information worth of autocovariances in time series and values generating MinMaxEnt distributions can be 
applied in solving many problems. One of the mentioned problems is the problem of estimation of missing 
value in time series. It is proved that the value generating MinMaxEnt distribution independence on position 
represents the best estimation of the missing value in the sense of information worth. 

• The fulfillment of the obtained results is demonstrated on an example by using a program written in Matlab. 
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Abstract 
The paper solves the problem of the variation formulation of the steady-linear oscillations of 
structurally inhomogeneous viscoelastic plate system with point connections. Under the influence 
of surface forces, range of motion and effort varies harmonically. The problem is reduced to solv-
ing a system of algebraic equations with complex parameters. The system of inhomogeneous li-
near equations is solved by the Gauss method with the release of the main elements in columns 
and rows of the matrix. For some specific problems, the amplitude-frequency characteristics are 
obtained. 

 
Keywords 
Plates, The Ability to Move, The Complex Amplitude 

 
 

1. Introduction 
Currently, in many technical designs there are widely used shell and plate structures. Thin-walled tubes and pa-
nels in real conditions usually interact with other structures and bodies, which are based on resilient supports 
and also have hinge supports and associated masses. As in [1], we present a generalized interpretation of the 
statement of the problem of forced oscillations for a certain class of thin deformable bodies, as well as mechani-
cal systems consisting of these elements. Support was adopted from the hinge or of entrapped type that connects 
elements of the system. The location supports linkages and concentrated masses arbitrarily [2]-[4]. Elements of 
the system can be both elastic and viscoelastic, on the edge of the elements given by the homogeneous boundary 
conditions. The case when the operating system on the driving force subordinates to the harmonic law is re-
quired to determine the frequency response of the system. 
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2. The Mathematical Formulation of the Problem of Forced Vibrations Viscoelastic 
Systems with Point Connections 

Consider a homogeneous isotropic a resilient plate of constant thickness h, limited to the size of a rectangular 
contour a, b. Suppose on the plate is Q dot added mass ( )1, ,qM q Q=   and it is elastically and, accordingly, 
simply supported rigidly in L' and correspondingly S internal points. Swivel bearing plate at the point may be 
combined with jamming in any direction, layout of point masses and in the plane of the plate arbitrarily. The 
boundary condition on each side of the plate can be one of the following: hinge-support, jamming or free edge. 
This paper considers the package of plates (consisting of n-plates (n = 1, ∙∙∙, N)). It is required to determine the 
steady-linear oscillations of the plate. Assume that the perturbing forces applied to the n-mu body have the same 
frequency but different amplitude; Then they change the law can be written as 

( ) ( )0e 1, , ,  1, ,i t
nj njP t P n N j Jω−= = =  ,                           (1) 

where ω—given real frequency of the disturbing force, 0
njP —Vector amplitude of the disturbing force directed 

at j-th component of the displacement vector ( ),njU x t , N—the number of elements of the system, J—number 
of components of the displacement vector. Assuming the validity of Kirchhoff-Love hypotheses, we write the 
known from the theory of elasticity relationship between displacements and strains [5]: 

2 2 2

2 2,    ,    2x y xy
W W Wz z z

x yx y
ε ε ε∂ ∂ ∂

= − = − = −
∂ ∂∂ ∂

 

Here z—coordinate of a point in a direction perpendicular to the middle surface, εx, εy, εxy—components of the 
strain tensor of the plate. To describe the relaxation processes occurring in the viscoelastic elements or point 
connections system, we adopt a linear Boltzmann theory of heredity: 

( ) ( ) ( ) ( )dtn n n n
mk n mk mkt E t R tσ ε τ ε τ τ

−∞
 = − −  ∫ ,                        (2) 

where ( )nR t —relaxation kernel n-th viscoelastic element or connection point, En—instantaneous modulus of 
elasticity. To stress was periodic function of time, in a ratio heredity (2) the lower limit of integration taken to be 
negative infinity. If the lower limit is zero, the voltage will contain a periodic additive which decreases with 
time. On the influence function ( )R t τ−  the usual requirements imposed inerrability, continuity (except 
t τ= ), fixed sign and monotonicity: 

( ) ( )
0

,    ,  
d

0 0 0 d 1.
d

 
R t

R R t t
t

∞

> ≤ < <∫  

In contrast to the problems of the natural oscillations [1], the conditions (a little) kernel parameters of relaxa-
tion not put. 

If ( ) 0R t = , the elastic body. Stress components are equal 
2 2

2 2 2

2 2

2 2 2

2

2

,
1

,
1

,
1

z
x

z
y

z
xy yx

E W WG v
v x y

E W WG v
v y x

E WG G
x yv

 ∂ ∂
= − + − ∂ ∂ 

 ∂ ∂
= − + − ∂ ∂ 

∂
= = −

∂ ∂−

                              (3) 

where E—Young’s modulus, and v-Poisson’s ratio, which is assumed to be constant. The normal components Gz 
transverse rupture is small compared to Gx and Gy, therefore believe Gz = 0. The potential energy stored during 
the elastic deformation of the plate is given by: 

( )1 d d d
2 x x y y xy xyV

G G G G x y zε ε ε= + +∫ ∫ ∫ ,                         (4) 

where V—the volume of the plate. Substituting in (4) the values of the components of deformation and stress (2), 
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(3) and taking into account the potential energy of elastic supports, we obtain 

( ) ( )
222 2 2 2 2

2
12 2 2 2 1

0 0

12 1 d d ,
2 2

a b
L l l
l

D W W W W WG v x y c W x y
x yx y x y

′ ′ ′∗
′=

     ∂ ∂ ∂ ∂ ∂  ′= + − − − +     ∂ ∂∂ ∂ ∂ ∂      
∑∫∫ ,       (5) 

here ( ) 13 212 1D Eh v
−

 = −  —stiffness of the plate cylinder, and l lC x′ ′ , ly ′ —stiffness and the coordinates of 
the elastic support. Double integrals in (5) is taken over the surface of the neutral layer. The kinetic energy of 
the plate, taking into account the added mass is given by 

( ) 2
2

1
0 0

, ,1d d
2 2

q qa b
Q

qq

W x y th WT x y M
t t

ρ
=

 ∂∂   = +   ∂ ∂   
∑∫∫ ,                     (6) 

where ρ—the density of the plate material, xq, yq—coordinates q-th associated mass. We formulate the problem 
in terms of the method of virtual displacements, according to which the sum of the work of all active forces in 
the possible displacement δU, satisfies the boundary conditions, is equal to zero: 

0a m pA A A Aσδ δ δ δ+ + + =                                (7) 

here Aσδ , aAδ , mAδ , pAδ —virtual work of internal forces shell, elastic supports, inertia forces, taking into 
account the concentrated loads and virtual work surface forces. These works are calculated by the formulas 

( ) ( )
( ) ( )

/

/ /
/ 1

1 2 1 21Ω

1 1 Ω

d ,

,

, , dΩ , , ,

, dΩ,
n

ij ij
V

L

a l l
l

Q q q
m qq

N J

p nj nj
n j

A v

A

A h U X X t U M U X X t U

A P t U x t

σδ σ δε

δ σ δε

δ ρ δ δ

δ δ

=

=

= =

= −

= −

= − −

=

∫

∑

∑∫

∑∑ ∫

                 (8) 

where ρ , h—density and thickness of the shell, Mq-q-I added mass, L'—number-the elastic supports, Q—the 
number of additional masses, V, Ω —volume and lateral surface of the shell, ,  ij ijσ ε —components of stress 
and strain tensors shell, lσ ′ , lε ′ —Stress and strain l'-th elastic support, δ—variation on the generalized dis-
placements ( ), ,ij lU ε ε ′ . All terms in Equations (7) are calculated by the formula (8). Steady-state oscillations of 
n-th element of the system will be sought in the form 

( ) ( )0, e i t
nj njU x t U x ω−=                                 (9) 

where ( )0
njU x —complex amplitude of forced oscillations. It is clear that all the generalized coordinates of the 

system should be changed with a single frequency equal to (ω real) viscoelastic forces. Transform variation eq-
uation (9) as well as in [1], i.e. substitute in a series of (2), (3), (4), (5), while expressing the deformation of the 
components of the displacement vector ( ),njU x t . Contained in the equation of integral expressions of type (2) 
by replacing the variable t zτ− =  into the form [6] 

( ) ( ) ( ) ( ) ( )d Γ ,
t

cR t is tτ ϕ τ τ ω ω ϕ
∞

− = +  ∫  

where ( ) ( )
0

cos dC
R RRω τ ω τ τ

∞

Γ = ∫ , ( ) ( )
0

sin ds
R RRω τ ω τ τ

∞

Γ = ∫ —respectively, the cosine and sine Fourier  

transforms relaxation kernel material. This will eliminate the function of time ( )tϕ , which in this case has the 
form ( ) e i tt ωϕ −= , obtain the variation equation for the displacement vector. Imposed on the system of rigid 
connection point, as in the problem of the natural vibrations, made under the sign of the variation by the method 
of Lagrange multipliers. The final form of the variation equation is as follows: 
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( )( ) ( ){ }0 2, , , 0s s r
nj nj nj njG U x Fδ ω λ κ µ+ = ,                         (10) 

where G—total virtual works of the system, and F—kinematic conditions of rigid point constraints imposed on 
the system. 

The task is now formulated as follows: 
• Let the driving force ( )njP t  satisfies the relation (1); 
• Required depending on the frequency of the driving force to find a module of the displacement vector 

( )0
njU x  (the amplitude of the forced oscillations) satisfying Equation (10) and specify the homogeneous 

boundary conditions. When studies have established processes, the initial conditions are not put here. If ne-
cessary, you can define and Lagrange multipliers, the physical meaning of which - the reaction of hard point 
connections. 

3. Evaluation of the Practical Convergence of the Method 
In this paper we do not address the question of convergence of the method with a rigorous mathematical point of 
view, since it is not crucial for the following reasons. Energy approach used in the formulation of the problem is 
essentially the Ritz method, the convergence is strictly proved, for example, in [7] [8]. Accounting using La-
grange point constraints imposed on the plate, there is also a well-known method of finding a conditional ex-
tremum. 

4. Construction of Resolving Equations of Linear Problems of Forced Vibrations of 
Viscoelastic Systems with Point Connections 

The solution of the variation Equation (10) is sought in the form of a superposition of orthogonal basis functions. 
It is proposed that the elements are free from localized masses and all point connections (poles, posts) are known. 
Then as the desired displacement field satisfies the variation Equation (10) and specify the homogeneous boun-
dary conditions, we assume a finite sum of these fundamental functions: 

( ) ( ) ( )0
1 Φ    1, , ,  1, ,K k k

nj nj njkU x x n N j Jγ
=

= = =∑   ,                     (11) 

where k
njγ —unknown coefficients. 

After substituting the sum (11) into Equation (10) coefficients k
njγ  and Lagrange multipliers s

njλ , s
njκ , r

njµ  
will be the generalized coordinates. The dimensionality of the system is the same as in the case of free oscilla-
tion [1]. In matrix for it can be written as 

( ) ( ) ( ) )
1

1 2 0
1 1

1 1 1

ˆ
n nN LN

N Ln n n
n n ln ln l n l n njn l

n n l
A f A f A f A B Pω ω ω ω ξ

−
′−

′ ′′= =
= = =


+ + + − =


∑ ∑∑ ∑∑ .            (12) 

Symbols of all the quantities in the left part of the system of equations (12) coincide with the notation of [1]. 
The program that implements the algorithm, the formation of all the matrices A, n

nA , n
lnA , n

l nA ′ , B produced by  
the same routines that are used in the problem of natural oscillations [1]. Vector-Column 0

n̂jP  structurally con-  
sists of two sub vectors. If equation (10) is differentiated with respect Lagrange multiplier first s

njλ , s
njκ , r

njµ ,  

them the upper subvector vector 0P̂  will be zero, and its dimension is equal to the total number of Lagrange 
multipliers. Lower subvector is the vector amplitude of the driving forces 0

n̂jP . In formula (9) it is assumed that  
the disturbing force is distributed nature. Merits will not change if the applied force is concentrated. Then the 
virtual work space element is replaced by the virtual work of the concentrated force. Ultimately, the change shall  
be subject only vector amplitudes 0

n̂jP , which, apart from the amplitude of a force filled with zeros. The system  
(12) is solved by the Gauss method with the release of the main elements in columns and rows. Note that the ini-
tial system of equations (8) has complex coefficients, so the program that implements the algorithm is written 
for the general case, i.e., for systems with complex numerical coefficients and complex unknowns. Right side of  
the system, i.e. vector 0

n̂jP , must be specified as 
0 00ˆ nj njnjP RP iIP= + , 



I. I. Safarov et al. 
 

 
232 

where 
0
njRP , 

0
njIP —the real and imaginary parts of the load vector, and, 

0
0njIP = . 

The calculated components of the vector of unknowns, are complex quantities, i.e. vector ξ ′  represented in  
the for R Iiξ ξ ξ′ = + . To the amplitude of the forced vibrations and reactions bonds had a real sense, it is neces-  
sary to take ξ ξ′ = , i.e., as generalized coordinates s

njλ , s
njκ , r

njµ , k
njγ  take modules of the corresponding 

components of the vector ξ . After this, the components of the displacement vector ( )0
njU x  unambiguously 

be identified through k
njγ  Formula (11). Substituting the last formula the coordinates of any point of the system, 

we obtain the vibration amplitude for a given driving frequency ω. 

5. Numerical Implementation of the Algorithm for Solving Problems of Steady  
Oscillations with the Analysis of the Results 

This part presents the solution of several problems, which are received and analyzed by the frequency-amplitude 
characteristics for the displacements of individual points of structurally inhomogeneous viscoelastic systems. 
The purpose of research is to confirm (or refute) the mechanical effects described in [1]. For this purpose, the 
distribution of forces perturbing is selected so that the resonant cases of components of the displacement field get 
values close to their own forms. Definition of a sufficient number of basic functions in approximating the sum is as 
follows. For a selected point of the system builds the frequency-amplitude characteristics at 1 1, 1,K K K= +  , 
where K1—some fixed positive integer. The process ends after the transition from a K + 1 results in a change of 
the resonance curve, which is not more than 1% of the maximum in the vicinity of the resonance, or in any other 
region of interest. 

Problem 1. Consider the design is a package of two parallel square plates with elastic shock absorber and the 
associated mass. This task determines the frequency-amplitude characteristics of the mechanical system de-
pending on its geometrical parameters. The system is a package of two elastic square plates connected at the 
center of a weightless viscoelastic damper. Kernel for relaxation absorber selected as 

( ) ( ) 1expR t A t tαβ −= − , 

where A, β, α—Kernel parameters.  
This corresponds to approximately 60% surge creep contribution to the overall deformation of the viscoelastic 

body under quasi-static loading process. With the damper stiffness is fixed and taken to be 10. 
For this case, the kernel parameters as follows: A = 0.078; α = 0.1; β = 0.05. In both plates has one attached 

mass. Plate simply supported along a contour similar to mechanical and geometrical parameters, Е = 2 × 1011 
н/м2; ρ = 7.8 × 103 кг/м3; v = 0.3; а = b = 0.2 м; h = 0.001 м. Weights are equal to each other (М1 = М2 = 0.05 
кг), one of them (М1) fixed on the bottom plate at a point 

1
0.14 мМx = , 

1
0.1 мМy = , and another (М2) can 

move through the central axis of the structure ( )1
0.1 мМy = . As the load harmonic excitation is considered un-

iformly distributed over the area of the two plates driving force vector R. The amplitude of this force is equated 
to the unit vector. Depending on the position of the load М2 were the amplitude of forced oscillations of the sys-
tem of plates. The amplitudes have been constructed for the central points of the two plates (x = y = 0.1 m). 
Figure 1 shows the case where the mass М2 located as the point 

2
0.02 мМx = , 

2
0.1 мМy =  or 

2
0.18 мМx = , 

2
0.1 мМy =  the upper plate. Under these conditions of the masses М2 frequency-amplitude characteristics of 

the upper and lower plates are similar and therefore show on the same graph. Given in [1] of Figure 3.1 shows 
that the damping capacity of the structure at the specified coordinates mass М2 one and the same. Thus, coinci-
dence plots frequency amplitude characteristics at various locations weight М2 Figure 3.1 confirms the symme-
try [1]. Analysis Figure 1 shows that when the driving frequency coincides with the natural frequencies ω1, ω2 a 
jump in amplitude as that lower and the upper plates, wherein the absolute value of these resonant amplitude 
lower and upper plates are different. Here and further the equality of natural and forced frequencies relative, 
since due to the dissipative properties of the structure of the jump amplitude maximum shifted somewhat to the 
left of their own (and hence disturbing) frequency. Let us analyze the behavior of the graphs in Figure 1. Reso-
nant amplitude of the central points of the two plates takes large values in the case of the first resonance com-
pared to the second. This is because the load applied to the plates at the first resonance is in phase oscillations. 
Thus, when forced oscillations qualitatively identical displacement field of the central points of the plates at ω = 
ω1 и ω = ω2 differ in terms of quantity, i.e. in the resonance amplitude. This fact is also consistent with Figure 
3.1 [1], in which all and, in particular, in these points, 1 2

I Iω ω< . Figure 2 shows the case when the mass М2  
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(a)                                                         (b) 

Figure 1. Amplitude of forced oscillations of the system. 
 

     
(a)                                                         (b) 

Figure 2. Amplitude of forced oscillations of the system. 
 
located at 

2
0.1 мМx = , 

2
0.1 мМy = , i.e., in the center. 

The behavior of the resonant amplitudes for the top and bottom plates is qualitatively different from Figure 1. 
However, in the latter case, the resonant amplitude of the first two plates is greater than the corresponding am-
plitudes shown in Figure 1. This is also consistent with the results obtained in [1], namely, the fact that these 
positions weight М2 damping coefficients of the first global forms are different. It should be noted that here, as 
in the previous embodiments, the task number for the resonance amplitude plates plays a determinant role oscil-
lation phase relative to each other, the first resonance occurs when the two plates oscillations in phase (with dif-
ferent or equal amplitudes), the second resonance occurs when vibrations of plates are in antiphase (shift for the 
period). Displacement field at forced oscillations separate plate within these resonant frequencies qualitatively 
unchanged—it is close to its own form. 

Task 2. Two identical mechanical properties elastic plate (E = 28; ρ = 4; v = 0.3) are connected in the center 
of one weightless viscoelastic damper (spring). The mass of the spring M0 = 0.05, square plate (a = b = 1), sup-
ported along the contour, the thickness of the lower plate h1 = 0.1; and upper h2 = 0.046 on the bottom plate is 
attached at the center point mass. Recall that we consider two parallel hinged plates connected at the center of a 
viscoelastic damper. Plates are elastic square and thicknesses. On one of them (thicker) is fixed in the center of 
the concentrated mass. Parameters his relaxation kernel absorber (spring) determines the value A = 0.078; α = 
0.1; β = 0.05 (higher viscosity). The design is distributed over the area of the two plates of the disturbing nature 
of the harmonic load. Vector amplitudes of these forces have components equal to one. For the case of forced 
oscillations is required to evaluate the dissipative properties of structurally inhomogeneous viscoelastic system 
in general, depending on the magnitude of the instantaneous stiffness of the shock absorber. Assessment metho-
dology is as follows. Selected characteristic point of the system and for her with fixed parameter instantaneous 
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damping built—frequency amplitude characteristic. In this case, the damping capacity of the system is deter-
mined by the maximum of the resonance amplitude. Then the parameter varies, and with all the defining (max-
imum) resonance amplitude is selected minimum. This parameter value and will fit most case dissipation system. 
As the feature points are selected as two of the central (x = y = 0.5) point on the bottom and top plates. Point to 
other coordinates gives qualitatively the same results. In [1], it was shown that the natural frequency of the 
global damping factor reaches its maximum. Thus, the effect of the interaction of natural forms is confirmed 
once again the problem of forced oscillations [1] [3] [4]. The difference in the optimal values of the instantane-
ous damping for forced and natural (С* = 3.4 × 10−3 и С* = 5.4 × 10−3) explains the difference between the vis-
cosities of shock absorbers. 
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Abstract 
In this paper, a tri-dimensional filter method for nonlinear programming was proposed. We add a 
parameter into the traditional filter for relaxing the criterion of iterates. The global convergent 
properties of the proposed algorithm are proved under some appropriate conditions. 
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1. Introduction 
This paper is concerned with finding a solution of a Nonlinear Programming (NLP) problem, as following 

( )
( )

min

. . 0,

f x

s t c x ≤
                                      (1) 

where ( ) : nf x R R→ , ( ) ( ) ( )( )T
1 , , : n m

mc x c x c x R R= →  are second-order continuously differentiable. 
The Lagrangian function associated with problem (1) is the function 

( ) ( ) ( ),L x f x c xλ λ= +  

where ( )T
1 2, , , m

m Rλ λ λ λ= ∈  is the multiplier vector. For simplicity, we denote the column vector ( )TT T,x λ  
as ( ),x λ . A point ( ), n mx Rλ∗ ∗ ×∈  is called a Karush-Kuhn-Tucker (KKT) point if it satisfies the following 
conditions: 

( ) ( ) ( ), 0, 0, 0, 0,xL x c x c xλ λ λ∗ ∗ ∗ ∗ ∗ ∗∇ = ≤ ≥ =                        (2) 

we also say that x D∗ ∈  is a KKT point of problem (1) if there exists a mRλ∗ ∈  such that ( ),x λ∗ ∗  satisfied 
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(2). 
Traditionally, this question has been answered by using penalty function. But it is difficult to find a suitable 

penalty parameter. In order to avoid the pitfalls of penalty function, Nonlinear programming problems (NLP) 
filter methods were first proposed by Fletcher in a plenary talk at the SIAM Optimization Conference in Victoria 
in May 1996; the methods are described in [1]. And soon, Global convergence proof of filter method was given 
in [2]. Because of good global convergence and numerical results, filter methods have quickly become popular 
in other areas such as nonsmooth optimization, nonlinear equations and so on [3] [4]. 

Motivated by the ideas of filter methods above, a tri-dimensional filter method for nonliner programming was 
proposed as acceptance criterion to judge whether to accept a trial step in our algorithm. We have following ad-
vantages: 

1) By enhancing the flexibility of filter, motivated by [5], we increase a dimension by introducing a parameter 
to relax the criterion of iterates. 

2) The Maratos effect that makes good progress toward the solution may be rejected and has been avoided by 
using tri-dimensional filter method as acceptance criterion. 

3) Tri-dimensional filter method can make full use of the information we get along the algorithm process. 
This paper is divided into 4 sections. The next section introduces the concept of a Modified tri-dimensional 

filter and the NCP function. In Section 3, an algorithm of line search filter is given. The global convergence 
properties are proved in the last section. 

2. Preliminaries 
2.1. NCP Function 
The method that based on the Fischer-Burmeister NCP function are efficient, both theoretical results and com-
putational experience. The Fischer-Burmeister function has a very simple structure 

( ) 2 2, .a b a b a bψ = + − −  

We know that: ψ  is continuously differentiable everywhere except at the origin, but it is strongly semis-
mooth at the origin. i.e. if 0a ≠  or 0b ≠ , then ψ  is continuously differentiable at ( ) 2,a b R∈ , and 

( )
2 2 2 2

, 1, 1 ;a ba b
a b a b

ψ
 

∇ = − − 
+ + 

 

if 0a =  and 0b = , then the generalized Jacobian of ψ  at ( )0,0  is 

( ) { }2 20,0 1, 1 1 .ψ ξ η ξ η∂ = − − + =  

Let 

( ) ( )( ), , , 1i i ix c x i mφ µ ψ µ= − ≤ ≤  

We denote ( ) ( )( ) ( )( )( )TT T
1, , , ,xx L x xµ µ µΦ = ∇ Φ , where ( ) ( ) ( )( )T

1 1, , , , , .mx x xµ φ µ φ µΦ =   

Clearly, the KKT optimality conditions (2) can be equivalently reformulated as the nonsmooth equations 
( ), 0x µΦ = . 
If ( )( ) ( ), 0,0i ic x µ ≠ , then lφ  is continuously differentiable at ( ), n mx Rµ +∈ . In this case, we have 

( )
( )( )

( )
( )( )2 22 2

1 ; 1i i
x i i i i

i i i i

c x
c x e

c x c x
µ

µ
φ φ

µ µ

   
−   ∇ = + ∇ ∇ = −   

   + +   

 

where ( )T0, ,0,1,0 ,0 m
ie R= ∈   is the ith column of the unit matrix, its ith element is 1, and other elements 

are 0. 
If ( ) 0 and 0,1i ic x i mµ= = ≤ ≤ , then ( ),i xφ µ  is strongly semismooth and directionally differentiable at 

( ),x µ . We have 
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( ) ( ) ( ){ }, 1 1 1x i ix c xφ µ ξ ξ∂ = + ∇ − ≤ ≤  

and 

( ) ( ){ }, 1 1 1 .
i i xµ φ µ ξ ξ∂ = − − ≤ ≤  

We may reformulated the KKT (at point * * *, ,x λ µ ) conditions as a system of equations. 

( ) ( )* * * * *
1, , 0, , 0,x L x xλ µ µ∇ = Φ =  

where ( )T
1 2, , , p

p Rλ λ λ λ= ∈  and ( )T1 2, , , m mRµ µ µ µ= ∈  are the multiplier vectors,  

( ) ( )( ), , ,i j i jx g xφ µ ψ µ= −  ( ) ( ) ( ) ( )( )* * * * *
1 1 2 2, , , , , , ,m mx x x xφ µ φ µ φ µ φ µ=  . 

Replace the violation constrained function ( )( )p G x  in filter F of Fletcher and Leyffer method, we use the  
violation constrained function ( )( ) ( ) 2

1, ,p G x xµ µ= Φ . 

If ( )( ) ( ), 0,0k kc x µ ≠ , let 

( )
( ) ( )

( )
( ) ( )2 2 2 2

, 1; , 1;
k k
j jk k k k k k

j j j j
k k k k
j j j j

c
x x

c c

µ
ξ ξ µ η η µ

µ µ

−
= = + = = −

+ +
 

otherwise we denote 

( ) ( )2 2, 1 ; , 1 .
2 2

k k k k k k
j j j jx xξ ξ µ η η µ= = + = = − +  

Let 

( )( ) ( )
11 12

T
21 22

.
diag diag

k kk k

k k k k k k

H cV V
V

V V cξ η

 ∇   = =   ∇   
 

where Hk is a positive matrix which may be modified by BFGS update. ( )diag kξ  or ( )diag kη  denotes the 
diagonal matrix whose j diagonal element is kξ  or kη  respectively. 

Definition 1.1 [1] A pair ( ),j jf h  is said to dominate another pair ( ),l lf h  if and only if both j lf f≤  and 
j lh h≤ . 
Definition 1.2 [1] A filter is a list of pairs ( ),l lf h  such that no pair dominates any other. A point ( ),j jf h  

is said to be acceptable for inclusion in the filter if it is not dominated by any point in the filter. 
Definition 1.3 NCP pair and NCP functions [6] We call a pair ( ) 2,a b R∈  to be an NCP pair if 0a ≥ , 

0b ≥  and 0ab =  a function 2: R Rψ →  is called an NCP function if ( ), 0a b =  if and only if ( ),a b  is an 
NCP pair. 

Denote ( ) ( ) 2
1 ,h x x µ= Φ  in the following context. It is straightforward to see that the constraint (1) is 

equivalent to the following equation: ( ) 0h x = . 

2.2. Tri-Dimensional Filter 
A two dimensional filter is often used in traditional filter method, some information about convergent like the 
positions of iterates are neglected. Therefore, we aim to enhance its flexibility of filter. Motivated by [5], we 
adopt ( ), ,h f δ  in which a parameter δ  is used to relax the criterion of iterates. We denote the filter by k  
for each iteration k. Flexible exact penalty function is introduced to promote convergence refer to [7]. Given a 
prescribed interval, penalty parameter can be chosen as any number from it and it is extends classical penalty 
function methods. We generalized the idea to filter which we called Tri-dimensional filter. Different from the 
original two dimensional filter, we increase a dimension by introducing a parameter. 

We use pairs ( ), ,j j jh f δ  to constitute the elements of filter, where jδ  is a non-negative parameter. Our 
strategy for setting jδ  depends on the region in h f δ− −  space to which ks  moves into. Figure 1 is Dis-
tinct regions defined by the current iterate. 

If ks  moves into region I, which is defined as 

( ){ }, , : 1.1 and , 0 ,k k k k k kI h f h h f h f hδ δ δ δ= > + < + ≥  
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Figure 1. Distinct regions defined by the 
current iterate.  

 
We say that the algorithm does not make good improvement since we do not want to accept points with larger 

constraint violation. Thus, we try to impose stricter acceptance criterion. Meanwhile, we do not permit kδ  
larger than kσ . In our algorithm, we increase kδ  in the following way 

( )
( )1 min , max 0.001,0.1 .k k k

k k k k
k k k

f f x s
h h x s

δ σ δ δ+

   − +  = + −    − +     
                 (3) 

If sk moved into region Π which is defined as 

( ){ }, , : 0.9 and , 0 ,k k k k k kh f h h f h f hδ δ δ δΠ = < + < + ≥  

We say that the algorithm makes good improvement since it reduces not only the constraint violation, but also 
the penalty function value. So, we may loosen the acceptance criterion to wish more improvement. Here, we 
achieve this goal by reducing kδ  by setting 

( )
( )1 max 0, max 0.001,0.1 .k k k

k k k
k k k

f f x s
h h x s

δ σ δ+

   − +  = − −    − +     
                  4) 

In our algorithm, the trial step sk is accepted by filter if 

( ) ( ) ( ) ( )or and 0k k j k k j k k j j kh x s h f x s h x s fγ δ γ δ δ+ ≤ + + + ≤ + ≥               (5) 

For all ( ), ,j j j kh f δ ∈ . The parameter ( )0,1γ ∈  is a constant close to 1 which sets an “envelope” around 
the border of the dominated part of the ( ), ,h f δ -space in which the trial step is rejected. And also in the filter if 

and and 0j k j k j k k k kh h h f h fδ δ δ> + > + ≥                         (6) 

then we say jx  is dominated by kx . 

3. Description of the Algorithm 
In this section we hope that the Lagrange multiplier kλ  will converge to the Lagrange multiplier λ∗  at the 
solution x∗ . From the KKT system of (1), a good estimate of the Lagrange multiplier is the least square solu-
tion of ( ) ( ) 0c x A x λ− = , namely ( )( ) ( )A x c xλ

+
= . In our algorithm, kλ  is updated only after a trial step is 

accepted, and is set componentwise as 

( ){ }
( ){ }

, ,

max ,0 , 0, ,

min ,0 , , 0,

i i i
k k

ii i i
k k k

i i i
k k

A c l u

A c l u

A c l u

λ

+

+

+


 =
= = = +∞

 = −∞ =

                          (7) 

Now, we consider how to update the penalty parameter. Let x∗  be a solution of (1) at which the LICQ is  
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satisfied, and the second order sufficient conditions are satisfied. Then when 
1
,σ λ∗>  x∗  is the strict local  

minimizer of penalty function. So we force the condition at each iteration: 1 1 1k kσ λ+ +≥ . 
And also, since the penalty term aims to reduce the constraint violation we double the penalty parameter if the 

constraint violation could not reduce by half, that is 

( )1 2 , if 0.5 .k k k k kh x s hσ σ+ = + ≥  

To summarize, we update the penalty parameter in the following formula: 

{ } ( )

{ }
1 1

1

1 1

max 2 , , 0.5 ,

max , , otherwise.

k k k k k
k

k k

h x s hσ λ
σ

σ λ

+

+

+

 + ≥= 


                      (8) 

The improved algorithm is presented as following. 
Algorithm 
Step 0. Initialization: Give a starting point 0

nx R∈ , 0µ , 0λ  and a initial positive definite matrix 0H , 
( )0,1τ ∈ , 0k = . compute 0 0 0 0, , ,h f g A . 

Step 1. Terimination test. If k k k kh g A λ ε
∞

+ − <  then returing xk as a solution and stop. 
Step 2. Computation of the search direction. compute 0kd  and 0kλ  by solving the following linear system 

in ( ),d λ : 

.
0

k

k

d fV
λ

 −∇ 
=   

   
                                   (9) 

where ( )k kf f x∇ = ∇ . 
If 0 0kd = , then stop otherwise, compute ( )1 1,k kd λ  by solving the following linear system in ( ),d λ : 

1

.
k

k k

d L
V

λ
 −∇ 

=    −Φ   
                                  (10) 

where ( ),k k kL L x λ∇ = ∇  and ( )1 1 ,k k kx λΦ = Φ . 
Step3. Liner search with filter 
If 1 0kΦ =  then let 1kb =  and 0kρ = , otherwise if 0 0kd =  then let 0kb =  and 1kρ = , otherwise de- 

note ( )1k kb ρ= −  and 

( ) ( )

( )
( )

( )

01

0

0 1

TT

T

T

1 if

1 otherwise

kk k k

k k k

k k k

d f d f

d f

d d f

θ

ρ
θ

 ∇ ≤ ∇
=  ∇

−
 − ∇

                 (11) 

and let 
0 1

0 1
,

k kk
k k

k kk

d ddb ρ
λ λλ

    
= +    

    
 

Step 4. Acceptance criterion of the trial step 
Let k kx x s+ = + , evalute and andh f δ+ + + ; If x+  is accepted by filter, 1kx x+

+ =  and go to step 5; 
1k kx x+ = , and 1k k= + ; go to step 2. 

Step 5. Paramenters update 
Update 1kλ +  by (7); Update 1kσ +  by (8); Update 1kδ +  by (3) or (4); 1k k= +  go to step 1. 

4. The Convergence Properties 
To present a proof of global convergence of algorithm, in this section, we always assume that the following 
conditions hold. 

A1 The level set ( ) ( ){ }0x F x f x≤  is bounded, and for sufficiently large k, 0 1k kkµ λ λ µ+ + <  
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A2 and if g  are twice Lipschitz continuously differentiable, and for all , ,n my z R +∈  

( ) ( ) ( ) ( )3 3, ,L y L z m y z y z m y z∇ −∇ ≤ − Φ −Φ ≤ −  

where 3 0m >  is the Lipschitz constant. 
A3 kH  is positive definite and there exist positive numbers 1m  and 2m  such that 

2 2T
1 2

km d d H d m d≤ ≤  

for all nd R∈  and all k . 
Lemma 1. If 0kΦ ≠  then kV  and *V  are nonsingular. 

Proof. If 0,k

u
V

ϑ
 

= 
 

 for some ( ), nu Rϑ ∈ , where ( ) ( )TT
1 1, , , , , nu u uϑ ϑ ϑ= =  , then we have 

0k kH u c v+∇ =                                    (12) 
and 

( )( ) ( )T
diag diag 0k k kc u vξ η∇ + =                            (13) 

From the definition of k
jξ  and k

jη , we know that 0k
jξ ≥  and 0k

jη ≠  for all j. So, diag kη  is nonsingu-
lar. We have 

( )( ) ( )( )1 T
diag diagk k kv c uη ξ

−
= − ∇                           (14) 

Putting (14) into (12), we have 

( ) ( ) ( )( ) ( )1 TT T T diag diag 0k k k k k k ku H u c v u H u u c c uξ η
−

+∇ = − ∇ ∇ =  

The fact that ( ) ( )( ) ( )1 T
diag diagk k k kc cξ η

−
−∇ ∇  is positive semidefinite implies 0u = , and then 0v =  by  

(14). kV  is nonsingular. And if ( )* *,x µ  is an accumulation point of ( ){ },k kx µ , ( ){ } ( )* *, ,k kx xµ µ→ , 
*kΦ →Φ  and *KV V→ . If * 0Φ ≠  then *Φ  is nonsingular. This lemma holds.   

The lemma 2 hold (see [8] Lemma 2) 
Lemma 2. If 0 0kd = , then ( ) 0kf x∇ = . and kx  is KKT point of problem (NLP). 

Lemma 3. Consider an infinite sequence iterations on which { }2

1 ,k kfΦ  entered into filter, where  
2

1 0kΦ >  and { }kf  is bounded below. It follows that 1 0kΦ → . 
Proof. Suppose the theorem is not true, then exists an 0ε >  and an infinitely members of index set K such 

that either ( )1 , 0k kx µ εΦ ≥ >  and ( ) ( )1 1
1 1, ,k k k kx xµ η µ+ +Φ ≤ Φ  for any k K∈ . then we obtain that 

( ){ }1 , 0k k

k K
x µ

∈
Φ → , or { }k k K

f
∈

 is monotonically decreasing, then lemma 5.1 implies ( )1 , 0k kx µΦ → . 

So, the lemma holds.   
The following lemma 4 - 5 hold (see [9]) 
Lemma 4. 0.kd →  
Lemma 5. If ( )* *,x µ  is an accumulation point of ( ){ },k kx µ  then * 0d = , and * *,d λ  is the solution of: 

*

* .
0

d fV
λ

 −∇ 
=   

   
 

and ( )* *, 0L x µ∇ = . 
Theorem 1. If ( )* *,x µ  is an accumulation point of ( ){ },k kx µ  then *x  is a KKT point of Problem (NLP). 
It is obviously to prove the conclusion holds according to the above lemmas. 
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Abstract 
The traditional combinatorial designs can be used as basic designs for constructing designs of 
computer experiments which have been used successfully till now in various domains such as en-
gineering, pharmaceutical industry, etc. In this paper, a new series of generalized partially ba-
lanced incomplete blocks PBIB designs with m associated classes (m = 4, 5 and 7) based on new 
generalized association schemes with number of treatments v arranged in w arrays of n rows and l 
columns (w ≥ 2, n ≥ 2, l ≥ 2) is defined. Some construction methods of these new PBIB are given 
and their parameters are specified using the Combinatory Method (s). For n or l even and s divisor 
of n or l, the obtained PBIB designs are resolvable PBIB designs. So the Fang RBIBD method is ap-

plied to obtain a series of particular U-type designs U (wnl; 
rwnl

s2
) (r is the repetition number of 

each treatment in our resolvable PBIB design). 
 

Keywords 
Association Scheme, Combinatory Method (s), Resolvable Partially Balanced Incomplete Block 
Design, U-Type Design 

 
 

1. Introduction 
Designs of computer experiments drew a wide attention in the previous two decades and were still being used 
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successfully till now in various domains. Among the various construction methods of these designs, the tradi-
tional combinatorial designs can be used as basic designs (example: [1] [2]) and particularly the PBIB designs. 
The association schemes of two or three associated classes have been widely studied, while it is not the case of 
those over three associated classes. However, some association schemes with five associated classes have been 
studied (example: [3]). Besides, a method to obtain new association schemes by crossing or nesting other asso-
ciation schemes was given by Bailey [4] using the character tables and strata of the initial association schemes to 
find the parameters of the obtained association schemes. 

In this paper, new association schemes with 4, 5 and 7 associated classes are described starting by a geometric 
representation. The parameter expressions of these association schemes are given. Moreover, some methods to 
construct the PBIB designs based on these association schemes are explained using an accessible construction 
method called the Combinatory Method (s) [5], which allows obtaining a series of PBIB designs by only using 
these association schemes. The parameters expressions of these new designs are given. In addition, for n or l even 

and s divisor of n or l, the obtained PBIB are resolvable PBIB. Then, a series of U-type designs U ;
2

rwnlwnl
s

 
  
 

  

(r is the repetition number of each treatment in the resolvable PBIB design) is obtained by applying the RBIBD 
method [6] on these designs. 

The paper is organized as follows. In Section 2, we give new definitions of generalized association schemes 
with m (= 4, 5 and 7) associated classes, starting by geometric representation and we give their parameters as 
properties. Section 3 describes a series of construction method using the Combinatory Method (s) for obtaining 
the PBIB designs associated to our generalized association schemes. We give the series of the U-type designs 
associated to our constructed PBIB designs in Section 4. We achieve our paper with a Conclusion. 

Recall some definitions: 
Definition 1. An m-association scheme (m ≥ 2) of v treatments [7] is a relation satisfying the following condi-

tions: 
1) Any two treatments are either 1st, 2nd, ∙∙∙, or mth associates. The relation of association is symmetric, i.e., if 

the treatment α  is an ith associate of β, then β is an ith associate of ( )1,2,i mα =  . 
2) Each treatment α  has ni ith associates, the number ni being independent of ( )1,2,i mα =  . 
3) If any two treatments α  and β are ith associates, then the number of treatments that are jth associates of 

α  and kth associates of β is i
jkp  and is independent of the pair of ith associates α  and β ( ), , 1, 2,i j k m=  . 

The numbers v, ni ( )1,2,i m=   and i
jkp  ( ), , 1, 2,i j k m=   are called the parameters of the association 

scheme. 
Definition 2. A PBIB design [7], based on an m-association scheme (m ≥ 2), with parameters v, b, r, k, λi, 
1,2,i m=  , is a block design with v treatments and b blocks of size k each such that every treatment occurs in 

r  blocks and any two distinct treatments being ith associate occur together in exactly λi blocks. The number λi is 
independent of the pair of ith associates ( )1,2,i m=  . 

A parallel class of PBIB is a collection of disjoint blocks from the b blocks whose union is V. A partition of 
the b blocks into q b r=  parallel classes is called a resolution, and PBIB design is resolvable if it has at least 
one resolution and it denoted by RPBIB design. 

The Combinatory Method (s) [5]: 
Let an array of n rows and l columns as follows: 

 
a11 a12 

 a1j 
 a1l 

a21 a22 
 a2j 

 a2l 

            

ai1 ai2 
 aij 

 ail 

            

an1 an2 
 anj 

 anl 
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Consider s different elements of the same row i ( )2 <s l≤ , and associate with them s other elements of a 
row i′  ( )i i′ ≠ , respecting the correspondence between the elements aij and i ja ′ . Bringing together the 2s ele-
ments in the same block and making all possible combinations, we obtain a partially balanced incomplete block 
design of size 2k s= . 

Definition 3. Let U ( )1; , , rv q q  denote a design of v runs and r factors with respective 1, , rq q  levels. 
This design corresponds to an v × r matrix ( )1, , rX x x=   such that the ith column xi takes values from a set of 
qi elements, say { }1, , iq , equally often. The set of all such designs, called U-type designs in the statistical li-
terature, is denoted by U ( )1; , , rv q q . Obviously, v must be a multiple of qi ( )1 i r≤ ≤ . When all the qi 
( )1 i r≤ ≤  are equal to q, we denote it by U ( ); rv q . Note that the rows and columns of X are identified with 
the runs and factors respectively [6]. 

2. Generalized Rectangular Right Angular Association Schemes (m)  
(m = 4, 5 and 7 Associated Classes) 

2.1. Generalized Rectangular Right Angular Association Scheme (4) 
Let V be a set of v = wnl treatments, (w ≥ 2, n ≥ 2, l ≥ 2), to which we associate a geometrical representation in 
the following way: 

Each treatment of V is associated with a unique triplet of the set 1 g wA A A∪ ∪ ∪ ∪   where: 

( ){ }3, , 1 ,  1 ,  ,    1, ,gA x y z x l y n z g g w= ∈ ≤ ≤ ≤ ≤ = =   

Let α  be a treatment of coordinates ( ), , gx y z A∈  

• ( ){ }1 , , ,g gA x y z A x x y y′ ′ ′ ′ ′= ∈ ≠ =  corresponds to the treatments 1st associated to α  

• ( ){ }2 , , ,g gA x y z A x x y y′ ′ ′ ′ ′= ∈ = ≠  corresponds to the treatments 2nd associated to α . 

• ( ){ }3 , , ,g gA x y z A x x y y′ ′ ′ ′ ′= ∈ ≠ ≠  corresponds to the treatments 3rd associated to α . 

• ( ){ }4 , , ,g gA x y z A g g′′ ′ ′ ′= ∈ ≠  corresponds to the treatments 4th associated to α . 

This geometric representation describes a new association scheme, we call it for convenience, generalized 
rectangular right angular association scheme (4) with four associated classes, to which we give the following 
equivalent definition: 

Definition 4. A generalized rectangular right angular association scheme (4) is an arrangement of v = wnl (w ≥ 
2, n ≥ 2, l ≥ 2) treatments in w arrays of n rows and l columns such that, with respect to each treatment α : 

1) The first associates of α  are the other treatments of the same row in the same array. 
2) The second associates of α  are the other treatments of the same column in the same array. 
3) The third associates of α  are the remaining treatments in the same array. 
4) The fourth associates of α  are the other treatments of the other arrays. 
Property 1. The parameters of generalized rectangular right angular association schemes (4) are: 

v wnl= , 1 1n l= − , 2 1n n= − , ( )( )3 1 1n n l= − − , ( )4 1n w nl= −  

( )( )
( )

1

2 0 0 0
0 0 1 0
0 1 2 1 0
0 0 0 1

l
n

P
n l n

w ln

− 
 − =  − − −
  − 

 

( )( )
( )

2

0 0 1 0
0 2 0 0

1 0 1 2 0
0 0 0 1

l
n

P
l l n

w ln

− 
 − =  − − −
  − 
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( )( )
( )

3

0 1 2 0
1 0 2 0

2 2 2 2 0
0 0 0 1

l
n

P
l n l n

w ln

− 
 − =  − − − −
  − 

 

( )( )
( )( ) ( )

4

0 0 0 1
0 0 0 1
0 0 0 1 1

1 1 1 1 2

l
n

P
l n

l n l n w ln

− 
 − =  − −
  − − − − − 

 

Definition 5. A PBIB design based on a generalized rectangular right angular association scheme (4) is 
called generalized rectangular right angular GPBIB4 design. 

2.2. Generalized Rectangular Right Angular Association Scheme (5)  
Let V be a set of v = wnl treatments, (w ≥ 2, n ≥ 2, l ≥ 2), to which we associate a geometrical representation in 
the following way: 

Each treatment of V is associated with a unique triplet (of coordinates) of the set 1 g wA A A∪ ∪ ∪ ∪   
where: 

( ){ }3, , 1 ,  1 ,  ,    1, ,gA x y z x l y n z g g w= ∈ ≤ ≤ ≤ ≤ = =   

Let α  be a treatment of coordinates ( ), , gx y z A∈  

• ( ){ }1 , , ,g gA x y z A x x y y′ ′ ′ ′ ′= ∈ ≠ =  corresponds to the treatments 1st associated to α  

• ( ){ }2 , , ,g gA x y z A x x y y′ ′ ′ ′ ′= ∈ = ≠  corresponds to the treatments 2nd associated to α . 

• ( ){ }3 , , ,g gA x y z A x x y y′ ′ ′ ′ ′= ∈ ≠ ≠  corresponds to the treatments 3rd associated to α . 

• ( ){ }4 , , ,g gA x y z A g g y y′′ ′ ′ ′ ′= ∈ ≠ =  corresponds to the treatments 4th associated to α . 

• ( ){ }5 , , ,g gA x y z A g g y y′′ ′ ′ ′ ′= ∈ ≠ ≠  corresponds to the treatments 5th associated to α . 

This geometric representation describes a new association scheme, we call it for convenience, generalized 
rectangular right angular association scheme (5) with five associated classes, to which we give the following 
equivalent definition: 

Definition 6. A generalized rectangular right angular association scheme (5) is an arrangement of v = wnl (w 
≥ 2, n ≥ 2, l ≥ 2) treatments in w (n × l) rectangular arrays such that, with respect to each treatment α : 

1) The first associates of α  are the other treatments of the same row in the same array. 
2) The second associates of α  are the other treatments of the same column in the same array. 
3) The third associates of α  are the remaining treatments in the same array. 
4) The fourth associates of α  are the treatments of same row as α , of the other arrays. 
5) The fifth associates of α  are the remaining treatments in the other arrays. 
Property 2. The parameters of the generalized rectangular right angular association schemes (5) are: 

v wnl= , 1 1n l= − , 2 1n n= − , ( )( )3 1 1n n l= − − , ( )4 1n w l= − , ( )( )5 1 1n w n l= − −  

( )( )

( )( )

1

2 0 0 0 0
0 0 1 0 0
0 1 2 1 0 0
0 0 0 0
0 0 0 0 1 1

l
n

n l nP
l

w n l

− 
 − 
 − − −=
 
 
 − − 
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( )( )

( )( )

2

0 0 1 0 0
0 2 0 0 0

1 0 1 2 0 0
0 0 0 0
0 0 0 1 2

l
n

l l nP
l

l w n l

− 
 − 
 − − −=
 
 
 − − 

 

( )( )

( )( )

3

0 1 2 0 0
1 0 2 0 0

2 2 2 2 0 0
0 0 0 0
0 0 0 2 2

l
n

l n l nP
l

l w n l

− 
 − 
 − − − −=
 
 
 − − 

 

( )( )
( )

( )( ) ( )( )( )

4

0 0 0 1 0
0 0 0 0 1
0 0 0 0 1 1

1 0 0 2 0
0 1 1 1 0 2 1 1

l
n

l nP
l w l

n l n w l n

− 
 − 
 − −=
 
− − 

 − − − − − − 

 

( )( )
( )

( )( ) ( ) ( )( )

5

0 0 0 0 1
0 0 0 1 2
0 0 0 1 1 2
0 1 1 0 2

1 2 1 2 2 2 2

l
n

l l nP
l w l

l n l n w l w n l

− 
 − 
 − − −=
 

− − 
 − − − − − − − 

 

Definition 7. A PBIB design based on a generalized rectangular right angular association scheme (5) is 
called generalized rectangular right angular GPBIB5 design. 

2.3. Generalized Rectangular Right Angular Association Scheme (7)  
Let V be a set of v = wnl treatments, (w ≥ 2, n ≥ 2, l ≥ 2), to which we associate a geometrical representation in 
the following way: 

Each treatment of V is associated with a unique triplet of the set 1 g wA A A∪ ∪ ∪ ∪   where: 

( ){ }3, , 1 ,  1 ,  ,      1, ,gA x y z x l y n z g g w= ∈ ≤ ≤ ≤ ≤ = =   

Let α  be a treatment of coordinates ( ), , gx y z A∈  
• ( ){ }1 , , ,g gA x y z A x x y y′ ′ ′ ′ ′= ∈ ≠ =  corresponds to the treatments 1st associated to α  

• ( ){ }2 , , ,g gA x y z A x x y y′ ′ ′ ′ ′= ∈ = ≠  corresponds to the treatments 2nd associated to α . 

• ( ){ }3 , , ,g gA x y z A x x y y′ ′ ′ ′ ′= ∈ ≠ ≠  corresponds to the treatments 3th associated to α . 

• ( ){ }4 , , , ,g gA x y z A g g x x y y′′ ′ ′ ′ ′ ′= ∈ ≠ = =  corresponds to the treatments 4th associated to α . 

• ( ){ }5 , , , ,g gA x y z A g g x x y y′′ ′ ′ ′ ′ ′= ∈ ≠ ≠ =  corresponds to the treatments 5th associated to α . 

• ( ){ }6 , , , ,g gA x y z A g g x x y y′′ ′ ′ ′ ′ ′= ∈ ≠ = ≠  corresponds to the treatments 6th associated to α . 

• ( ){ }7 , , , ,g gA x y z A g g x x y y′′ ′ ′ ′ ′ ′= ∈ ≠ ≠ ≠  corresponds to the treatments 7th associated to α . 

This geometric representation describes a new association scheme, we call it for convenience, generalized 
rectangular right angular association scheme (7) with seven associated classes, to which we give the following 
equivalent definition: 

Definition 8. A generalized rectangular right angular association scheme (7) is an arrangement of v = wnl  
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(w ≥ 2, n ≥ 2, l ≥ 2) treatments in w arrays of n rows and l columns such that, with respect to each treatment α : 
1) The first associates of α  are the other treatments of the same row in the same array. 
2) The second associates of α  are the other treatments of the same column in the same array. 
3) The third associates of α  are the remaining treatments in the same array. 
4) The fourth associates of α  are the treatments in the same row and the same column as α , of the other 

arrays. 
5) The fifth associates of α  are the treatments of the same row as α  in the other arrays, that are different 

from the fourth associates of α . 
6) The sixth associates of α  are the treatments of the same column as α  in the other arrays, that are dif-

ferent from the fourth associates of α . 
7) The seventh associates of α  are the remaining treatments in the other arrays. 
Property 3. the parameters of generalized rectangular right angular association schemes (7) are: 

v wnl= , 1 1n l= − , 2 1n n= − , ( )( )3 1 1n n l= − − , 4 1n w= − ,  

( )( )5 1 1n w l= − − , ( )( )6 1 1n w n= − − , ( )( )( )7 1 1 1n w n l= − − −  

( )( )

( )( )
( )( )

( )( ) ( )( )( )

1

2 0 0 0 0 0 0
0 0 1 0 0 0 0
0 1 2 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 1 2 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 1 1 1 1 2

l
n

n l n
wP

w w l
w n

w n w n l

− 
 − 
 − − −
 

−=  
 − − −
 

− − 
 − − − − − 

 

( )( )

( )( )
( )( )

( )( ) ( )( )( )

2

0 0 1 0 0 0 0
0 2 0 0 0 0 0

1 0 1 2 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1 1
0 0 0 1 0 1 2 0
0 0 0 0 1 1 0 1 1 2

l
n

l l n
wP

w l
w w n

w l w l n

− 
 − 
 − − −
 

−=  
 − −
 

− − − 
 − − − − − 

 

( )( )

( )( )
( )( )

( )( ) ( )( ) ( )( )( )

3

0 1 2 0 0 0 0
1 0 2 0 0 0 0

2 2 2 2 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 1 2
0 0 0 0 1 0 1 2
0 0 0 1 1 2 1 2 1 2 2

l
n

l n l n
wP

w w l
w w n

w w l w n w l n

− 
 − 
 − − − −
 

−=  
 − − −
 

− − − 
 − − − − − − − − 

 

( )( )

( )( )
( )( )

( )( ) ( )( )( )

4

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1 1
0 0 0 2 0 0 0

1 0 0 0 2 1 0 0
0 1 0 0 0 2 1 0
0 0 1 1 0 0 0 2 1 1

l
n

l n
wP

l w l
n w n

l n w l n

− 
 − 
 − −
 

−=  
 − − −
 

− − − 
 − − − − − 
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( )( )

( )( )
( )( )

( )( ) ( )( ) ( )( )( )

5

0 0 0 1 2 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 2 1
1 0 0 0 2 0 0

2 0 0 2 2 2 0 0
0 0 1 0 0 0 2 1
0 1 2 1 0 0 2 1 2 2 1

l
n

n l n
wP

l w w l
n w n

n l n w n w l n

− 
 − 
 − − −
 

−=  
 − − − −
 

− − − 
 − − − − − − − − 

 

( )( )

( )( )
( )( )

( )( ) ( )( ) ( )( )( )

6

0 0 0 0 0 0 1
0 0 0 1 0 2 0
0 0 0 0 1 0 1 2
0 1 0 0 0 2 0
0 0 1 0 0 0 2 1
0 2 0 2 0 2 2 0

1 0 1 2 0 2 1 0 2 1 2

l
n

l l n
wP

l w l
n w w n

l l n w l w l n

− 
 − 
 − − −
 

−=  
 − − −
 

− − − − 
 − − − − − − − − 

 

( )( )

( )( )
( )( )

( )( ) ( )( ) ( )( ) ( )( )( )

7

0 0 0 0 0 1 2
0 0 0 0 1 0 2
0 0 0 1 2 2 2 2
0 0 1 0 0 0 2
0 1 2 0 0 2 2 2
1 0 2 0 2 0 2 2

2 2 2 2 2 2 2 2 2 2 2 2

l
n

l n l n
wP

l w w l
n w w n

l n l n w w l w n w n l

− 
 − 
 − − − −
 

−=  
 − − − −
 

− − − − 
 − − − − − − − − − − − − 

 

Definition 9. A PBIB design based on a generalized rectangular right angular association scheme (7) is 
called generalized rectangular right angular GPBIB7 design. 

3. Construction Method of GPBIBm Designs (m = 4, 5 and 7 Associated Classes)  
Let v = wnl (w ≥ 2, n ≥ 2, l ≥ 2) treatments be arranged in w arrays of n rows and l columns ( )1A , ..., ( )wA  and 
written as follows 1, ,g w∀ =  : 
 

 ( )
1

gC  ( )
2

gC  


 ( )g
jC  


 ( )g
lC  

( )
1

gR  ( )
11

ga  ( )
12

ga  


 ( )
1

g
ja  


 ( )
1

g
la  

( )
2

gR  ( )
21

ga  ( )
22

ga  


 ( )
2

g
ja  


 ( )
2

g
la  

              
( )g
iR  ( )

1
g

ia  ( )
2
g

ia  


 ( )g
ija  


 ( )g

ila  

          
    

( )g
nR  ( )

1
g

na  ( )
2
g

na  


 ( )g
nja  


 ( )g
nla  

 ( )gA  

3.1. Construction Method of GPBIB4 Designs 
3.1.1. First Construction Method of GPBIB4 Designs  
Applying the Combinatory Method (s) on each of the w arrays, with chosen { }2, , 1s l∈ − , then we obtain w 
rectangular PBIB designs. The set of all blocks gives a PBIB design with 4 associated classes. 

Theorem 1. The partially balanced incomplete block designs with the parameters: 
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v wnl= , ( )1 2l
sb wn n C= − , ( ) 1

11 l
sr n C −
−= − , 2k s= , ( ) 2

1 21 l
sn Cλ −
−= − , 1

2 1
l
sCλ −
−= , 2

3 2
l
sCλ −
−= , 4 0λ =  

are generalized rectangular right angular GPBIB4 designs. 
Proof. For each array of the w arrays, we obtain a rectangular design with parameters: v nl∗ = , 

( )1 2l
sb n n C∗ = − , ( ) 1

11 l
sr n C −
−= − , 2k s= , ( ) 2

1 21 l
sn Cλ −
−= − , 1

2 1
l
sCλ −
−= , 2

3 2
l
sCλ −
−= . (see [5]). 

For the w arrays we obtain a generalized rectangular right angular GPBIB4 design with parameters: v wnl= , 
( )1 2l

sb wn n C= − , ( ) 1
11 l

sr n C −
−= − , 2k s= , ( ) 2

1 21 l
sn Cλ −
−= − , 1

2 1
l
sCλ −
−= , 2

3 2
l
sCλ −
−= . 

4λ : Two treatments ( )g
ija  and ( )g

i ja ′
′ ′  from the arrays ( )gA  and ( )gA ′  respectively { }( )1, ,g g w′≠ ∈   

they never appear together in the same block thus 4 0λ = .   
Lemma 1. For the special case s = l, the previous method can also be used for the construction of nested 

group divisible designs, with parameters: 

v wnl= , ( )1 2b wn n= − , ( )1r n= − , 2k l= , 1 1nλ = − , 2 31λ λ= = , 4 0λ =  
Remark 1. 

• For w = 1, the GPBIB4 design of Theorem 1 is a rectangular design with parameters as in the Theorem 1 of  
[5]. 

• For w = 2, the GPBIB4 design of Theorem 1 is a rectangular right angular PBIB4 design with parameters as 
in Proposition 1 of [8]. 

Proposition 2. Let GPBIB4 be a design with parameters: 

v wnl= , ( )1 2l
sb wn n C= − , ( ) 1

11 l
sr n C −
−= − , 2k s= , ( ) 2

1 21 l
sn Cλ −
−= − , 1

2 1
l
sCλ −
−= , 2

3 2
l
sCλ −
−= , 4 0λ = . 

For n or l even and s divisor of l or s, the GPBIB4 design is a resolvable PBIB designs (RGPBIB4) with r 

parallel classes where each parallel classes contain 
2
nlq w
s

=  blocks. 

Proof. 
( )

( )
( )
( )

1
1

1 1
1 1

1 1
22 1 2 1

l l
s s

l l
s s

wn n C wn n lC wnlq b r
sn C s n C

−
−

− −
− −

− −
= = = =

− −
 

n or l is even and s is divisor of n or l, then q∈N . 
Example 1. Let v = 3 × 4 × 4 treatments be arranged in the three following arrays: 

 
1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 

 
17 18 19 20 

21 22 23 24 

25 26 27 28 

29 30 31 32 

 
33 34 35 36 

37 38 39 40 

41 42 43 44 

45 46 47 48 

 
The construction method for (s = 2), give the following resolvable generalized rectangular right angular 

GPBIB4 design, with the parameters: 
48,   108,   9,   4,   12v b r k q= = = = =  
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PC1 

1 2 5 6 

9 10 13 14 

3 4 7 8 

11 12 15 16 

17 18 21 22 

25 26 29 30 

19 20 23 24 

27 28 31 32 

33 34 37 38 

35 36 39 40 

41 42 45 46 

43 44 47 48 

 
PC2 

1 2 9 10 

5 6 13 14 

3 4 11 12 

7 8 15 16 

17 18 25 26 

21 22 29 30 

19 20 27 28 

23 24 31 32 

33 34 41 42 

37 38 45 46 

35 36 43 44 

39 40 47 48 

 
PC3 

1 2 13 14 

5 6 9 10 

3 4 15 16 

7 8 11 12 

17 18 29 30 

21 22 25 26 

19 20 31 32 

23 24 27 28 

33 34 45 46 

37 38 41 42 

35 36 47 48 

39 40 43 44 
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PC4 

1 3 5 7 

9 11 13 15 

2 4 6 8 

10 12 14 16 

17 19 21 23 

25 27 29 31 

18 20 22 24 

26 28 30 32 

33 35 37 39 

34 37 38 40 

41 43 45 47 

42 44 46 48 

 
PC5 

1 3 9 11 

5 7 13 15 

2 4 10 12 

6 8 14 16 

17 19 25 27 

21 23 29 31 

18 20 26 28 

22 24 30 32 

33 35 41 43 

37 39 45 47 

34 36 42 44 

38 40 46 48 

 
PC6 

1 3 13 15 

5 7 9 11 

2 4 14 16 

6 8 10 12 

17 19 29 31 

21 23 25 27 

18 20 30 32 

22 24 26 28 

33 35 45 47 

37 39 41 43 

34 36 46 48 

38 40 42 44    
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PC7 

1 4 5 8 

9 12 13 16 

2 3 6 7 

10 11 14 15 

17 20 21 24 

25 28 29 32 

18 19 22 23 

26 27 30 31 

33 36 37 40 

34 35 38 39 

41 44 45 48 

42 43 46 47 

 
PC8 

1 4 9 12 

5 8 13 16 

2 3 10 11 

6 7 14 15 

17 20 25 28 

21 24 29 32 

18 19 26 27 

22 23 30 31 

33 36 41 44 

37 40 45 48 

34 35 42 43 

38 39 46 47 

 
PC9 

1 4 13 16 

5 8 9 12 

2 3 14 15 

6 7 10 11 

17 20 29 32 

21 24 25 28 

18 19 30 31 

22 23 26 27 

33 36 45 48 

37 40 41 44 

34 35 46 47 

38 39 42 43 
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3.1.2. Second Construction Method of GPBIB4 Designs with ≠4 0λ   

Let ( ) ( ) ( ) ( )( )1 2, , ,g g g g
j j j njC a a a ′=  , ( ) ( )1g g

j jC C=  and ( ) ( )
( )
( ) ( ) ( )

( )
( )( )11 1, , , , , ,g gg h g g g

j hj nj jh j h jC a a a a a+ −
′=   , 2,3, ,h n=  .  

Applying the Combinatory Method ( )s  with chosen { }3, ,s l∈   on each array of the form ( ) ( )g h g
jC A ′∪  

( )g g′ ≠  for 1, ,j l=  , 1, ,h n=   and 1, ,g w=  , by only considering the combinations of s treatments 
that always contain a component of the vector ( )g h

jC , the set of all the obtained blocks provides a PBIP with 4 
associated classes. 

Theorem 3. The partially balanced incomplete block designs with the parameters: 

v wnl= , ( ) ( )2
11 1 2l

sb w w ln n C −= − − , ( ) ( ) 11 1 l
sr s w n n C −= − − , 2k s= , ( ) ( ) 2

1 31 1 l
sw ln n Cλ −
−= − − , 

( )2 11 l
ss w nCλ −= − , ( ) 2

3 31 l
sw nlCλ −
−= − , ( ) 1

4 24 1 l
sn Cλ −
−= −  

are generalized rectangular right angular GPBIB4 designs. 
Proof. 

• The v and k values are obvious. 
• r: For each treatment ( )

0

g
ija  of the array ( )gA  1, ,g w=  , we have: 

○ On an array ( ) ( )
0

g h g
jC A ′∪  ( )g g′ ≠ , applying the procedure with the l other elements of the same row. 

There is 1
l
sC −  possibilities, each one being repeated ( )1n −  times, with n permutations ( )1, ,h n=  , 

then we have ( ) 11 l
sn n C −−  repetitions. Therefore, we have 1w−  arrays of the form ( ) ( )

0

g h g
jC A ′∪  

( )g g′ ≠ ; so we have ( ) ( ) 11 1 l
sw n n C −− −  repetitions of the treatment ( )

0

g
ija . 

○ On an array ( ) ( )g g h
jA C ′∪  ( )g g′ ≠ , 1, ,j l=   and 1, ,h n=  , applying the procedure with the 1l −   

other elements of the same row. There is 1
2

l
sC −
−  possibilities each one being repeated ( )1n −  times, with 

n permutations ( )1, ,h n=  , then we have ( ) 1
21 l

sn C −
−−  appearances repeated themselves n times. 

Therefore, for an array ( ) ( )g g h
jA C ′∪  we have ( ) 1

21 l
sn n C −
−−  repetitions of 

0ija . Considering all the ar-
rays ( ) ( )g g h

jA C ′∪  ( )g g′ ≠  for 1, ,j l=   and 1, ,g w′ =  ; so we have ( ) ( ) 1
21 ln 1 l

sw n C −
−− −  repeti-

tions of 
0ija . 

Thus: ( ) ( ) ( ) ( )1
1 2 11 1 1 1l l l

s s sr w n n C lC s w n n C−
− − − = − − + = − −  . 

• 1λ : Consider two treatments ( )
0

g
ija  and ( )

0

g
ija ′  from the array ( )gA  ( 1, ,g w=   and 0 0j j′≠ ), they appear 

together ( ) 2
31 l

sn C −
−−  times with the other 2l −  elements of the same row i of the arrays ( ) ( )g g h

jA C ′∪  
( )g g′ ≠ , with n permutations ( )1, ,h n=  , we obtain ( ) 2

31 l
sn n C −
−−  times in which the two treatments 

appear together. Considering all the arrays ( ) ( )g g h
jA C ′∪  ( )g g′ ≠  for 1, ,j l=   and 1, ,g w′ =  ; then 

we have ( ) ( ) 2
31 1 l

sw ln n C −
−− −  times where the two treatments 

0ija  and 
0ija ′  appear together. 

• 2λ : Consider two treatments ( )
0

g
ija  and ( )

0

g
i ja ′  from the array ( )gA , ( 1, ,g w=   and i i′≠ ), we have: 

○ In an array ( ) ( )g g h
jA C ′∪  ( )g g′ ≠ : the two treatments appear together 1

2
l
sC −
−  times, with the n permuta-

tions ( )1, ,h n=   they appear together 1
2

l
snC −
−  times. Considering all the arrays of the form  

( ) ( )g g h
jA C ′∪  ( )g g′ ≠  for 1, ,j l=   and 1, ,g w′ =  , they appear together ( ) 1

21 ln l
sw C −
−−  times. 

○ In the array ( ) ( )
0

g h g
jC A ′∪ : both treatments appear together 1

l
sC −  times, with the n permutations  

( )1, ,h n=   they appear 1
l
snC −  times. Considering all the arrays of the form ( ) ( )

0

g h g
jC A ′∪  ( )g g′ ≠  

for 1, ,g w′ =  ; they appear together ( ) 11 l
sw nC −−  times. 

In total ( ) ( )1
2 2 1 11 1l l l

s s sw n lC C sn w Cλ −
− − − = − + = −  . 

• 3λ : Consider two treatments ( )
0

g
ija  and ( )

0

g
i ja ′ ′  from the array ( )gA  ( 1, ,g w=  , i i′≠  and 0 0j j′≠ ), they 

appear together 2
3

l
sC −
−  times for each array of the form ( ) ( )g g h

jA C ′∪  ( )g g′ ≠ , with the n permutations 
( )1, ,h n=   they appear together 2

3
l
snC −
−  times. Considering all the arrays ( ) ( )g g h

jA C ′∪  ( )g g′ ≠  for 
1, ,j l=   and 1, ,g w′ =  , then the two treatments ( )

0

g
ija  and ( )

0

g
i ja ′ ′  appear together ( ) 2

31 ln l
sw C −
−−  times. 

• 4λ : Consider two treatments ( )g
ija  and ( )g

i ja ′
′ ′  from the arrays ( )gA  and ( )gA ′  respectively (g, 1, ,g w′=  ): 

○ If i i′= , for the array ( ) ( )g g h
jA C ′∪  ( )g g′ ≠  and h = 1 the two treatments appear together ( ) 1

21 l
sn C −
−−   

times. For the array ( ) ( )g h g
jC A ′∪  ( )g g′ ≠  and h = 1 they also appear together ( ) 1

21 l
sn C −
−−  time, so we  

have ( ) 1
22 1 l

sn C −
−−  times. On the other hand, for 2, ,h n=  , the two treatments appear together 1

2
l
sC −
−  

times for the array ( ) ( )g g h
jA C ′∪  and 1

2
l
sC −
−  times for the array ( ) ( )g h g

jC A ′∪ , so we have 1
22 l

sC −
−  for one 

value of h. Taking all the values of 2, ,h n=  , we obtain ( ) 1
22 1 l

sn C −
−−  times where the two treatments 

appear together. 
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In total ( ) ( ) ( )1 1 1
4 2 2 22 1 2 1 4 1l l l

s s sn C n C n Cλ − − −
− − −= − + − = − . 

○ If i i′≠ , then the two treatments appear together 1
2

l
sC −
−  times for the array of the form ( ) ( )g g h

jA C ′∪  
( )g g′ ≠  and appear together 1

2
l
sC −
−  times for the array of the form ( ) ( )g h g

jC A ′∪  ( )g g′ ≠  for 1h = , 
so we have 1

22 l
sC −
−  times. For 2, ,h n=  , among the ( )1n −  permutations of the vector ( )g h

jC ′ , and 
for a given value of h , the treatment ( )g

i ja ′
′ ′  takes the same row as ( )g

ija  then the two treatments appear 
together ( ) 1

21 l
sn C −
−−  times, for the remaining values the two treatments appear together 1

2
l
sC −
−  times. 

For 2, ,h n=  , among the ( )1n −  permutations of the vector ( )g
jC ′  and for a given value of h , the 

treatment ( )g
ija  takes the same row as ( )g

i ja ′
′ ′  then the two treatments appear together ( ) 1

21 l
sn C −
−−  times, 

for the remaining values the two treatments appear together 1
2

l
sC −
−  times. 

In total ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1
4 2 2 2 2 2 22 1 1 1 1 4 1l l l l l l

s s s s s sC n C n C n C n C n Cλ − − − − − −
− − − − − −= + − + − + − + − = − . 

• b : Using the above construction method on each array of the form: ( ) ( )g g h
jA C ′∪  ( )g g′ ≠ , we obtain 

( ) 11 2l
sn n C −−  blocks. So for the l arrays of the form ( )g h

jA C∪  we have ( ) 11 2l
sln n C −−  blocks, with 

the n permutations ( )1, ,h n=   we obtain ( )2
11 2l

sln n C −−  blocks. Considering all the arrays  
( ) ( )g g h

jA C ′∪  for 1, ,g w′ =  , then in total we have ( ) ( )2
11 ln 1 2l

sw n C −− −  blocks. Considering all the 
arrays ( ) ( )g g h

jA C ′∪  for 1, ,g w=  , then in total we have ( ) ( )2
11 ln 1 2l

sw w n C −− −  blocks.   
Remark 2. For w = 2, the GPBIB4 design of Theorem 3 is a rectangular right angular PBIB4 design with 

parameters as in Proposition 2 of [8]. 
Proposition 4 Let GPBIB4 be a design with parameters: 

v wnl= , ( ) ( )2
11 1 2l

sb w w ln n C −= − − , ( ) ( ) 11 1 l
sr s w n n C −= − − , 2k s= , ( ) ( ) 2

1 31 1 l
sw ln n Cλ −
−= − − , 

( )2 11 l
ss w nCλ −= − , ( ) 2

3 31 l
sw nlCλ −
−= − , ( ) 1

4 24 1 l
sn Cλ −
−= −  

For n or l even and s divisor of l or s, the GPBIB4 design is a resolvable PBIB designs (RGPBIB4) with r 

parallel classes where each parallel classes contain 
2
nlq w
s

=  blocks. 

3.2. Construction Method of GPBIB5 Designs 

Let ( ) ( ) ( ) ( )( )1 2, , ,g g g g
j j j njC a a a ′=   be the jth column of the gth array { }1, ,g w∈  . Applying the Combinatory Me-  

thod (s) with s chosen { }3, ,s l∈  , on each array in the form ( ) ( )g g
jC A ′∪  ( )g g′≠  for 1, ,j l=   and 

1, ,j w=   by only considering the combinations of s treatments that contain a component of the vector ( )g
jC , 

then the set of all the blocks obtained, gives a PBIB design with 5 associated classes. 
Theorem 5. The incomplete block designs with parameters: 

v wnl= , ( ) ( ) 11 1 2l
sb w w ln n C −= − − , ( )( ) 11 1 l

sr s w n C −= − − , 2k s= , ( ) ( ) 2
1 31 1 l

sw l n Cλ −
−= − − , 

( )2 11 l
sw sCλ −= − , ( ) 2

3 31 l
sw lCλ −
−= − , ( ) 1

4 22 1 l
sn Cλ −
−= − , 1

5 22 l
sCλ −
−=  

are generalized rectangular right angular GPBIB5 designs. 
Remark 3. For w = 2, the GPBIB5 design of Theorem 5 is a rectangular right angular PBIB5 design with 

parameters as in Proposition 3 of [8]. 
Proposition 6. Let GPBIB5 be a design with parameters: 

v wnl= , ( ) ( ) 11 1 2l
sb w w ln n C −= − − , ( )( ) 11 1 l

sr s w n C −= − − , 2k s= , ( ) ( ) 2
1 31 1 l

sw l n Cλ −
−= − − , 

( )2 11 l
sw sCλ −= − , ( ) 2

3 31 l
sw lCλ −
−= − , ( ) 1

4 22 1 l
sn Cλ −
−= − , 1

5 22 l
sCλ −
−=  

For n or l even and s divisor of l or s, the GPBIB5 design is a resolvable PBIB designs (RGPBIB5) with r 

parallel classes where each parallel classes contain 
2
nlq w
s

=  blocks. 

Example 2. Let v = 3 × 2 × 3 treatments be arranged in the two following arrays: 
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1 2 3 

4 5 6 

 
7 8 9 

10 11 12 

 
13 14 15 

16 17 18 

 
The construction method for (s = 3), give the following generalized rectangular right angular GPBIB5 design, 

with parameters: 
18,   54,   18,   6,   6v b r k q= = = = =  

 
PC1 

1 7 8 4 10 11 

9 13 14 12 16 17 

15 2 3 18 5 6 

 
PC2 

1 7 9 4 10 12 

8 13 15 11 16 18 

14 2 3 17 5 6 

 
PC3 

1 8 9 4 11 12 

7 14 15 10 17 18 

13 2 3 16 5 6 

 
PC4 

2 7 8 5 10 11 

9 13 15 12 16 18 

14 1 3 17 4 6 

 
PC5 

2 7 9 5 10 12 

13 1 3 16 4 6 

8 14 15 11 17 18 

 
PC6 

2 8 9 5 11 12 

7 13 14 10 16 17 

15 1 3 18 4 6       
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PC7 

3 7 8 6 10 11 

9 14 15 12 17 18 

13 1 2 16 4 5 

 
PC8 

3 7 9 6 10 12 

8 13 14 11 16 17 

15 1 2 18 4 5 

 
PC9 

3 8 9 6 11 12 

7 13 15 10 16 18 

14 1 2 17 4 5 

 
PC10 

13 7 8 16 10 11 

9 1 2 12 4 5 

3 14 15 6 17 18 

 
PC11 

13 7 9 16 10 12 

8 1 3 11 4 6 

2 14 15 5 17 18 

 
PC12 

13 8 9 16 11 12 

7 2 3 10 5 6 

1 14 15 4 17 18 

 
PC13 

14 7 8 17 10 11 

9 2 3 12 5 6 

1 13 15 4 16 18 

 
PC14 

14 7 9 17 10 12 

8 1 2 11 4 5 

3 13 15 6 16 18 
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PC15 

14 8 9 17 11 12 

7 1 3 10 4 6 

2 13 15 5 16 18 

 
PC16 

15 7 8 18 10 11 

9 1 3 12 4 6 

2 13 14 5 16 17 

 
PC17 

15 7 9 18 10 12 

8 2 3 11 5 6 

1 13 14 4 16 17 

 
PC18 

15 8 9 18 11 12 

7 1 2 10 4 5 

3 13 14 6 16 17 

3.3. Construction Method of GPBIB7 Designs 
3.3.1. First Construction Method of GPBIB7 Designs 
Applying the Combinatory Method (s) on each of the w arrays, with chosen and fixed { }2, , 1s l∈ − , then we 
obtain w rectangular PBIB designs. The juxtaposition of the blocks of the w rectangular PBIB designs, such that 
the blocks containing treatment ( )g

ija  and ( )g
ija ′  { }( )1, ,g g w′≠ ∈   are put side by side, gives a PBIB design 

with 7 associated classes. 
Theorem 7. The incomplete block designs with parameters: 

v wnl= , 
( )1

2

l
sn n C

b
−

= , ( ) 1
0 1 41 l

sr n Cλ λ−
−= = − = , 2k sw= , 

( ) 2
1 2 51 l

sn Cλ λ−
−= − = , 1

2 1 6
l
sCλ λ−
−= = , 2

3 2 7
l
sCλ λ−
−= =  

are generalized rectangular right angular GPBIB7 designs. 
Proof. The design parameters are deduced from the construction method.   
Remark 4. 

• For w = 1, the GPBIB7 design of Theorem 7 is a rectangular design with parameters as in Theorem 1 of [5]. 
• For w = 2, the GPBIB7 design of Theorem 7 is a rectangular right angular PBIB7 design with parameters as 

in Proposition 4 of [8]. 
Proposition 8. Let GPBIB7 be a design with parameters: 

v wnl= , 
( )1

2

l
sn n C

b
−

= , ( ) 1
0 1 41 l

sr n Cλ λ−
−= = − = , 2k sw= ,  

( ) 2
1 2 51 l

sn Cλ λ−
−= − = , 1

2 1 6
l
sCλ λ−
−= = , 2

3 2 7
l
sCλ λ−
−= =  

For n or l even and s divisor of l or s, the GPBIB7 design is a resolvable PBIB designs (RGPBIB7) with r 
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parallel classes where each parallel classes contain 
2
nlq
s

=  blocks. 

Example 3. Let v = 3 × 4 × 4 treatments be arranged in the three following arrays: 
 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 

 
17 18 19 20 

21 22 23 24 

25 26 27 28 

29 30 31 32 

 
33 34 35 36 

37 38 39 40 

41 42 43 44 

45 46 47 48 

 
The construction method for (s = 2), give the following resolvable generalized rectangular right angular 

GPBIB7 design, with the parameters: 

48,   36,   9,   12,   4v b r k q= = = = =  

 
PC1 

1 2 5 6 17 18 21 22 33 34 37 38 

9 10 13 14 25 26 29 30 41 42 45 46 

3 4 7 8 19 20 23 24 35 36 39 40 

11 12 15 16 27 28 31 32 43 44 47 48 

 
PC2 

1 2 9 10 17 18 25 26 33 34 41 42 

5 6 13 14 21 22 29 30 37 38 45 46 

3 4 11 12 19 20 27 28 35 36 43 44 

7 8 15 16 23 24 31 32 39 40 47 48 

 
PC3 

1 2 13 14 17 18 29 30 33 34 45 46 

5 6 9 10 21 22 25 26 37 38 41 42 

3 4 15 16 19 20 31 32 35 36 47 48 

7 8 11 12 23 24 27 28 39 40 43 44 
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PC4 

1 3 5 7 17 19 21 23 33 35 37 39 

9 11 13 15 25 27 29 31 34 37 38 40 

2 4 6 8 18 20 22 24 41 43 45 47 

10 12 14 16 26 28 30 32 42 44 46 48 

 
PC5 

1 3 9 11 17 19 25 27 33 35 41 43 

5 7 13 15 21 23 29 31 37 39 45 47 

2 4 10 12 18 20 26 28 34 36 42 44 

6 8 14 16 22 24 30 32 38 40 46 48 

 
PC6 

1 3 13 15 17 19 29 31 33 35 45 47 

5 7 9 11 21 23 25 27 37 39 41 43 

2 4 14 16 18 20 30 32 34 36 46 48 

6 8 10 12 22 24 26 28 38 40 42 44 

 
PC7 

1 4 5 8 17 20 21 24 33 36 37 40 

9 12 13 16 25 28 29 32 34 35 38 39 

2 3 6 7 18 19 22 23 41 44 45 48 

10 11 14 15 26 27 30 31 42 43 46 47 

 
PC8 

1 4 9 12 17 20 25 28 33 36 41 44 

5 8 13 16 21 24 29 32 37 40 45 48 

2 3 10 11 18 19 26 27 34 35 42 43 

6 7 14 15 22 23 30 31 38 39 46 47 

 
PC9 

1 4 13 16 17 20 29 32 33 36 45 48 

5 8 9 12 21 24 25 28 37 40 41 44 

2 3 14 15 18 19 30 31 34 35 46 47 

6 7 10 11 22 23 26 27 38 39 42 43 

3.3.2. Second Construction Method of GPBIB7 Designs with iλ λ +≠i 4  ( )=i 0, , 4  

Let ( ) ( ) ( ) ( )( )1 2, , ,g g g g
j j j njC a a a ′=   be the jth column of the gth array and let ( ) ( ) ( ) ( )( )1 2, , ,g g g g

i i i ilR a a a=   be the ith row  

of the gth array { }( )1, ,g w∈  . Then applying the Combinatory Method (s) with chosen { }2, ,s l∈   on each  
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array of the form ( ) ( ) ( )g g g
j jC A C′ ′ ∪    ( )g g′ ≠  for 1, ,j l=   and g, 1, ,g w′ =   (respectively  

( ) ( ) ( )g g g
i iR A R′ ′ ∪    ( )g g′ ≠  for 1, ,i n=   and g, 1, ,g w′ =  ), by only considering the combinations of s  

treatments that always contain a component of the column ( )g h
jC  (respectively the row ( )g

iR ), the set of all the 
obtained blocks provides a PBIP with 7 associated classes. 

Theorem 9. The partially balanced incomplete block designs with the parameters: 

v wnl= , ( ) ( )( )1 1 2 2l
sb w w n n s C= − − + , ( )( ) ( )1

0 11 1 2l
sr w n C sλ −
−= = − − + , 2k s= , 

( )( ) 2
1 21 1 l

ss n w Cλ −
−= − − , ( ) 1

2 11 l
ss w Cλ −
−= − , ( )( ) 3

3 31 2 l
sw l Cλ −
−= − − , 4 0λ = , 

( ) 2
5 22 1 l

sn Cλ −
−= − , 1

6 12 l
sCλ −
−= , 2

7 24 l
sCλ −
−=  

are generalized rectangular right angular GPBIB7 designs. 
Proof. The design parameters are deduced from the construction method.   
Remark 5. For w = 2, the GPBIB7 design of Theorem 9 is a rectangular right angular PBIB7 design with 

parameters as in Proposition 5 of [8]. 
Proposition 10. Let GPBIB7 be a design with parameters: 

v wnl= , ( ) ( )( )1 1 2 2l
sb w w n n s C= − − + , ( )( ) ( )1

0 11 1 2l
sr w n C sλ −
−= = − − + , 2k s= , 

( )( ) 2
1 21 1 l

ss n w Cλ −
−= − − , ( ) 1

2 11 l
ss w Cλ −
−= − , ( )( ) 3

3 31 2 l
sw l Cλ −
−= − − , 4 0λ = , 

( ) 2
5 22 1 l

sn Cλ −
−= − , 1

6 12 l
sCλ −
−= , 2

7 24 l
sCλ −
−=  

For n or l even and s divisor of l or s, the GPBIB7 design is a resolvable PBIB designs (RGPBIB7) with r 

parallel classes where each parallel classes contain 
2
nlq w
s

=  blocks. 

Example 4. Let v = 3 × 3 × 3 treatments be arranged in the three following arrays: 
 

1 2 3 

4 5 6 

7 8 9 

 
10 11 12 

13 14 15 

16 17 18 

 
19 20 21 

22 23 24 

25 2 27 

 
The construction method for (s = 3), give a generalized rectangular right angular GPBIB7 design with para-

meters: 

1 2

3 4 5 6 7

27,   90,   20,   6,   12,   6,
4,   0,   4,   2,   4

v b r k λ λ
λ λ λ λ λ

= = = = = =
= = = = =

 

To illustrate the method, we applying the construction method for the columns and rows of the first array, 
where each column represents a block: 
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b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 

1 1 4 2 2 5 3 3 6 1 

11 11 14 10 10 13 10 10 13 20 

12 12 15 12 12 15 11 11 14 21 

4 7 7 5 8 8 6 9 9 4 

14 17 17 13 16 16 13 16 16 23 

15 18 18 15 18 18 14 17 17 24 

 
b11 b12 b13 b14 b15 b16 b17 b18 b19 b20 

1 4 2 2 5 3 3 6 1 1 

20 23 19 19 22 19 19 22 2 2 

21 24 21 21 24 20 20 23 3 3 

7 7 5 8 8 6 9 9 13 16 

26 26 22 25 25 22 25 25 14 17 

27 27 24 27 27 23 26 26 15 18 

 
b21 b22 b23 b24 b25 b26 b27 b28 b29 b30 

4 4 7 7 1 1 4 4 7 7 

5 5 8 8 2 2 5 5 8 8 

6 6 9 9 3 3 6 6 9 9 

10 16 10 13 22 25 19 25 19 22 

11 17 11 14 23 26 20 26 20 23 

12 18 12 15 24 27 21 27 21 24 

4. Construction of the U-Type Designs Based on Resolvable GPBIBm Designs  
(m = 4, 5 and 7)  

In this section we apply the RBIBD method (see [6]) on our resolvable rectangular right angular RGPBIBm 
designs (m = 4, 5 and 7) to obtain a series of U-type designs ( ); rU v q . 

Let a resolvable GPBIBm designs (m = 4, 5 and 7) with r parallel classes 1PC , ,PCr  where each j-th class 
contains q b r=  blocks (1 ≤ j ≤ r). Then we can construct a U-type design ( ); rU v q  from resolvable GPBIBm 
designs (m = 4, 5 and 7) as follows: 

Algorithm RGPBIBm − UD 
• Step 1. Give a natural order 1, , q  to the q blocks in each parallel class PCj, 1, ,j r=  . 
• Step 2. For each PCj, construct a q-level column ( )j

jx xα=  as follows: Set jx uα = , if treatment α  is 
contained in the u-th block of PCj, 1, 2, ,u q=   

• Step 3. The r q-level columns constructed from PCj, 1, ,j r=   form a ( ); rU v q . 
Proposition 11. For v = wnl runs (w ≥ 2, n ≥ 2, l ≥ 2), a series of U-type ( ); rU v q  designs exist: 

• U 
( ) 1

11

;
2

l
sn Cwnlwnl

s

−
−− 

 
 
 

, n or l even and s divisor of n or l. 

• U 
( ) ( ) 11 1

;
2

l
ss w n n Cwnlwnl

s

−− − 
 
 
 

, n or l even and s divisor of n or l. 
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• U 
( )( ) 11 1

;
2

l
ss w n Cwnlwnl

s

−− − 
 
 
 

, n or l even and s divisor of n or l. 

• U 
( ) 1

11

;
2

l
sn Cnlwnl

s

−
−− 

 
 
 

, n or l even and s divisor of n or l. 

• U 
( )( )( ) 1

12 1 1

;
2

l
ss w n Cwnlwnl

s

−
−+ − − 

 
 
 

, n or l even and s divisor of n or l. 

Proof. applying the RGPBIBm − UD Algorithm on each resolvable rectangular right angular GPBIBm (m = 4, 5 
and 7) of the Proposition 1, 5.   

Example 5. Applying the RGPBIBm − UD Algorithm on the resolvable rectangular right angular GPBIB7 of 
Example 1, we obtain the following U-type U (48, 49) with 48 runs and nine 4-level factors. 
 

Runs Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7 Factor8 Factor9 

1 1 1 1 1 1 1 1 1 1 

2 1 1 1 3 3 3 3 3 3 

3 3 3 3 1 1 1 3 3 3 

4 3 3 3 3 3 3 1 1 1 

5 1 2 2 1 2 2 1 2 2 

6 1 2 2 3 4 4 3 4 4 

7 3 4 4 1 2 2 3 4 4 

8 3 4 4 3 4 4 1 2 2 

9 2 1 2 2 1 2 2 1 2 

10 2 1 2 4 3 4 4 3 4 

11 4 3 4 2 3 4 4 3 4 

12 4 3 4 4 3 4 2 1 2 

13 2 2 1 2 2 1 2 2 1 

14 2 2 1 4 4 3 4 4 3 

15 4 4 3 2 2 1 4 4 3 

16 4 4 3 4 4 3 2 2 1 

17 1 1 1 1 1 1 1 1 1 

18 1 1 1 3 3 3 3 3 3 

19 3 3 3 1 1 1 3 3 3 

20 3 3 3 3 3 3 1 1 1 

21 1 2 2 1 2 2 1 2 2 

22 1 2 2 3 4 4 3 4 4 

23 3 4 4 1 2 2 3 4 4 

24 3 4 4 3 4 4 1 2 2 

25 2 1 2 2 1 2 2 1 2 

26 2 1 2 4 3 4 4 3 4 
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Continued  

27 4 3 4 2 3 4 4 3 4 

28 4 3 4 4 3 4 2 1 2 

29 2 2 1 2 2 1 2 2 1 

30 2 2 1 4 4 3 4 4 3 

31 4 4 3 2 2 1 4 4 3 

32 4 4 3 4 4 3 2 2 1 

33 1 1 1 1 1 1 1 1 1 

34 1 1 1 3 3 3 3 3 3 

35 3 3 3 1 1 1 3 3 3 

36 3 3 3 3 3 3 1 1 1 

37 1 2 2 1 2 2 1 2 2 

38 1 2 2 3 4 4 3 4 4 

39 3 4 4 1 2 2 3 4 4 

40 3 4 4 3 4 4 1 2 2 

41 2 1 2 2 1 2 2 1 2 

42 2 1 2 4 3 4 4 3 4 

43 4 3 4 2 3 4 4 3 4 

44 4 3 4 4 3 4 2 1 2 

45 2 2 1 2 2 1 2 2 1 

46 2 2 1 4 4 3 4 4 3 

47 4 4 3 2 2 1 4 4 3 

48 4 4 3 4 4 3 2 2 1 

5. Conclusions 
New association schemes with m = 4, 5 and 7 associated classes called generalized rectangular right angular as-
sociation schemes for v = wnl treatments arranged in w ≥ 2 (n × l) arrays were described and their parameters 
expressions were given exactly and directly. Some construction methods of PBIB designs based on these associ-
ation schemes accommodated by accessible method called the Combinatory Method (s) which facilitates the  

construction application were explained. Moreover, a series of U-type designs U ;
2

rwnlwnl
s

 
  
 

, by applying the  

Fang RBIBD method on resolvable generalized rectangular right angular GPBIBm designs (m = 4, 5 and 7) was 
constructed. 

We note that all the construction methods described in this article were programmed with the R-package 
“CombinS” [9] (the ameliorated version). 
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Abstract 
In this paper, a new kind of energy identities for the Maxwell equations with periodic boundary 
conditions is proposed and then proved rigorously by the energy methods. By these identities, 
several modified energy identities of the ADI-FDTD scheme for the two dimensional (2D) Maxwell 
equations with the periodic boundary conditions are derived. Also by these identities it is proved 
that 2D-ADI-FDTD is approximately energy conserved and unconditionally stable in the discrete L2 
and H1 norms. Experiments are provided and the numerical results confirm the theoretical analy-
sis on stability and energy conservation. 

 
Keywords 
Stability, Energy Conservation, ADI-FDTD, Maxwell Equations 

 
 

1. Introduction 
The alternative direction implicit finite difference time domain (ADI-FDTD) methods, proposed in [1] [2], are 
interesting and efficient methods for numerical solutions of Maxwell equations in time domain, and cause many 
researchers’ work since ADI-FDTD overcomes the stability constraint of the FDTD scheme [3]. For example, it 
was proved by Fourier methods in [4]-[8] that the ADI-FDTD methods are unconditionally stable and have rea-
sonable numerical dispersion error; Reference [9] studied the divergence property; Reference [10] studied 
ADI-FDTD in a perfectly matched medium; Reference [11] gave an efficient PML implementation for the 
ADI-FDTD method. By Poynting’s theorem, Energy conservation is an important property for Maxwell equa-
tions and good numerical method should conform it. In 2012, Gao [12] proposed several new energy identities 
of the two dimensional (2D) Maxwell equations with the perfectly electric conducting (PEC) boundary condi-

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2015.62025
http://dx.doi.org/10.4236/am.2015.62025
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tions and proved that ADI-FDTD is approximately energy conserved and unconditionally in the discrete L2 and 
H1 norms. Is there any other structure which can keep energy conservation for Maxwell equations? Is there any 
other energy identity for ADI-FDTD method? This two interesting questions promote us to find other energy- 
conservation structure. 

In this paper, we focus our attention on structure with periodic boundary conditions and propose energy iden-
tities in L2 and H1 norms of the 2D Maxwell equations with periodic boundary conditions. We derive the energy 
identities of ADI-FDTD for the 2D Maxwell equations (2D-ADI-FDTD) with periodic boundary conditions by a 
new energy method. Several modified energy identities of 2D-ADI-FDTD in terms of the discrete L2 and H1 
norms are presented. By these identities it is proved that 2D-ADI-FDTD with the periodic boundary conditions 
is unconditionally stable and approximately energy conserved under the discrete L2 and H1 norms. To test the 
analysis, experiments to solve a simple problem with exact solution are provided. Computational results of the 
energy and error in terms of the discrete L2 and H1 norms confirm the analysis on the energy conservation and 
the unconditional stability. 

The remaining parts of the paper are organized as follows. In Section 2, energy identities of the 2D Maxwell 
equations with periodic conditions in L2 and H1 norms are first derived. In Section 3, several modified energy 
identities of the 2D-ADI-FDTD method are derived, the unconditional stability and the approximate energy 
conservation in the discrete L2 and H1 norms are then proved. In Section 4, the numerical experiments are pre-
sented. 

2. Energy Conservation of Maxwell Equations and 2D-ADI-FDTD 
Consider the two-dimensional (2D) Maxwell equations: 

, andy yx xz z zE EE EH H H
t y t x t y x

ε ε µ
∂ ∂∂ ∂∂ ∂ ∂

= = − = −
∂ ∂ ∂ ∂ ∂ ∂ ∂

                   (2.1) 

in a rectangular domain with electric permittivity ε and magnetic permeability μ, where ε and μ are positive con-
stants; ( ) ( )( ), , , , ,x yE x y t E x y t=E  and ( ), ,z zH H x y t=  denote the electric and magnetic fields, ( ]0,t T∈ , 
( ) [ ] [ ], 0, 0,x y a b∈Ω = × . 

We assume that the rectangular region Ω is surrounded by periodic boundaries, so the boundary conditions 
can be written as 

( ) ( ) ( ) ( ) ( ) ( )0, , , , , ,0, , , , 0, , , , ,x x x x y yE y t E a y t E x t E x b t E y t E a y t= = =             (2.2) 

( ) ( ) ( ) ( ) ( ) ( ),0, , , , 0, , , , , ,0, , , .y y z z z zE x t E x b t H y t H a y t H x t H x b t= = =            (2.3) 

We also assume the initial conditions 

( ) ( ) ( ) ( )( ) ( ) ( )0 0 0 0, ,0 , , , , , , ,0 , .x y z zx y x y E x y E x y H x y H x y= = =E E              (2.4) 

It can be derived by integration by parts and the periodic boundary conditions (2.2)-(2.3) that the above 
Maxwell equations have the energy identities: 

Lemma 2.1 Let ( ) ( ) ( )( ), , , , ,x yt E x y t E x y t=E  and ( ) ( ), ,z zH H x y tt =  be the solution of the Maxwell-
systems (2.1)-(2.4). Then 

( ) ( ) ( ) ( )2 2 2 2
,0 0z zt H t H+ = +E E                          (2.5) 

where and in what follows, •  denotes the L2 norm with the weights ε (corresponding electric field) or µ 
(magnetic field). For example,  

( ) ( ) ( ) ( ) ( )22 2 2 2
0 0

, , , d d .
a b

x y x xt E t E t E t E x y t y xε= + = ∫ ∫E                 (2.6) 

Identity (2.5) is called the Poynting Theorem and can be seen in many classical physics books. Besides the 
above energy identities, we found new ones below. 

Theorem 2.2 Let ( )tE  and ( )zH t  be the solution of the Maxwell systems (2.1)-(2.4), the same as those 
in Lemma 2.1. Then, the following energy identities hold 



R. G. Shi, H. T. Yang 
 

 
267 

( ) ( ) ( ) ( )2 2 2 2
0

,
0z zt H t H

u u u u
∂ ∂ ∂ ∂

+ = +
∂ ∂ ∂ ∂
E E

                        (2.7) 

( ) ( ) ( ) ( )2 2 2 2

1 1 1 1
,0 0zt H t H+ = +E E                           (2.8) 

where u = x or y, and 
1•  is the H1 norm (the H1 norm of f is defined by 

2 2 2

1 1 2f f f= + , where  
222

1 2 x yf f f= + , xf f x= ∂ ∂ , yf f y= ∂ ∂ . 
1 2f  is also called the H1-semi norm of f). 

Proof. First, we prove Equation (2.7) with u = x. Differentiating each of the Equations in (2.1) with respect to 
x leads to 

2 22 22 2 2

, and .y yx xz z zE EE EH H H
x t x y x t x x x t x y x x

ε ε µ
∂ ∂∂ ∂∂ ∂ ∂

= = − = −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

               (2.9) 

By the integration by parts and the periodic boundary conditions (2.2)-(2.3), we have 

( )

2 2

0 0 0 0

2 2

2 20 0 0 0

d d d d ,

d d d d

a b a bx xz z

a b a by yz z

E EH Hx y x y
x y x x x y
E EH Hx y r t x y

x xx x

∂ ∂∂ ∂
⋅ = − ⋅

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂∂ ∂
⋅ = − ⋅
∂ ∂∂ ∂

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫
                     (2.10) 

where 

( ) ( ) ( ) ( ) ( )
0

, , , , 0, , 0, , d .
b y yz zE EH Hr t a y t a y t y t y t y

x x x x
∂ ∂ ∂ ∂

= − ∂ ∂ ∂ ∂ 
∫                (2.11) 

Multiplying the Equations (2.9) by xE xε∂ ∂ , yE xε∂ ∂  and zH xµ∂ ∂  respectively, integrating both sides 
over [ ] [ ]0, 0,a b×  and using (2.10), we have 

( )
22 21 d .

2 d
yx zEE H r t

t x x x

 ∂∂ ∂ + + = −
 ∂ ∂ ∂ 

                         (2.12) 

From (2.1) and the boundary conditions (2.2)-(2.3) we note that 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

0 0
0, , lim , , lim , ,

lim , , lim , , , ,

, , , , .

y y yxz z z

x x

y yx z z

x a x a

y z

E E EEH H Hy t x y t x y t
x x x x y t t

E EE H Hx y t x y t x y t
y t t x x

E Ha y t a y t
x x

ε µ

ε µ

→ →

→ →

∂ ∂ ∂∂ ∂ ∂ ∂
= = − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

∂ ∂∂ ∂ ∂
= − − = ∂ ∂ ∂ ∂ ∂ 
∂ ∂

=
∂ ∂

       (2.13) 

So, ( ) 0r t = . Then, by integrating (2.12) with respect to time over [ ]0,T , we get equation (2.7) with u = x. 
Similarly, the identity (2.7) with u = y can be proved. Combining (2.5) and (2.7) leads to (2.8).   

The 2D-ADI-FDTD Scheme 
The alternating direction implicit FDTD method for the 2D Maxwell equations (denoted by 2D-ADI-FDTD) 
was proposed by (Namiki, 1999). For convenience in analysis of this scheme, next we give some notations. Let 

1
2

1 1
2 2

, , , , , ,
2 2 2

0,1, , 1, , 0,1, , 1, , 0,1, , 1, .

nn n
i i j ji j

I J

x y tx i x x x y j y y y t n t t t

i I x a j J y b n N N t T

+

+ +

∆ ∆ ∆
= ∆ = + = ∆ = + = ∆ = +

= − = = − = = − ∆ =  

 

where Δx and Δy are the mesh sizes along x and y directions, ∆t is the time step, I, J and N are positive integers. 
For a grid function ( ), , ,m mf f x y tα β α β= , define 
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( ) ( )

1 1 1 1, , , ,
2 2 2 2

, ,

1 1
2 2

2, , 2
, , ,

,

, ,

,

,

m m m m

m m
x y

m m

m m m
t u v u v

f f f f
f f

x y

f f
f f f u u

t

α β α β α β α β

α β α β

α β α β
α β α β α β

δ δ

δ δ δ δ δ

+ − + −

+ −

− −
= =

∆ ∆

−
= = ∆ = ∆

∆

 

where u = x, y or t. For ( ), 1 2,1 2
,

i j i jx yV V
+ +

=V , ,1 2 1 2i jW + + , v x y∆ = ∆ ∆ , define some discrete energy norms based 

on the Yee staggered grids (Yee, 1966), 

( )

1 1 1 1, , ,
2 2 2 2

,

2 2 2
1 1 1 1 1 122 2

0 0 0 0 0 0

1 1 22 22 2 2

0 0

, , ,

, ,

zx yi j i j i j

i jx x x x xx y x y

I J I J I J

x x y y zHE E
i j i j i j

I J

x x x x y x x x x x yE EE E
i j

V V v V V v W W v

V V V V v V
δ δ δδ δ

ε ε µ

δ δ δ δ ε δ δ ε

+ + + +

− − − − − −

= = = = = =

− −

= =

     
= ∆ = ∆ = ∆          

     

= + = ∆ =

∑∑ ∑∑ ∑∑

∑∑EV
1 1,
2 2

2
1 1

0 0
.

i j

I J

x y
i j

V vδ
+ +

− −

= =

 
∆  

 
∑∑

 

Other norms: 
y x

y x E
V

δ
δ , 

y y
y y E
V

δ
δ  and 

y z
y z H
H

δ
δ  are similarly defined. Denote by 

,

m
uE
α β

 and 
,

m
zH
α β

 

the approximations of ( ), , m
uE x y tα β  (u = x, y) and ( ), , m

zH x y tα β , respectively. Then the 2D-ADI-FDTD 
scheme for (2.1) is written as 

Stage 1: 

11 1,, ,
22 2

1
2

2
i ji j i j

n n n
xx y zE E H

t

δ

ε
++ +

+
−

=
∆

                              (2.14) 

11 1,, ,
22 2

1 1
2 2

2
i ji j i j

n nn
y xy zE E H

t

δ

ε
++ +

+ +
−

= −
∆

                             (2.15) 

1 11 1 ,,
2 22 2

1 1 1 1, ,
2 2 2 2

1
2

1
21

2
i ji j

i j i j

n n
zz

nn
y x x y

H H
E E

t
δ δ

µ
+ ++ +

+ + + +

+

+
−

 
= −  ∆  

                     (2.16) 

Stage 2: 

1 1 1, , ,
2 2 2

1
1 12

2
i j i j i j

nn n
x x y zE E H

t

δ

ε
+ + +

++ +−

=
∆

                             (2.17) 

1 1 1, , ,
2 2 2

1 1
1 2 2

2
i j i j i j

n nn
y xy zE E H

t

δ

ε
+ + +

+ ++ −

= −
∆

                            (2.18) 

1 1 1 1, ,
2 2 2 2

1 1 1 1, ,
2 2 2 2

1
1 2

1
1 21

2
i j i j

i j i j

nn
z z

nn
y x x y

H H
E E

t
δ δ

µ
+ + + +

+ + + +

++

++

−
 

= −  ∆  
                    (2.19) 

For simplicity in notations, we sometimes omit the subscripts of these field values without causing any ambi-
guity. By the definition of cross product of vectors, the boundary conditions for (2.2)-(2.3) become 
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
1 1 1 1 1 1 1 1 1 1 1 1,0 , , , , , 0, , , , , ,
2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1, , , , , , ,
2 2 2 2 2 2 2 2 2 2 2 2 2 2

, , , , , ,

, , ,

i i J j I j j I j j I j i i J i i J

j I j j I j i i J i

m m m m m m m m m m m m
x x x x x x y y y y y y

m m m m m m m
z z z z z z z

E E E E E E E E E E E E

H H H H H H H H

+ + + − − + + + − −

+ + + − + − + + + + + −

= = = = = =

= = = =
1 1,
2 2

,
i J

m
z
+ −







    (2.20) 

where m n=  or 1 2m n= + . Finally, the initial values 0
,α βE  and 

,

0
zH
α β

 of the2D-ADI-FDTD scheme are 
obtained by the initial condition (2.4). 

3. Modified Energy Identities and Stability of 2D-ADI-FDTD in H1 Norm 
In this Section we derive modified energy identities of 2D-ADI-FDTD and prove its energy conservation and 
unconditional stability in the discrete H1 norm.  

Theorem 3.1 Let 0n > , ( ), ,1 2 1 2
,

i j i j

n n n
x yE E
+ +

=E  and 
,1 2 1 2i j

n
zH
+ +

 be the solution of the ADI-FDTD scheme 

(2.14)-(2.19). Then the following modified energy identities hold, 

( )
( )

22 2 2 2

22 2 2 20 0 0 0

4

,
4

x x z x x x z

x x z x x x z

n n n n
x x z x y z x y xH E H

x x z x y z x y xH E H

tH H E

tH H E

δ δ δ δ

δ δ δ δ

δ δ δ δ δ δ
µε

δ δ δ δ δ δ
µε

∆
+ + +

∆
= + + +

E

E

E

E
                (3.1) 

22 2 2 2

22 2 2 20 0 0 0

4

,
4

y y z y x y z

y y z y x y z

n n n n
y y z y y z y y xH E H

y y z y y z y y xH E H

tH H E

tH H E

δ δ δ δ

δ δ δ δ

δ δ δ δ δ δ
µε

δ δ δ δ δ δ
µε

∆  + + + 
 

∆  = + + + 
 

E

E

E

E
               (3.2) 

where for ,u x y= , and m n=  or 0 
2 2 2

.
u u x u y

m m m
u u x u yE E

E E
δ δ δ

δ δ δ= +
E

E  

Proof. First we prove (3.1). Applying xδ  to the Equations (2.14)-(2.19), and rearranging the terms by the 
time levels, we have 

, ,,

1
2 ,

2i j i ji j

n n n
x x x x y zx

tE E Hδ δ δ δ
ε

+ ∆
= +                             (3.3) 

1 11 1 1 1 ,, ,
2 22 2 2 2

1 1
2 2 ,

2 i ji j i j

n n n
x x x x yy z

tE H Eδ δ δ δ
ε + ++ + + +

+ +∆
+ =                          (3.4) 

1 11 1 , ,, ,
2 22 2

1 1
2 2 ,

2 2i j i ji j i j

n n n n
x x x x z x y xz y

t tH E H Eδ δ δ δ δ δ
µ µ+ ++ +

+ +∆ ∆
+ = +                     (3.5) 

, , ,

1
1 1 2 ,

2i j i j i j

nn n
x x x y z x x

tE H Eδ δ δ δ
ε

++ +∆
− =                            (3.6) 

1 1 1 1 1 1, , ,
2 2 2 2 2 2

1 1
1 2 2 ,

2i j i j i j

n nn
x y x x xy z

tE E Hδ δ δ δ
ε+ + + + + +

+ ++ ∆
= −                         (3.7) 

1 1 1 1, , , ,
2 2 2 2

1 1
1 1 2 2 .

2 2i j i j i j i j

n nn n
x z x y x x x xz y

t tH E H Eδ δ δ δ δ δ
µ µ+ + + +

+ ++ +∆ ∆
− = −                    (3.8) 

Multiplying both sides of the equations, (3.3)-(3.4) by ε  respectively, and those of (3.5) by µ , and 
taking the square of the updated equations lead to 
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( ) ( ), , , ,,

21 22 2
2 ,

4i j i j i j i ji j

n n n n n
x x x x y z x x x x zx

tE E H t E Hε δ ε δ µ δ δ δ δ δ
µε

+  ∆
= + + ∆  

 
                (3.9) 

1 11 1 1 1 1 1 1 1 ,, , , ,
2 22 2 2 2 2 2 2 2

2 2 21 1 1 12
2 2 2 2

4
,

i ji j i j i j i j

n n n n n
x x x x x x x yy z y z

tE H t E H Eε δ µ δ δ δ δ δ ε δ
µε + ++ + + + + + + +

+ + + +     ∆
+ + ∆ =         

    
        (3.10) 

1 1 1 1, , , ,
2 2 2 2

1 1 1 1, , , ,
2 2 2 2

2 21 1 1 12
2 2 2 2

2 22

4

,
4

i j i j i j i j

i j i j i j i j

n n n n

x x x x x xz y z y

n n n n
x z x y x x z x y x

tH E t H E

tH E t H E

µ δ ε δ δ δ δ δ
µε

µ δ ε δ δ δ δ δ
µε

+ + + +

+ + + +

+ + + +   ∆
+ + ∆      

   

   ∆
= + + ∆      

   

                 (3.11) 

Applying summation by parts, we see that 

,0 1 1, ,
2 2

,0 ,0

1 1 1 1 1

10 0 0 1 1, ,
2

1 1 1

0 0 1 ,

1 1

0 0

1
i i J i

i i

n n n n n n
I J I I J

x z x y x x x x z x z x x x y z
i j i i ji j i j

I I J
m m m m

x x x y z x x x y z
i i j i j

I J
m m

x x x y z
i j i

nH E E H H E Hy

E H E H

E H

δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ

δ δ δ

−

− − − − −

= = = = =+

− − −

= = =

− −

= =

 
⋅ − ⋅  

 
= −
∆

= − − ⋅

⋅= −

∑∑ ∑ ∑∑

∑ ∑∑

∑∑
,

,
j

       (3.12) 

where we have used that 
,0 ,i i J

n n
x x x xE Eδ δ=  and that 

1 1, ,
2 2

i J i

n n
x x x xH Hδ δ

− −
= , which can be obtained from the peri-

odic boundary conditions. Similarly, we get that  
1 1 1 11 1 1 1
2 2 2 2

1 1 10 0 0 0, ,
2 2 2

.
I J I Jn n n n

x y x x z x z x x y
i j i ji j i j

E H H Eδ δ δ δ δ δ
− − − −+ + + +

= = = =+ + +

= ⋅−⋅∑∑ ∑∑                (3.13) 

So, if summing each of the Equalities (3.9)-(3.11) over their subscripts, adding the updated equations, mul-
tiplying both sides by ΔxΔy, and using the two identities, (3.12) and (3.13), together with the norms defined in 
Subsection 2.2, we arrive at 

( )

2 2 2 2 21 1 1 1 12
2 2 2 2 2

22 2 2 2 2

4

.
4

x x x y x z x x x z

x x x y x z x x x z

n n n n n

x x x y x z x y z x y x
E E H E H

n n n n n
x x x y x z x y z x y xE E H E H

tE E H H E

tE E H H E

δ δ δ δ δ

δ δ δ δ δ

δ δ δ δ δ δ δ
µε

δ δ δ δ δ δ δ
µε

+ + + + + ∆  + + +
 


+ +


∆

= + +

+
       (3.14) 

Similar argument is applied to the second Stage (3.6)-(3.8), we have  

( )22 2 2 2 21 1 1 1 1

2 2 2 2 21 1 1 1 12
2 2 2 2 2

4

.
4

x x x y x z x x x z

x x x y x z x x x z

n n n n n
x x x y x z x y z x y xE E H E H

n n n n n

x x x y x z x y z x y x
E E H E H

tE E H H E

tE E H H E

δ δ δ δ δ

δ δ δ δ δ

δ δ δ δ δ δ δ
µε

δ δ δ δ δ δ δ
µε

+ + + + +

+ + + + +

∆
+ + +

 ∆  = +


+

+



++



     (3.15) 

Combination of (3.14) and (3.15) leads to the identity (3.1). Identity (3.2) is similarly derived by repeating the 
above argument from the operated Equations (2.14)-(2.19) by yδ . This completes the proof of Theorem 3.1.   

In the above proof, if taking xδ  as the identity operator, we obtain that 
Theorem 3.2 Let 0n > , nE  and n

zH  be the solution of 2D-ADI-FDTD. Then, the following energy iden-
tities hold 
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( )
( )

22 2 2 2 2

22 2 2 2 20 0 0 0 0

4

,
4

x y z z x

x y z z x

n n n n n
x y z y x y zE E H H E

x y z y x y zE E H H E

tE E H E H

tE E H E H

δ δ
µε

δ δ
µε

∆
+ + + +

∆
= + + + +

                 (3.16) 

Combining the results in Theorems 3.1 and 3.2 we have 
Theorem 3.3 If the discrete H1 semi-norm and H1 norm of the solution of 2D-ADI-FDTD are denoted respec-

tively by 
2 2 2 2 2

2 2 2 2 2

1

2 2 2 2

1

2 2 2 2

1

2 2 2

1

1 2

2

1 2

 

,

, ,

,

,

x x

x

x y y x y y

x y

z y z z

x z y z z

x x y x

n n n n n
x x x y x y

n n n n n n
x y

n n n n
y x x y x y y x y xH H H

n n n n
z x z y z zH H H

n n n
y z x y z y

y yE E

y z yE E

E E

E E

E E E E

E E

E E E E

H H H H

H H H H

δ δ δ δ

δ δ

δ δ

δ δ

δ δ δ δ

δ δ δ δ δ δ

δ δ

δ δ δ δ δ δ

= +

= + = +

= + +

= + +

= +

+ +

+

E

E

E E E E

2
,

x

n
z E

 

then, the following energy identities for 2D-ADI-FDTD hold 

( ) ( )1 2 1 2 1 2 1 2

2 22 2 2 2 2 2 2 20 0 0 0

1 2 1 2 1 2 1 2
.

4 4
n n n n

z y x y z z y x y z
t tH E H H E Hδ δ δ δ
µε µε
∆ ∆

+ + + = + + +E E    (3.17) 

( ) ( )2 22 2 2 2 2 2 2 20 0 0 0

1 1 1 1 1 1 1 1
.

4 4
n n n n

z y x y z z y x y z
t tH E H H E Hδ δ δ δ
µε µε
∆ ∆

+ + + = + + +E E        (3.18) 

Remark 3.4 It is easy to see that the identities in Theorems 3.1, 3.2 and 3.3converge to those in Lemma 2.1 
and Theorem 2.2 as the discrete step sizes approach zero. This means that2D-ADI-FDTD is approximately 
energy-conserved and unconditionally stable in the modified discrete form of the L2 and H1 norms. 

4. Numerical Experiments 
In this section we solve a model problem by 2D-ADI-FDTD, and then test the analysis of the stability and ener-
gy conservation in Section 3 by comparing the numerical solution with the exact solution of the model. The 
model considered is the Maxwell equations (2.1) with 1ε µ= = , [ ] [ ]0,1 0,1Ω = × , ( ]0,t T∈ , and its exact so-  

lution is: ( ) ( )( )cos 2π 2 2π ,xxE xE yt t+ −= =  ( )yy xE tE E= −= , ( ) 2 .zz xH EtH = −=  

It is easy to compute the norms of this solution are  

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )( ) ( )
1 2 1

2

22

2

2 2

1 11

, 2,

, 2 8 .π

zz

z z

E t H t

E t H t

t H t

t H t

= + =

+= + =

E

E
 

4.1. Simulation of the Error and Stability  
To show the accuracy of 2D-ADI-FDTD, we define the errors:  

( ) ( ) ( )1 2 1 2, , , , ,1 2 1 2 1 2 1 2 ,1 2 1 2, , ,1 2 1 2 1 2 1 2
, and ,

i j i j i j i j i j i j

n n n n n n n n n
x x x y y y z z zi j i j i j

E t E E t E H t H
+ + + + + + + ++ + + +

= − = − = −    

where ( )n
xE t , ( )n

xE t , ( )n
zH t  are the true values of the exact solution. Denote the error and relative error 

in the norms defined in Section 3 by ErL2, R-ErL2, ErH1 and R-ErH1, i.e. 

( ) ( )( )
2 2 2 2

2 2, -
,yx z

n n n
yE E H

z
x z

ErLErL R ErL
t H t

= + + =
E

    
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( )
1 22 2 2 2 2 22

1 2 ,
x x x y x z y x y y y z

n n n n n n
x x x y x z y x y y y zE E H E E H

ErH ErL
δ δ δ δ δ δ

δ δ δ δ δ δ = + + + + + + 
 

       

( ) ( )( )
( )
( )

1
1 2

1

Error
- , Rate log ,

Error 2, z

hErHR ErH
ht H t

= =
E

 

where log is the logarithmic function. 
Table 1 gives the error and relative error of the numerical solution of the model problem computed by 2D- 

ADI-FDTD in the norms, and the convergence rates with different time step sizes Δt = 4h, 2h and h, when Δx = 
Δy = h = 0.01 is fixed and T = 1. From these results we see that the convergence rate of 2D-ADI-FDTD with re-
spect to time is approximately 2 and that 2D-ADI-FDTD is unconditionally stable (when Δt = Δx = Δy = h,  
the CFL number 2 21 1 2 1c t x y∆ ∆ + ∆ = > ). 

Table 2 lists the similar results to Table 1 when Δt = 0.1h is fixed, Δx = Δy varies from 2h, h and 0.5h, and 
the time length T = 1. From the columns “Rate” we see that 2D-ADI-FDTD is of second order in space under 
the discrete L2 and H1 norm. 

4.2. Simulation of the Energy Conservation of 2D-ADI-FDTD 
In this subsection we check the energy conservation of 2D-ADI-FDTD by computing the modified energy 
norms derived in Section 3 for the solution to the scheme. Denote these modified energy norms by  

( ) ( )22 2 2 2
, ,

4u u z x zu u

n n n n n n
u z u u z y z yH Eu u x H

tI H H H E
δ δ δ δ

δ δ δ δ δ δ
µε
∆

= + + +
E

E E  

( ) ( )22 2 2 2

0 , ,
4z z x

n n n n n n
z z y x y zH H E

tI H H E Hδ δ
µε
∆

= + + +
E

E E  

( ) ( ) ( ) ( )2 2 2

1 0, , , , .n n n n n n n n
z x z y z zI H I H I H I H= + +E E E E  

In Table 3 are presented the energy norms ( ) ( ), , ,0,1n n
u zI H u x y=E  of the solution of the 2D-ADI-FDTD 

scheme at the time levels n = 0, n = 1000 and n = 4000 (the third to fifth rows), and the absolute values of their 
difference (the last two rows), where the sizes of the spatial and time steps are Δx = Δy = 0.01, Δt = 0.04. The 
second row shows the four kind of energies of the exact solution computed by using the definitions of 

( )0, ,uI u x y= . From these value we see that 2D-ADI-FDTD is approximately energy-conserved. 
 
Table 1. Error of ( ),n n

zHE  in L2 and H1 with Δx = Δy = h and different Δt. 

Δt R-ErL2 ErL2 Rate R-ErH1 ErH1 Rate 

4h 6.0284e−2 8.5254e−2  6.0287e−2 7.6675e−1  

2h 1.6264e−2 2.3001e−2 1.8901 1.6265e−2 2.0595e−1 1.8901 

h 5.1571e−3 7.2932e−3 1.6571 5.1571e−3 6.5229e−2 1.3182 

 
Table 2. Error of ( ),n n

zHE  in L2 and H1 with Δt = 0.1h and different spatial step sizes. 

Δx = Δy R-ErL2 ErL2 Rate R-ErH1 ErH1 Rate 

2h 5.0019e−3 8.3182e−3  5.0019e−3 7.4333e−3  

h 1.4981e−3 2.1186e−3 1.7393 1.4981e−3 1.8942e−3 1.7393 

0.5h 4.0200e−4 5.6851e−4 1.8979 4.0200e−4 5.0834e−4 1.8978 
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Table 3. Energy of ( ),n n
zHE  and its error when Δx = Δy = h = 0.01, Δt = 4h and n = 0, 1000, 4000. 

Fields\Norms ( )xI   ( )yI   ( )0I   ( )1I   

( ) ( )( ), zt H tE  8.9367 8.9367 1.4226 12.7183 

( )0 0, zHE  8.9367 8.9367 1.4226 12.7183 

( )1000 1000, zHE  8.9367 8.9367 1.4226 12.7183 

( )4000 4000, zHE  8.9367 8.9367 1.4226 12.7183 

( ) ( )1000 1000 0 0, ,z zH H−E E  3.2685e−13 3.2685e−13 5.2403e−14 4.6718e−13 

( ) ( )4000 4000 0 0, ,z zH H−E E  3.2685e−13 3.2685e−13 5.2403e−14 4.6718e−13 

5. Conclusion 
In this paper, the modified energy identities of the 2D-ADI-FDTD scheme with the periodic boundary condi-
tions in the discrete L2 and H1 norms are established which show that this scheme is approximately energy con-
served in terms of the two energy norms. By the deriving methods for the energy identities, new kind of energy 
identities of the Maxwell equations are proposed and proved by the new energy method. Numerical experiments 
are provided and confirm the analysis of 2D-ADI-FDTD. 
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Abstract 
In this paper we give a full description of idempotent elements of the semigroup BX (D), which are 
defined by semilattices of the class Σ1 (X, 10). For the case where X is a finite set we derive formu-
las by means of which we can calculate the numbers of idempotent elements of the respective se-
migroup. 

 
Keywords 
Semilattice, Semigroup, Binary Relation 

 
 

1. Introduction 
Let X be an arbitrary nonempty set, D be an X-semilattice of unions, i.e. such a nonempty set of subsets of the 
set X that is closed with respect to the set-theoretic operations of unification of elements from D, f be an arbi-
trary mapping of the set X in the set D. To each such a mapping f we put into correspondence a binary relation 

fα  on the set X that satisfies the condition 

{ } ( )( )f
x X

x f xα
∈

= ×


 

The set of all such fα  ( ):f X D→  is denoted by ( )XB D . It is easy to prove that ( )XB D  is a semi-
group with respect to the operation of multiplication of binary relations, which is called a complete semigroup of 
binary relations defined by an X-semilattice of unions D. 
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Recall that we denote by ∅  an empty binary relation or empty subset of the set X. The condition 
( ),x y α∈  will be written in the form xαy. Further let ,  x y X∈ , Y X⊆ , ( )XB Dα ∈ , T D∈ , D D′∅ ≠ ⊆ , 
D D= ∪


 and t D∈


. Then by symbols we denoted the following sets: 

{ } { } { }
( ) { } { } { }

{ } ( ) ( )

,   ,   2 ,   2 \ ,

, ,   ,   ,

,   , \ .

X X
y Y

T T

t T

y x X y x Y y Y Y X X

V D Y Y D D T D T T D T D T T

D Z D t Z l D T D D

α α α α

α α

∗
∈

= ∈ = = ⊆ = ∅

′ ′ ′ ′ ′ ′ ′ ′= ∈ = ∈ ⊆ = ∈ ⊆

′ ′ ′ ′ ′ ′ ′= ∈ ∈ = ∪





 

By symbol ( ),D D′Λ  is denoted an exact lower bound of the set D' in the semilattice D. 
Definition 1. We say that the complete X-semilattice of unions D is an XI-semilattice of unions if it satisfies 

the following two conditions: 
a) ( ), tD D DΛ ∈  for any t D∈



; 
b) ( ), tt Z

Z D D
∈

= Λ


 for any nonempty element Z of the semilattice D. 
Definition 2. We say that a nonempty element T is a nonlimiting element of the set D' if ( )\ ,T l D T′ ≠ ∅  

and a nonempty element T is a limiting element of the set D' if ( )\ ,T l D T′ = ∅ . 
Definition 3. Let ( )XB Dα ∈ , ( ),T V X α∗∈ , { }TY y X y Tα α= ∈ = . A representation of a binary relation  

α  of the form ( ) ( ), TT V X
Y Tα

α
α ∗∈
= ×


 is called quasinormal. 

Note that, if ( ) ( ), TT V X
Y Tα

α
α ∗∈
= ×


 is a quasinormal representation of the binary relation α , then the fol-
lowing conditions are true: 

1) ( ), TT V X
X Yα

α∗∈
=


; 

2) T TY Yα α
′∩ = ∅  for ( ),  ,T T V X α∗′∈  and T T ′≠ . 

Let ( ),n X m∑  denote the class of all complete X-semilattices of unions where every element is isomorphic 
to a fixed semilattice D. 

The following Theorems are well know (see [1] and [3]). 
Theorem 4. Let X be a finite set; δ and q be respectively the number of basic sources and the number of all 

automorphisms of the semilattice D. If X n δ= ≥  and ( ),n X m sΣ = , then 

( ) ( ) ( )( )
( ) ( )

11

1

1 ! !1
1 ! 1 !

p i p npm
m p

p i

C C p i
s

q i p i

δ δ
δ

δ

δ δ+ + −+
−

= =

  − ⋅ ⋅ ⋅ ⋅ − ⋅
  = ⋅

  − ⋅ − +  
∑ ∑  

where 
( ) ( )

!
! !

k
j

jC
k j k

=
⋅ −

 (see Theorem 11.5.1 [1]). 

Theorem 5. Let D be a complete X-semilattice of unions. The semigroup ( )XB D  possesses right unit iff D 
is an XI-semilattice of unions (see Theorem 6.1.3 [1]). 

Theorem 6. Let X be a finite set and ( )D α  be the set of all those elements T of the semilattice  
( ) { }, \Q V D α= ∅  which are nonlimiting elements of the set TQ . A binary relation α  having a quasinormal  

representation ( ) ( ), TT V D
Y Tα

α
α

∈
= ×


 is an idempotent element of this semigroup iff 

a) ( ),V D α  is complete XI-semilattice of unions; 
b) ( )T TT D

Y Tα
α ′′∈

⊇




 for any ( )T D α∈ ; 

c) TY Tα ∩ ≠ ∅  for any nonlimiting element of the set ( )TD α  (see Theorem 6.3.9 [1]). 
Theorem 7. Let D, ( )DΣ , ( ) ( )r

XE D′  and I denote respectively the complete X-semilattice of unions, the set 
of all XI-subsemilatices of the semilattice D, the set of all right units of the semigroup ( )XB D′  and the set of 
all idempotents of the semigroup ( )XB D . Then for the sets ( ) ( )r

XE D′  and I the following statements are true: 
1) if D∅∈  and ( ) ( ){ }D D D D∅ ′ ′Σ = ∈Σ ∅∈  then 
a) ( ) ( ) ( ) ( )r r

X XE D E D′ ′′∩ = ∅  for any elements D′  and D′′  of the set ( )D∅Σ  that satisfy the condition 
D D′ ′′≠ ; 

b) ( )
( ) ( )r
XD D

I E D
∅′∈Σ

′=


 

c) the equality ( )
( ) ( )r
XD DI E D

∅′∈Σ
′= ∑  is fulfilled for the finite set X. 
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2) if D∅∉ , then 
a) ( ) ( ) ( ) ( )r r

X XE D E D′ ′′∩ = ∅  for any elements D′  and D′′  of the set ( )DΣ  that satisfy the condition 
D D′ ′′≠ ; 

b) ( ) ( )( )
r

XD D
I E D′∈Σ

′=


 

c) the equality ( )
( ) ( )r
XD DI E D′∈Σ

′= ∑  is fulfilled for the finite set X (see Theorem 6.2.3 [1]). 

Corollary 1. Let { }1 2, , , kY y y y=   and { }1 2, , ,j jD T T T=   be some sets, where 1k ≥  and 1j ≥ . Then 
the number ( ),s k j  of all possible mappings of the set Y into any such subset jD′  of the set jD  that j jT D′∈  
can be calculated by the formula ( ) ( ), 1 kks k j j j= − −  (see Corollary 1.18.1 [1]). 

2. Idempotent Elements of the Semigroups ( )XB D  Defined by Semilattices of the 
Class ( )X1Σ ,10  

Let X and ( )1 ,10XΣ  be respectively an arbitrary nonempty set and a class X-semilattices of unions, where 
each element is isomorphic to some X-semilattice of unions { }9 8 7 6 5 4 3 2 1, , , , , , , , ,D Z Z Z Z Z Z Z Z Z D=



 that satis-
fies the conditions: 

9 4 1 9 5 1

9 6 1 9 6 2

9 6 3 9 7 3

9 8 3 1 2 2 1

1 3 3 1 2 3

3 2 4 5 5 4

4 6 6 4 4 7

7 4 4 8

,  ,
,  ,
,  ,
,  \ ,  \ ,

\ ,  \ ,  \ ,
\ ,  \ ,  \ ,
\ ,  \ ,  \ ,
\ ,  \ ,

Z Z Z D Z Z Z D
Z Z Z D Z Z Z D
Z Z Z D Z Z Z D
Z Z Z D Z Z Z Z
Z Z Z Z Z Z
Z Z Z Z Z Z
Z Z Z Z Z Z
Z Z Z Z

⊂ ⊂ ⊂ ⊂ ⊂ ⊂
⊂ ⊂ ⊂ ⊂ ⊂ ⊂
⊂ ⊂ ⊂ ⊂ ⊂ ⊂
⊂ ⊂ ⊂ ≠∅ ≠∅

≠∅ ≠∅ ≠∅
≠∅ ≠∅ ≠∅
≠∅ ≠∅ ≠∅
≠∅ ≠∅

 

 

 



8 4

5 6 6 5 5 7

7 5 5 8 8 5

6 7 7 6 6 8

8 6 7 8 8 7

1 2 1 3 2 3 4 2

4 3 4 7 4 8 5 2

5 3 5 7 5 8 7 1

7 2 8

 \ ,
\ ,  \ ,  \ ,
\ ,  \ ,  \ ,
\ ,  \ ,  \ ,
\ ,  \ ,  \ ,

  
  
  

Z Z
Z Z Z Z Z Z
Z Z Z Z Z Z
Z Z Z Z Z Z
Z Z Z Z Z Z
Z Z Z Z Z Z Z Z

Z Z Z Z Z Z Z Z
Z Z Z Z Z Z Z Z
Z Z Z

≠ ∅
≠ ∅ ≠∅ ≠∅
≠∅ ≠∅ ≠∅
≠∅ ≠∅ ≠∅
≠∅ ≠∅ ≠∅

∪ = ∪ = ∪ = ∪
= ∪ = ∪ = ∪ = ∪
= ∪ = ∪ = ∪ = ∪
= ∪ = ∪ 1 8 2

4 5 4 6 5 6 1

6 7 6 8 7 8 3

,
,
.

Z Z Z D
Z Z Z Z Z Z Z
Z Z Z Z Z Z Z

= ∪ =
∪ = ∪ = ∪ =
∪ = ∪ = ∪ =



                         (1) 

An X-semilattice that satisfies conditions (1) is shown in Figure 1. 
Let ( ) { }0 1 2 3 4 5 6 7 8 9, , , , , , , , ,C D P P P P P P P P P P=  be a family of sets, where P0, P1, P2, P3, P4, P5, P6, P7, P8, P9  

 

 
Figure 1. Diagram of D. 
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are pairwise disjoint subsets of the set X and 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

D Z Z Z Z Z Z Z Z Z
P P P P P P P P P P

ϕ
 

=  
 



 be a map-  

ping of the semilattice D onto the family sets ( )C D . Then for the formal equalities of the semilattice D we 
have a form: 

0 1 2 3 4 5 6 7 8 9

1 0 2 3 4 5 6 7 8 9

2 0 1 3 4 5 6 7 8 9

3 0 1 2 4 5 6 7 8 9

4 0 2 3 5 6 7 8 9

5 0 2 3 4 6 7 8 9

6 0 4 5 7 8 9

7

,
,
,
,

,
,

,

D P P P P P P P P P P
Z P P P P P P P P P
Z P P P P P P P P P
Z P P P P P P P P P
Z P P P P P P P P
Z P P P P P P P P
Z P P P P P P
Z

= ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪
= ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪
= ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪
= ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪
= ∪ ∪ ∪ ∪ ∪ ∪ ∪
= ∪ ∪ ∪ ∪ ∪ ∪ ∪
= ∪ ∪ ∪ ∪ ∪



0 1 2 4 5 6 8 9

8 0 1 2 4 5 6 7 9

9 0

,
,

.

P P P P P P P P
Z P P P P P P P P
Z P

= ∪ ∪ ∪ ∪ ∪ ∪ ∪
= ∪ ∪ ∪ ∪ ∪ ∪ ∪
=

                      (2) 

Here the elements P1, P2, P3, P4, P5, P6, P7, P8 are basis sources, the elements P0, P6, P9 are sources of com-
pleteness of the semilattice D. Therefore 7X ≥  and 7δ =  (see [2]). 

Lemma 1. Let ( )1 ,10D X∈Σ , ( )1 ,10X sΣ =  and 7X δ≥ ≥ . If X is a finite set, then 

( )( )1 1 4 7 5 21 6 35 7 35 8 21 9 11
8

n n n n n n ns = − × + × − × + × − × + × + . 

Proof. In this case we have: m = 10, δ = 7. Notice that an X-semilattice given in Figure 1 has eight automor-
phims. By Theorem 1.1 it follows that 

( ) ( ) ( )( )
( ) ( )

1 7 7110
3

7 1

1 7! 7 !1
8 1 ! 1 !

p i p np
p

p i

C C p i
s

i p i

+ + −+

= =

  − ⋅ ⋅ ⋅ ⋅ − ⋅
  = ⋅

  − ⋅ − +  
∑ ∑ , 

where 
( )

!
! !

k
j

jC
k j k

=
⋅ −

 and that 

( )( )1 1 4 7 5 21 6 35 7 35 8 21 9 11
8

n n n n n n ns = − × + × − × + × − × + × + . 

Example 8. Let 7, 8, 9, 10n =  Then: 

( ) 7 8 9 1010 ,  10 ,  10 ,  10XB D = . 

Lemma 2. Let ( )1 ,10D X∈Σ . Then the following sets are all proper subsemilattices of the semilattice 
{ }9 8 7 6 5 4 3 2 1, , , , , , , , ,D Z Z Z Z Z Z Z Z Z D=



: 

1) { } { } { } { } { } { } { } { } { } { }9 8 7 6 5 4 3 2 1,  ,  ,  ,  ,  ,  ,  ,  ,  Z Z Z Z Z Z Z Z Z D


 
(see diagram 1 of the Figure 2); 

2) { } { } { } { } { } { } { } { } { } { }9 8 9 7 9 6 9 5 9 4 9 3 9 2 9 1 9 8 3, ,  , ,  , ,  , ,  , ,  , ,  , ,  , ,  , ,  , ,Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z D Z Z


 

{ } { } { } { } { } { } { } { } { } { }8 7 3 7 6 3 6 2 6 1 6 5 1 5 4 1, ,  , ,  , ,  , ,  , ,  , ,  , ,  , ,  , ,  , ,Z D Z Z Z D Z Z Z Z Z Z Z D Z Z Z D Z Z
   

 

{ } { } { } { }4 3 2 1, ,  , ,  , ,  ,Z D Z D Z D Z D
   

  
(see diagram 2 of the Figure 2); 

3) { } { } { } { } { } { } { }9 8 3 9 8 9 7 3 9 7 9 6 3 9 6 2 9 6 1, , ,  , , ,  , , ,  , , ,  , , ,  , , ,  , , ,Z Z Z Z Z D Z Z Z Z Z D Z Z Z Z Z Z Z Z Z
 

  

{ } { } { } { } { } { } { }9 6 9 5 1 9 5 9 4 1 9 4 9 3 9 2, , ,  , , ,  , , ,  , , ,  , , ,  , , ,  , , ,Z Z D Z Z Z Z Z D Z Z Z Z Z D Z Z D Z Z D
    
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{ } { } { } { } { } { } { } { }9 1 8 3 7 3 6 3 6 2 6 1 5 1 4 1, , ,  , , ,  , , ,  , , ,  , , ,  , , ,  , , ,  , ,Z Z D Z Z D Z Z D Z Z D Z Z D Z Z D Z Z D Z Z D
       

 
(see diagram 3 of the Figure 2); 

4) { } { } { } { } { }9 4 1 9 5 1 9 6 1 9 6 2 9 6 3, , , ,  , , , ,  , , , ,  , , , ,  , , , ,  Z Z Z D Z Z Z D Z Z Z D Z Z Z D Z Z Z D
    

 

{ } { }9 7 3 9 8 3, , , ,  , , ,Z Z Z D Z Z Z D
 

  
(see diagram 4 of the Figure 2); 

5) { } { } { } { } { } { }9 5 4 1 9 6 4 1 9 6 5 1 9 7 6 3 9 8 6 3 9 8 7 3, , , ,  , , , ,  , , , ,  , , , ,  , , , ,  , , , ,Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z  

{ } { } { } { } { } { }9 8 4 9 8 5 9 7 2 9 7 4 9 7 5 9 8 1, , , ,  , , , ,  , , , ,  , , , ,  , , , ,  , , , ,Z Z Z D Z Z Z D Z Z Z D Z Z Z D Z Z Z D Z Z Z D
     

 

{ } { } { } { } { } { }9 8 2 9 4 2 9 4 3 9 5 2 9 5 3 9 7 1, , , ,  , , , ,  , , , ,  , , , ,  , , , ,  , , , ,Z Z Z D Z Z Z D Z Z Z D Z Z Z D Z Z Z D Z Z Z D
     

 

{ } { } { } { } { } { }9 2 1 9 3 1 9 3 2 6 2 1 6 3 1 6 3 2, , , ,  , , , ,  , , , ,  , , , ,  , , , ,  , , , ;Z Z Z D Z Z Z D Z Z Z D Z Z Z D Z Z Z D Z Z Z D
     

 
(see diagram 5 of the Figure 2); 

6) { } { } { } { }9 5 4 1 9 6 4 1 9 6 5 1 9 7 6 3, , , , ,  , , , , ,  , , , , ,  , , , , ,Z Z Z Z D Z Z Z Z D Z Z Z Z D Z Z Z Z D
   

 

{ } { }9 8 6 3 9 8 7 3, , , , ,  , , , ,Z Z Z Z D Z Z Z Z D
 

 
(see diagram 6 of the Figure 2); 

7) { } { } { }9 6 2 1 9 6 3 1 9 6 3 2, , , , ,  , , , , ,  , , , ,Z Z Z Z D Z Z Z Z D Z Z Z Z D
  

 
(see diagram 7 of the Figure 2); 

8) { } { } { } { }9 8 6 3 2 9 8 6 3 1 9 7 6 3 2 9 7 6 3 1, , , , , ,  , , , , , ,  , , , , , ,  , , , , , ,Z Z Z Z Z D Z Z Z Z Z D Z Z Z Z Z D Z Z Z Z Z D
   

 

{ } { } { } { }9 6 5 3 1 9 6 5 2 1 9 6 4 3 1 9 6 4 2 1, , , , , ,  , , , , , ,  , , , , , ,  , , , , ,Z Z Z Z Z D Z Z Z Z Z D Z Z Z Z Z D Z Z Z Z Z D
   

 
(see diagram 8 of the Figure 2); 

9) { } { } { } { } { } { } { } { }8 7 3 8 6 3 8 6 8 5 8 4 8 2 8 1 7 6 3, , ,  , , ,  , , ,  , , ,  , , ,  , , ,  , , ,  , , ,Z Z Z Z Z Z Z Z D Z Z D Z Z D Z Z D Z Z D Z Z Z
    

 

{ } { } { } { } { } { } { } { }7 5 7 4 7 2 7 1 6 5 1 6 4 1 5 4 1 5 3, , ,  , , ,  , , ,  , , ,  , , ,  , , ,  , , ,  , , ,Z Z D Z Z D Z Z D Z Z D Z Z Z Z Z Z Z Z Z Z Z D
    

 

{ } { } { } { } { } { }5 2 4 3 4 2 3 2 3 1 2 1, , ,  , , ,  , , ,  , , ,  , , ,  , ,Z Z D Z Z D Z Z D Z Z D Z Z D Z Z D
     

 
(see diagram 9 of the Figure 2); 

10) { } { } { } { } { } { }8 6 3 8 7 3 7 6 3 5 4 1 6 4 1 6 5 1, , , ,  , , , ,  , , , ,  , , , ,  , , , ,  , , ,Z Z Z D Z Z Z D Z Z Z D Z Z Z D Z Z Z D Z Z Z D
     

 
(see diagram 10 of the Figure 3); 

11) { } { } { } { }6 5 3 1 6 5 2 1 6 4 3 1 6 4 2 1, , , , ,  , , , , ,  , , , , ,  , , , , ,Z Z Z Z D Z Z Z Z D Z Z Z Z D Z Z Z Z D
   

 

{ } { } { } { }7 6 3 2 7 6 3 1 8 6 3 2 8 6 3 1, , , , ,  , , , , ,  , , , , ,  , , , ,Z Z Z Z D Z Z Z Z D Z Z Z Z D Z Z Z Z D
   

 
(see diagram 11 of the Figure 2); 

12) { } { } { } { } { } { }6 5 4 1 8 7 6 3 8 2 1 3 2 1 4 3 2 5 3 2, , , ,  , , , ,  , , , ,  , , , ,  , , , ,  , , , ,Z Z Z Z Z Z Z Z Z Z Z D Z Z Z D Z Z Z D Z Z Z D
   

 

{ } { } { } { } { }7 2 1 7 4 2 7 5 2 8 4 2 8 5 2, , , ,  , , , ,  , , , ,  , , , ,  , , ,Z Z Z D Z Z Z D Z Z Z D Z Z Z D Z Z Z D
    

 
(see diagram 12 of the Figure 2); 

13) { } { } { } { } { } { }7 5 3 4 2 1 8 3 1 8 3 2 8 4 1 4 3 1, , , ,  , , , ,  , , , ,  , , , ,  , , , ,  , , , ,Z Z Z D Z Z Z D Z Z Z D Z Z Z D Z Z Z D Z Z Z D
     

 

{ } { } { } { } { } { }5 2 1 5 3 1 7 3 1 7 3 2 7 4 1 7 4 3, , , ,  , , , ,  , , , ,  , , , ,  , , , ,  , , , ,Z Z Z D Z Z Z D Z Z Z D Z Z Z D Z Z Z D Z Z Z D
     

 

{ } { } { } { }7 5 1 8 4 3 8 5 1 8 5 3, , , ,  , , , ,  , , , ,  , , ,Z Z Z D Z Z Z D Z Z Z D Z Z Z D
   

 
(see diagram 13 of the Figure 2); 

14) { } { } { } { } { }9 6 5 4 1 9 8 7 6 3 6 3 2 1 9 3 2 1 9 4 3 2, , , , ,  , , , , ,  , , , , ,  , , , , ,  , , , , ,Z Z Z Z Z Z Z Z Z Z Z Z Z Z D Z Z Z Z D Z Z Z Z D
  
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{ } { } { } { } { }9 5 3 2 9 7 2 1 9 7 4 2 9 7 4 3 9 7 5 2, , , , ,  , , , , ,  , , , , ,  , , , , ,  , , , , ,Z Z Z Z D Z Z Z Z D Z Z Z Z D Z Z Z Z D Z Z Z Z D
    

 

{ } { } { }9 8 2 1 9 8 4 2 9 8 5 2, , , , ,  , , , , ,  , , , ,Z Z Z Z D Z Z Z Z D Z Z Z Z D
  

 
(see diagram 14 of the Figure 2); 

15) { } { } { } { } { }9 4 2 1 9 4 3 1 9 5 2 1 9 5 3 1 9 7 3 1, , , , ,  , , , , ,  , , , , ,  , , , , ,  , , , , ,Z Z Z Z D Z Z Z Z D Z Z Z Z D Z Z Z Z D Z Z Z Z D
    

 

{ } { } { } { } { }9 7 3 2 9 7 4 1 9 7 5 1 9 7 5 3 9 8 3 1, , , , ,  , , , , ,  , , , , ,  , , , , ,  , , , , ,Z Z Z Z D Z Z Z Z D Z Z Z Z D Z Z Z Z D Z Z Z Z D
    

 

{ } { } { } { } { }9 8 3 2 9 8 4 1 9 8 4 3 9 8 5 1 9 8 5 3, , , , ,  , , , , ,  , , , , ,  , , , , ,  , , , ,Z Z Z Z D Z Z Z Z D Z Z Z Z D Z Z Z Z D Z Z Z Z D
    

 
(see diagram 15 of the Figure 2); 

16) { } { } { } { } { }5 4 3 1 5 4 2 1 7 5 4 1 8 5 4 1 8 7 3 2, , , , ,  , , , , ,  , , , , ,  , , , , ,  , , , , ,Z Z Z Z D Z Z Z Z D Z Z Z Z D Z Z Z Z D Z Z Z Z D
    

 

{ } { } { }8 7 3 1 8 7 5 3 8 7 4 3, , , , ,  , , , , ,  , , , ,Z Z Z Z D Z Z Z Z D Z Z Z Z D
  

 
(see diagram 16 of the Figure 2); 

17) { } { } { } { } { }5 3 2 1 4 3 2 1 7 4 2 1 7 3 2 1 7 5 3 2, , , , ,  , , , , ,  , , , , ,  , , , , ,  , , , , ,Z Z Z Z D Z Z Z Z D Z Z Z Z D Z Z Z Z D Z Z Z Z D
    

 

{ } { } { } { } { }7 5 2 1 7 4 3 2 8 3 2 1 8 5 3 2 8 5 2 1, , , , ,  , , , , ,  , , , , ,  , , , , ,  , , , , ,Z Z Z Z D Z Z Z Z D Z Z Z Z D Z Z Z Z D Z Z Z Z D
    

 

{ } { }8 4 3 2 8 4 2 1, , , , ,  , , , ,Z Z Z Z D Z Z Z Z D
 

 
(see diagram 17 of the Figure 2); 

18) { } { } { } { }7 4 3 1 7 5 3 1 8 5 3 1 8 4 3 1, , , , ,  , , , , ,  , , , , ,  , , , ,Z Z Z Z D Z Z Z Z D Z Z Z Z D Z Z Z Z D
   

 
(see diagram 18 of the Figure 2); 

19) { } { }6 5 4 1 8 7 6 3, , , , ,  , , , , .Z Z Z Z D Z Z Z Z D
 

  
(see diagram 19 of the Figure 2); 

20) { } { } { } { }8 7 5 3 2 8 7 4 3 2 8 5 4 2 1 7 5 4 2 1, , , , , ,  , , , , , ,  , , , , , ,  , , , , , ,Z Z Z Z Z D Z Z Z Z Z D Z Z Z Z Z D Z Z Z Z Z D
   

 

{ } { }8 7 3 2 1 5 4 3 2 1, , , , , ,  , , , , ,Z Z Z Z Z D Z Z Z Z Z D
 

 
(see diagram 20 of the Figure 2); 

21) { } { } { } { }6 5 4 2 1 8 7 6 3 2 8 7 6 3 1 6 5 4 3 1, , , , , ,  , , , , , ,  , , , , , ,  , , , , ,Z Z Z Z Z D Z Z Z Z Z D Z Z Z Z Z D Z Z Z Z Z D
   

 
(see diagram 21 of the Figure 2); 

22) { } { } { } { }9 5 4 2 1 9 8 7 4 3 9 8 7 3 1 9 8 5 4 1, , , , , ,  , , , , , ,  , , , , , ,  , , , , , ,Z Z Z Z Z D Z Z Z Z Z D Z Z Z Z Z D Z Z Z Z Z D
   

 

{ } { } { } { }9 7 5 4 1 9 5 4 3 1 9 8 7 3 2 9 8 7 5 3, , , , , ,  , , , , , ,  , , , , , ,  , , , , ,Z Z Z Z Z D Z Z Z Z Z D Z Z Z Z Z D Z Z Z Z Z D
   

 
(see diagram 22 of the Figure 2); 

23) { } { }9 8 7 6 3 9 6 5 4 1, , , , , ,  , , , , ,Z Z Z Z Z D Z Z Z Z Z D
 

 
(see diagram 23 of the Figure 2); 

24) { } { } { } { }9 8 5 3 2 9 8 5 2 1 9 8 4 3 2 9 8 4 2 1, , , , , ,  , , , , , ,  , , , , , ,  , , , , , ,Z Z Z Z Z D Z Z Z Z Z D Z Z Z Z Z D Z Z Z Z Z D
   

 

{ } { } { } { }9 8 3 2 1 9 7 5 3 2 9 7 5 2 1 9 7 4 3 2, , , , , ,  , , , , , ,  , , , , , ,  , , , , , ,Z Z Z Z Z D Z Z Z Z Z D Z Z Z Z Z D Z Z Z Z Z D
   

 

{ } { } { } { }9 7 4 2 1 9 7 3 2 1 9 5 3 2 1 9 4 3 2 1, , , , , ,  , , , , , ,  , , , , , ,  , , , , ,Z Z Z Z Z D Z Z Z Z Z D Z Z Z Z Z D Z Z Z Z Z D
   

 
(see diagram 24 of the Figure 2); 

25) { } { } { } { }9 8 5 3 1 9 8 4 3 1 9 7 5 3 1 9 7 4 3 1, , , , , ,  , , , , , ,  , , , , , ,  , , , , ,Z Z Z Z Z D Z Z Z Z Z D Z Z Z Z Z D Z Z Z Z Z D
   

 
(see diagram 25 of the Figure 2); 

26) { }9 6 3 2 1, , , , ,Z Z Z Z Z D


 
(see diagram 26 of the Figure 2); 
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27) { } { } { } { }8 7 5 3 1 8 7 4 3 1 8 5 4 3 1 7 5 4 3 1, , , , , ,  , , , , , ,  , , , , , ,  , , , , ,Z Z Z Z Z D Z Z Z Z Z D Z Z Z Z Z D Z Z Z Z Z D
   

 
(see diagram 27 of the Figure 2); 

28) { } { } { } { }8 6 5 3 1 8 6 4 3 1 8 5 3 2 1 7 6 5 3 1, , , , , ,  , , , , , ,  , , , , , ,  , , , , , ,Z Z Z Z Z D Z Z Z Z Z D Z Z Z Z Z D Z Z Z Z Z D
   

 

{ }7 6 4 3 1, , , , ,Z Z Z Z Z D


 
(see diagram 28 of the Figure 2); 

29) { } { } { } { }8 6 3 2 1 7 6 3 2 1 6 5 3 2 1 6 4 3 2 1, , , , , ,  , , , , , ,  , , , , , ,  , , , , ,Z Z Z Z Z D Z Z Z Z Z D Z Z Z Z Z D Z Z Z Z Z D
   

 
(see diagram 29 of the Figure 2); 

30) { } { } { }8 4 3 2 1 7 5 3 2 1 7 4 3 2 1, , , , , ,  , , , , , ,  , , , , ,Z Z Z Z Z D Z Z Z Z Z D Z Z Z Z Z D
  

 
(see diagram 30 of the Figure 2); 

31) { }8 7 5 4 3 1, , , , , ,Z Z Z Z Z Z D


 
(see diagram 31 of the Figure 2); 

32) { } { }6 5 4 3 2 1 8 7 6 3 2 1, , , , , , ,  , , , , , ,Z Z Z Z Z Z D Z Z Z Z Z Z D
 

 
(see diagram 32 of the Figure 2); 

33) { } { } { }7 5 4 3 2 1 8 5 4 3 2 1 8 7 4 3 2 1, , , , , , ,  , , , , , , ,  , , , , , , ,Z Z Z Z Z Z D Z Z Z Z Z Z D Z Z Z Z Z Z D
  

 

{ }8 7 5 3 2 1, , , , , ,Z Z Z Z Z Z D


 
(see diagram 33 of the Figure 2); 

34) { } { } { }7 6 5 4 3 1 8 6 5 4 3 1 8 7 6 4 3 1, , , , , , ,  , , , , , , ,  , , , , , , ,Z Z Z Z Z Z D Z Z Z Z Z Z D Z Z Z Z Z Z D
  

 

{ }8 7 6 5 3 1, , , , , ,Z Z Z Z Z Z D


 
(see diagram 34 of the Figure 2); 

35) { } { } { }9 6 4 3 2 1 9 6 5 3 2 1 9 7 6 3 2 1, , , , , , ,  , , , , , , ,  , , , , , , ,Z Z Z Z Z Z D Z Z Z Z Z Z D Z Z Z Z Z Z D
  

 

{ } { }9 8 6 3 2 1 9 8 6 3 2 1, , , , , , ,  , , , , , ,Z Z Z Z Z Z D Z Z Z Z Z Z D
 

 
(see diagram 35 of the Figure 2); 

36) { } { } { }9 6 5 4 3 1 9 8 7 6 3 1 9 8 7 6 3 1, , , , , , ,  , , , , , , ,  , , , , , ,Z Z Z Z Z Z D Z Z Z Z Z Z D Z Z Z Z Z Z D
  

 
(see diagram 36 of the Figure 2); 

37) { } { } { }9 7 4 3 2 1 9 7 5 3 2 1 9 8 4 3 2 1, , , , , , ,  , , , , , , ,  , , , , , , ,Z Z Z Z Z Z D Z Z Z Z Z Z D Z Z Z Z Z Z D
  

 

{ }9 8 5 3 2 1, , , , , ,Z Z Z Z Z Z D


 
(see diagram 37 of the Figure 2); 

38) { } { } { }9 7 5 4 3 1 9 8 5 4 3 1 9 8 7 4 3 1, , , , , , ,  , , , , , , ,  , , , , , ,Z Z Z Z Z Z D Z Z Z Z Z Z D Z Z Z Z Z Z D
  

 
(see diagram 38 of the Figure 2); 

39) { }9 7 6 5 3 1, , , , , ,Z Z Z Z Z Z D


 
(see diagram 39 of the Figure 2); 

40) { } { } { }9 7 5 4 2 1 9 8 5 4 2 1 9 8 7 4 3 2, , , , , , ,  , , , , , , ,  , , , , , , ,Z Z Z Z Z Z D Z Z Z Z Z Z D Z Z Z Z Z Z D
  

 

{ } { }9 8 7 5 3 2 9 5 4 3 2 1, , , , , , ,  , , , , , ,Z Z Z Z Z Z D Z Z Z Z Z Z D
 

 
(see diagram 40 of the Figure 2); 

41) { } { }9 6 5 4 2 1 9 8 7 6 3 2, , , , , , ,  , , , , , ,Z Z Z Z Z Z D Z Z Z Z Z Z D
 

 
(see diagram 41 of the Figure 2); 
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42) { }7 6 5 4 3 2 1, , , , , , ,Z Z Z Z Z Z Z D


 
(see diagram 42 of the Figure 2); 

43) { } { } { }8 6 5 4 3 2 1 8 7 6 4 3 2 1 8 7 6 5 3 2 1, , , , , , , ,  , , , , , , , ,  , , , , , , ,Z Z Z Z Z Z Z D Z Z Z Z Z Z Z D Z Z Z Z Z Z Z D
  

 
(see diagram 43 of the Figure 2); 

44) { }8 7 5 4 3 2 1, , , , , , ,Z Z Z Z Z Z Z D


 
(see diagram 44 of the Figure 2); 

45) { }9 8 7 5 4 3 1, , , , , , ,Z Z Z Z Z Z Z D


 
(see diagram 45 of the Figure 2); 

46) { } { }9 6 5 4 3 2 1 9 8 7 6 3 2 1, , , , , , , ,  , , , , , , ,Z Z Z Z Z Z Z D Z Z Z Z Z Z Z D
 

 
(see diagram 46 of the Figure 2); 

47) { } { } { }9 7 5 4 3 2 1 9 8 7 5 3 2 1 9 7 5 4 3 2 1, , , , , , , ,  , , , , , , , ,  , , , , , , , ,Z Z Z Z Z Z Z D Z Z Z Z Z Z Z D Z Z Z Z Z Z Z D
  

 

{ }9 8 7 4 3 2 1, , , , , , ,Z Z Z Z Z Z Z D


 
(see diagram 47 of the Figure 2); 

48) { } { } { }9 7 6 5 4 3 1 9 8 6 5 4 3 1 9 8 7 6 4 3 1, , , , , , , ,  , , , , , , , ,  , , , , , , , ,Z Z Z Z Z Z Z D Z Z Z Z Z Z Z D Z Z Z Z Z Z Z D
  

 

{ }9 8 7 6 5 3 1, , , , , , ,Z Z Z Z Z Z Z D


 
(see diagram 48 of the Figure 2); 

 

 
Figure 2. Diagram of all subsemilattices of D. 
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49) { }8 7 6 5 4 3 2 1, , , , , , , ,Z Z Z Z Z Z Z Z D


  
(see diagram 49 of the Figure 2); 

50) { } { } { }9 7 6 5 4 3 2 1 9 8 6 5 4 3 2 1 9 8 7 6 4 3 2 1, , , , , , , , ,  , , , , , , , , ,  , , , , , , , , ,Z Z Z Z Z Z Z Z D Z Z Z Z Z Z Z Z D Z Z Z Z Z Z Z Z D
  

 

{ }9 8 7 6 5 3 2 1, , , , , , , ,Z Z Z Z Z Z Z Z D


 
(see diagram 50 of the Figure 2); 

51) { }9 8 7 5 4 3 2 1, , , , , , , ,Z Z Z Z Z Z Z Z D


 
(see diagram 51 of the Figure 2); 

52) { }9 8 7 6 5 4 3 1, , , , , , , ,Z Z Z Z Z Z Z Z D


  
(see diagram 52 of the Figure 2); 

Diagrams of subsemilattices of the semilattice D. 
Lemma 3. Let ( )1 ,10D X∈Σ . Then the following sets are all XI-subsemi-lattices of the given semilattice D: 

1) { } { } { } { } { } { } { } { } { } { }9 8 7 6 5 4 3 2 1,  ,  ,  ,  ,  ,  ,  ,  ,  Z Z Z Z Z Z Z Z Z D


 
(see diagram 1 of the Figure 2); 

2) { } { } { } { } { } { } { } { } { } { }9 9 8 9 7 9 6 9 5 9 4 9 3 9 2 9 1 8 3, ,  , ,  , ,  , ,  , ,  , ,  , ,  , ,  , ,  , ,Z D Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z


 

{ } { } { } { } { } { } { } { } { } { }8 7 3 7 6 3 6 2 6 1 6 5 1 5 4 1, ,  , ,  , ,  , ,  , ,  , ,  , ,  , ,  , ,  , ,Z D Z Z Z D Z Z Z Z Z Z Z D Z Z Z D Z Z
   

 

{ } { } { } { }4 3 2 1, ,  , ,  , ,  ,Z D Z D Z D Z D
   

 
(see diagram 2 of the Figure 2); 

3) { } { } { } { } { } { } { } { }9 8 9 7 9 6 9 5 9 4 9 3 9 2 9 1, , ,  , , ,  , , ,  , , ,  , , ,  , , ,  , , ,  , , ,Z Z D Z Z D Z Z D Z Z D Z Z D Z Z D Z Z D Z Z D
       

 

{ } { } { } { } { } { } { }9 8 3 9 7 3 9 6 3 9 6 2 9 6 1 9 5 1 9 4 1, , ,  , , ,  , , ,  , , ,  , , ,  , , ,  , , ,Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z  

{ } { } { } { } { } { } { }8 3 7 3 6 3 6 2 6 1 5 1 4 1, , ,  , , ,  , , ,  , , ,  , , ,  , , ,  , ,Z Z D Z Z D Z Z D Z Z D Z Z D Z Z D Z Z D
      

 
(see diagram 3 of the Figure 2); 

4) { } { } { } { } { }9 4 1 9 5 1 9 6 1 9 6 2 9 6 3, , , ,  , , , ,  , , , ,  , , , ,  , , , ,Z Z Z D Z Z Z D Z Z Z D Z Z Z D Z Z Z D
    

 

{ } { }9 7 3 9 8 3, , , ,  , , ,Z Z Z D Z Z Z D
 

 
(see diagram 4 of the Figure 2); 

5) { } { } { } { } { }9 5 4 1 9 6 4 1 9 6 5 1 9 7 6 3 9 8 6 3, , , ,  , , , ,  , , , ,  , , , ,  , , , ,Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z  

{ } { } { } { } { }9 8 7 3 9 8 4 9 8 5 9 7 2 9 7 4, , , ,  , , , ,  , , , ,  , , , ,  , , , ,Z Z Z Z Z Z Z D Z Z Z D Z Z Z D Z Z Z D
   

 

{ } { } { } { } { }9 7 5 9 8 1 9 8 2 9 4 2 9 4 3, , , ,  , , , ,  , , , ,  , , , ,  , , , ,Z Z Z D Z Z Z D Z Z Z D Z Z Z D Z Z Z D
    

 

{ } { } { } { } { }9 5 2 9 5 3 9 7 1 9 2 1 9 3 1, , , ,  , , , ,  , , , ,  , , , ,  , , , ,Z Z Z D Z Z Z D Z Z Z D Z Z Z D Z Z Z D
    

 

{ } { } { } { }9 3 2 6 2 1 6 3 1 6 3 2, , , ,  , , , ,  , , , ,  , , ,Z Z Z D Z Z Z D Z Z Z D Z Z Z D
   

 
(see diagram 5 of the Figure 2); 

6) { } { } { } { }9 5 4 1 9 6 4 1 9 6 5 1 9 7 6 3, , , , ,  , , , , ,  , , , , ,  , , , , ,Z Z Z Z D Z Z Z Z D Z Z Z Z D Z Z Z Z D
   

 

{ } { }9 8 6 3 9 8 7 3, , , , ,  , , , ,Z Z Z Z D Z Z Z Z D
 

 
(see diagram 6 of the Figure 2); 

7) { } { } { }9 6 2 1 9 6 3 1 9 6 3 2, , , , ,  , , , , ,  , , , ,Z Z Z Z D Z Z Z Z D Z Z Z Z D
  

 
(see diagram 7 of the Figure 2); 
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8) { } { } { } { }9 8 6 3 2 9 8 6 3 1 9 7 6 3 2 9 7 6 3 1, , , , , ,  , , , , , ,  , , , , , ,  , , , , , ,Z Z Z Z Z D Z Z Z Z Z D Z Z Z Z Z D Z Z Z Z Z D
   

 

{ } { } { } { }9 6 5 3 1 9 6 5 2 1 9 6 4 3 1 9 6 4 2 1, , , , , ,  , , , , , ,  , , , , , ,  , , , , ,Z Z Z Z Z D Z Z Z Z Z D Z Z Z Z Z D Z Z Z Z Z D
   

 
(see diagram 8 of the Figure 2); 

Proof. It is well know (see [1]), that the semilattices 1 to 8, which are given by lemma 2 are always XI-semi- 
lattices. The semilattices 9 and 10 which are given by Lemma 2 

{ } { } { } { } { }
{ } { } { } { } { }
{ } { } { } { } { }

{ } { } { } { } { }

8 7 3 8 6 3 8 6 8 5 8 4

8 2 8 1 7 6 3 7 5 7 4

7 2 7 1 6 5 1 6 4 1 5 4 1

5 3 5 2 4 3 4 2 3 2

3

, , ,  , , ,  , , ,  , , ,  , , ,

, , ,  , , ,  , , ,  , , ,  , , ,

, , ,  , , ,  , , ,  , , ,  , , ,

, , ,  , , ,  , , ,  , , ,  , , ,

,

Z Z Z Z Z Z Z Z D Z Z D Z Z D

Z Z D Z Z D Z Z Z Z Z D Z Z D

Z Z D Z Z D Z Z Z Z Z Z Z Z Z

Z Z D Z Z D Z Z D Z Z D Z Z D

Z Z

  

   

 

    

{ } { }1 2 1, ,  , , .D Z Z D
 

 

(see diagram 9 of the Figure 2); 

{ } { } { } { } { } { }8 6 3 8 7 3 7 6 3 5 4 1 6 4 1 6 5 1, , , ,  , , , ,  , , , ,  , , , ,  , , , ,  , , ,Z Z Z D Z Z Z D Z Z Z D Z Z Z D Z Z Z D Z Z Z D
     

 

(see diagram 10 of the Figure 2); 
are XI-semilattices iff the intersection of minimal elements of the given semilattices is empty set. From the for-
mal equalities (1) of the given semilattice D we have 

( ) ( )8 7 0 1 2 4 5 6 7 9 0 1 2 4 5 6 8 9Z Z P P P P P P P P P P P P P P P P∩ = ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ≠ ∅  

( ) ( )8 6 0 1 2 4 5 6 7 9 0 4 5 7 8 9Z Z P P P P P P P P P P P P P P∩ = ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ≠ ∅  

( ) ( )8 5 0 1 2 4 5 6 7 9 0 2 3 4 6 7 8 9Z Z P P P P P P P P P P P P P P P P∩ = ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ≠ ∅  

( ) ( )8 4 0 1 2 4 5 6 7 9 0 2 3 5 6 7 8 9Z Z P P P P P P P P P P P P P P P P∩ = ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ≠ ∅  

( ) ( )8 2 0 1 2 4 5 6 7 9 0 1 3 4 5 6 7 8 9Z Z P P P P P P P P P P P P P P P P P∩ = ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ≠ ∅  

( ) ( )8 1 0 1 2 4 5 6 7 9 0 2 3 4 5 6 7 8 9Z Z P P P P P P P P P P P P P P P P P∩ = ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ≠ ∅  

( ) ( )7 6 0 1 2 4 5 6 8 9 0 4 5 7 8 9Z Z P P P P P P P P P P P P P P∩ = ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ≠ ∅  

( ) ( )7 5 0 1 2 4 5 6 8 9 0 2 3 4 6 7 8 9Z Z P P P P P P P P P P P P P P P P∩ = ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ≠ ∅  

( ) ( )7 4 0 1 2 4 5 6 8 9 0 2 3 5 6 7 8 9Z Z P P P P P P P P P P P P P P P P∩ = ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ≠ ∅  

( ) ( )7 2 0 1 2 4 5 6 8 9 0 1 3 4 5 6 7 8 9Z Z P P P P P P P P P P P P P P P P P∩ = ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ≠ ∅  

( ) ( )7 1 0 1 2 4 5 6 8 9 0 2 3 4 5 6 7 8 9Z Z P P P P P P P P P P P P P P P P P∩ = ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ≠ ∅  

( ) ( )6 5 0 4 5 7 8 9 0 2 3 4 6 7 8 9Z Z P P P P P P P P P P P P P P∩ = ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ≠ ∅  

( ) ( )6 4 0 4 5 7 8 9 0 2 3 5 6 7 8 9Z Z P P P P P P P P P P P P P P∩ = ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ≠ ∅  

( ) ( )5 4 0 2 3 4 6 7 8 9 0 2 3 5 6 7 8 9Z Z P P P P P P P P P P P P P P P P∩ = ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ≠ ∅  

( ) ( )5 3 0 2 3 4 6 7 8 9 0 1 2 4 5 6 7 8 9Z Z P P P P P P P P P P P P P P P P P∩ = ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ≠ ∅  

( ) ( )5 2 0 2 3 4 6 7 8 9 0 1 3 4 5 6 7 8 9Z Z P P P P P P P P P P P P P P P P P∩ = ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ≠ ∅  

( ) ( )4 3 0 2 3 5 6 7 8 9 0 1 2 4 5 6 7 8 9Z Z P P P P P P P P P P P P P P P P P∩ = ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ≠ ∅  
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( ) ( )4 2 0 2 3 5 6 7 8 9 0 1 3 4 5 6 7 8 9Z Z P P P P P P P P P P P P P P P P P∩ = ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ≠ ∅  

( ) ( )3 2 0 1 2 4 5 6 7 8 9 0 1 3 4 5 6 7 8 9Z Z P P P P P P P P P P P P P P P P P P∩ = ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ≠ ∅  

( ) ( )3 1 0 1 2 4 5 6 7 8 9 0 2 3 4 5 6 7 8 9Z Z P P P P P P P P P P P P P P P P P P∩ = ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ≠ ∅  

( ) ( )2 1 0 1 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 9Z Z P P P P P P P P P P P P P P P P P P∩ = ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ≠ ∅  

From the equalities given above it follows that the semilattices 9 and 10 are not XI-semilattices. 


 
The semilattices 11 

{ } { } { } { }
{ } { } { } { }

6 5 3 1 6 5 2 1 6 4 3 1 6 4 2 1

7 6 3 2 7 6 3 1 8 6 3 2 8 6 3 1

, , , , ,  , , , , ,  , , , , ,  , , , , ,

, , , , ,  , , , , ,  , , , , ,  , , , , .

Z Z Z Z D Z Z Z Z D Z Z Z Z D Z Z Z Z D

Z Z Z Z D Z Z Z Z D Z Z Z Z D Z Z Z Z D

   

   

 

(see diagram 1-8 of the Figure 3); 
are not XI-semilattice since we have the following inequalities 

5 3 5 2 4 3 4 2

7 2 7 1 8 2 8 1

,  ,  ,  ,
,  ,  ,  .

Z Z Z Z Z Z Z Z
Z Z Z Z Z Z Z Z

∩ ≠ ∅ ∩ ≠ ∅ ∩ ≠ ∅ ∩ ≠ ∅
∩ ≠ ∅ ∩ ≠ ∅ ∩ ≠ ∅ ∩ ≠ ∅

 

The semilattices 12 to 52 are never XI-semilattices. We prove that the semilattice, diagram 52 of the Figure 2, 
is not an XI-semilattice (see Figure 4). Indeed, let { }0 1 2 3 4 5 6 7 8, , , , , , , ,Q T T T T T T T T T=  and 

( ) { }0 1 2 3 4 5 6 7 8, , , , , , , ,C Q P P P P P P P P P′ ′ ′ ′ ′ ′ ′ ′ ′=  

be a family of sets, where 0 1 2 3 4 5 6 7 8,  ,  ,  ,  ,  ,  ,  ,  P P P P P P P P P′ ′ ′ ′ ′ ′ ′ ′ ′  are pairwise disjoint subsets of the set X. Let 

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

T T T T T T T T T
P P P P P P P P P

ϕ
 

=  ′ ′ ′ ′ ′ ′ ′ ′ ′ 
 

be a mapping of the semilattice Q onto the family of sets ( )C Q . Then for the formal equalities of the semilat-
tice Q we have a form: 
 

 
Figure 3. Diagram of all subsemilattices which are 
isomorphic to 11 in Figure 2. 

 

 
Figure 4. Diagram of subsemilattice 52 in Figure 2. 
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0 0 1 2 3 4 5 6 7 8

1 0 2 3 4 5 6 7 8

2 0 1 3 4 5 6 7 8

3 0 2 4 5 6 7 8

4 0 2 3 5 6 7 8

5 0 3 4 6 7 8

6

,
,
,

,
,

,

T P P P P P P P P P
T P P P P P P P P
T P P P P P P P P
T P P P P P P P
T P P P P P P P
T P P P P P P
T

′ ′ ′ ′ ′ ′ ′ ′ ′= ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪
′ ′ ′ ′ ′ ′ ′ ′= ∪ ∪ ∪ ∪ ∪ ∪ ∪
′ ′ ′ ′ ′ ′ ′ ′= ∪ ∪ ∪ ∪ ∪ ∪ ∪
′ ′ ′ ′ ′ ′ ′= ∪ ∪ ∪ ∪ ∪ ∪
′ ′ ′ ′ ′ ′ ′= ∪ ∪ ∪ ∪ ∪ ∪
′ ′ ′ ′ ′ ′= ∪ ∪ ∪ ∪ ∪

0 1 3 4 5 7 8
'

7 0 1 3 4 5 6 8

8 0

,
,

.

P P P P P P P
T P P P P P P P
T P

′ ′ ′ ′ ′ ′ ′= ∪ ∪ ∪ ∪ ∪ ∪
′ ′ ′ ′ ′ ′= ∪ ∪ ∪ ∪ ∪ ∪
′=

                        (3) 

Here the elements 1 2 3 4 6 7, , , , ,P P P P P P′ ′ ′ ′ ′ ′  are basis sources, the elements 0P′ , 5P ′ , 8P ′  are sources of com-
pleteness of the semilattice D. Therefore 6X ≥  and 7δ =  (see [2]). Then of the formal equalities we have: 

{ }
{ }
{ }
{ }
{ }
{ }

0

7 6 2 0 1

4 3 1 0 2

7 6 5 4 2 1 0 3

7 6 5 3 2 1 0 4

7 6 4 3 2 1 0 5

7 5 4 3 2 1 0 6

6 5 4 3 2 1

, if  ,
, , , , if  ,
, , , , if  ,
, , , , , , , if  ,
, , , , , , , if  ,
, , , , , , , if  ,
, , , , , , , if  ,
, , , , ,

t

Q t P
T T T T t P
T T T T t P
T T T T T T T t P
T T T T T T T t PQ
T T T T T T T t P
T T T T T T T t P
T T T T T T

′∈
′∈
′∈
′∈
′∈=
′∈
′∈

{ }
{ }

0 7

8 7 6 5 4 3 2 1 0 8

, , if  ,
, , , , , , , , , if  .

T t P
T T T T T T T T T t P












 ′∈
 ′∈

 

( )

8 0

8 1

8 2

8 3

8 4

8 5

8 6

8 7

8 8

, if  ,
, if  ,
, if  ,
, if  ,

, , if  ,
, if  ,
, if  ,
, if  ,
, if  .

t

T t P
T t P
T t P
T t P

Q Q T t P
T t P
T t P
T t P
T t P

′∈
 ′∈
 ′∈
 ′∈ ′Λ = ∈
 ′∈

′∈
 ′∈
 ′∈

 

We have, that { }8Q T∧ =  and ( ), tQ Q QΛ ∈  for any t Q∈ . But elements T7, T6, T5, T4, T3, T2, T1, T0 are not 
union of some elements of the set Q∧ . Therefore from the Definition 1 it follows that Q is not an XI-semilattice 
of unions. Statements 12 to 51 can be proved analogously. 

We denoted the following semitattices by symbols: 
a) { }1Q T= , where T D∈  (see diagram 1 of the Figure 5); 

b) { }2 ,Q T T ′= , where ,  T T D′∈  and T T ′⊂  (see diagram 2 of the Figure 5); 

c) { }3 , ,Q T T T′ ′′= , where ,  ,  T T T D′ ′′∈  and T T T′ ′′⊂ ⊂  (see diagram 3 of the Figure 5); 

d) { }4 9 , , ,Q Z T T D′=


, where ,  T T D′∈  and 9Z T T D′⊂ ⊂ ⊂


 (see diagram 4 of the Figure 5); 

e) { }5 , , ,Q T T T T T′ ′′ ′ ′′= ∪  where ,  ,  T T T D′ ′′∈ , T T ′⊂ , T T ′′⊂ , \T T′ ′′ ≠ ∅ , \T T′′ ′ ≠ ∅ , (see dia- 
gram 5 of the Figure 5); 

f) { }6 9 , , , ,Q Z T T T T D′ ′= ∪


, where ,  T T D′∈ , 9Z T⊂ , 9Z T ′⊂ , \T T ′ ≠ ∅ , \T T′ ≠ ∅  (see diagram 
6 of the Figure 5); 

g) { }7 9 6, , , ,Q Z Z T T D′=


, where ,  T T D′∈ , 6Z T⊂ , 6Z T ′⊂ , \T T ′ ≠ ∅ , \T T′ ≠ ∅ , T T D′∪ =


 
(see diagram 7 of the Figure 5); 
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Figure 5. Diagram of all XI-subsemilattices of D. 

 
h) { }8 9 , , , , ,Q Z T T T T Z D′ ′= ∪



, where 9Z T Z′⊂ ⊂ , \T T ′ ≠ ∅ , \T T′ ≠ ∅ , ( ) \T T Z′∪ ≠ ∅ ,  
( )\Z T T ′∪ ≠ ∅  (see diagram 8 of the Figure 5); 

Note that the semilattices in Figure 5 are all XI-semilattices (see [1] and Lemma 1.2.3). 
Definition 9. Let us assume that by the symbol ( ),XI X D′Σ  denote a set of all XI-subsemilatices of X-semila- 

tices of unions D that every element of this set contains an empty set if D∅∈  or denotes a set of all XI-sub- 
semilatices of D. 

Further, let ( ),  ,XID D X D′ ′′ ′∈Σ  and ( ) ( ), ,XI XI XIX D X Dϑ ′ ′⊆ Σ ×Σ . It is assumed that XID Dϑ′ ′′  iff there 
exists some complete isomorphism ϕ  between the semilatices D′  and D′′ . One can easily verify that the 
binary relation XIϑ  is an equivalence relation on the set ( ),XI X D′Σ . 

By the symbol i XIQϑ  denote the XIϑ -equivalence class of the set ( ),XI X D′Σ , where every element is iso- 
morphic to the X-semilattice iQ ( )1,2, ,8i =  . 

Let D' be an XI-subsemilattice of the semilattice D. By ( )I D′  we denoted the set of all right units of the se-
migroup ( )XB D′ , and 

( ) ( )
i XI

i
D Q

I Q I D
ϑ

∗

′∈

′= ∑  

where 1,2, ,8i =  . 
Lemma 4. If X is a finite set, then the following equalities hold 

a) ( )1 1I Q =  

b) ( ) ( )\ \
2 2 1 2T T X TI Q ′ ′= − ⋅  

c) ( ) ( ) ( )\ \ \ \
3 2 1 3 2 3T T T T T T X TI Q ′ ′′ ′ ′′ ′ ′′= − ⋅ − ⋅  

d) ( ) ( ) ( ) ( )9 \ \ \\ \ \
4 2 1 3 2 4 3 4D T D T X DT Z T T T TI Q ′ ′′ ′= − ⋅ − ⋅ − ⋅

  

 

e) ( ) ( ) ( ) ( )\\ \
5 2 1 2 1 4 X T TT T T TI Q ′ ′′∪′ ′′ ′′ ′= − ⋅ − ⋅  

f) ( ) ( ) ( ) ( ) ( )( )\ \ \\ \
6 2 1 2 1 5 4 5D T T D T T X DT T T TI Q ′′ ′′∪ ∪′ ′′ ′′ ′= − ⋅ − ⋅ − ⋅

  

 

g) ( ) ( ) ( ) ( ) ( )6 9 \ \\ \ \ \ \6
7 2 1 2 3 2 3 2 5T T Z X DZ Z T T T T T T T TI Q ′∩ ′ ′ ′ ′= − ⋅ ⋅ − ⋅ − ⋅



 

h) ( ) ( ) ( ) ( ) ( )( ) \\ \\ \
8 2 1 2 1 3 2 6 X DZ T T Z T TT Z T TI Q ′ ′∪ ∪′= − ⋅ − ⋅ − ⋅



 

Proof. This lemma immediately follows from Theorem 13.1.2, 13.3.2, and 13.7.2 of the [1]. 


 
Theorem 10. Let ( )1 ,10D X∈Σ  and ( )XB Dα ∈ . Binary relation α  is an idempotent relation of the 

semmigroup ( )XB D  iff binary relation α  satisfies only one conditions of the following conditions: 
a) X Tα = × , where T D∈ ; 
b) ( ) ( )T TY T Y Tα αα ′ ′= × ∪ × , where ,  T T D′∈ , T T ′⊂ , { },  T TY Yα α

′ ∉ ∅ , and satisfies the conditions: TYα ⊇  
T, TY Tα

′ ′∩ ≠ ∅ ; 
c) ( ) ( ) ( )T T TY T Y T Y Tα α αα ′ ′′′ ′′= × ∪ × ∪ × , where ,  ,  T T T D′ ′′∈ , T T T′ ′′⊂ ⊂ , { },  ,  T T TY Y Yα α α

′ ′′ ∉ ∅ , and sa-  

tisfies the conditions: TY Tα ⊇ , T TY Y Tα α
′ ′∪ ⊇ , TY Tα

′ ′∩ ≠ ∅ , TY Tα
′′ ′′∩ ≠ ∅ ; 
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d) ( ) ( ) ( ) ( )9 9 0T TY Z Y T Y T Y Dα α α αα ′ ′= × ∪ × ∪ × ∪ ×


, where ,  T T D′∈ , 9Z T T D′⊂ ⊂ ⊂


, 9Yα , TYα , TYα
′ ,  

{ }0Yα ∉ ∅ , and satisfies the conditions: 9 9Y Zα ⊇ , 9 TY Y Tα α∪ ⊇ , 9 T TY Y Y Tα α α
′ ′∪ ∪ ⊇ , TY Tα ∩ ≠ ∅ ,  

TY Tα
′ ′∩ ≠ ∅ , 0Y Dα ∩ ≠ ∅



; 
e) ( ) ( ) ( ) ( )( )T T T T TY T Y T Y T Y T Tα α α αα ′ ′′ ′ ′′∪′ ′′ ′ ′′= × ∪ × ∪ × ∪ × ∪ , where ,  T T ′ , T D′′∈ , T T ′⊂ , T T ′′⊂ ,  

\T T′ ′′ ≠ ∅ , \T T′′ ′ ≠ ∅ , { },  ,  T T TY Y Yα α α
′ ′′ ∉ ∅  and satisfies the conditions: T TY Y Tα α

′ ′∪ ⊇ , T TY Y Tα α
′′ ′′∪ ⊇ , 

TY Tα
′ ′∩ ≠ ∅ , TY Tα

′′ ′′∩ ≠ ∅ ; 
f) ( ) ( ) ( ) ( )( ) ( )9 9 0T T T TY Z Y T Y T Y T T Y Dα α α α αα ′ ′∪′ ′= × ∪ × ∪ × ∪ × ∪ ∪ ×



, where 9Z T⊂ , 9Z T ′⊂ ,  

\T T ′ ≠ ∅ , \T T′ ≠ ∅ , { }0,  ,  T TY Y Yα α α
′ ∉ ∅  and satisfies the conditions: 9 TY Y Tα α∪ ⊇ , 9 TY Y Tα α

′ ′∪ ⊇ , 
TY Tα ∩ ≠ ∅ , TY Tα

′ ′∩ ≠ ∅ , 0Y Dα ∩ ≠ ∅


; 
g) ( ) ( ) ( ) ( ) ( )9 9 6 6 0T TY Z Y Z Y T Y T Y Dα α α α αα ′ ′= × ∪ × ∪ × ∪ × ∪ ×



, where ,  T T D′∈ , 6Z T⊂ , 6Z T ′⊂ ,  

\T T ′ ≠ ∅ , \T T′ ≠ ∅ , T T D′∪ =


, { }6 ,  ,  T TY Y Yα α α
′ ∉ ∅  and satisfies the conditions: 9 9Y Zα ⊇ ,  

9 6 6Y Y Zα α∪ ⊇ , 9 6 TY Y Y Tα α α∪ ∪ ⊇ , 9 6 TY Y Y Tα α α
′ ′∪ ∪ ⊇ , 6 6Y Zα ∩ ≠ ∅ , TY Tα ∩ ≠ ∅ , TY Tα

′ ′∩ ≠ ∅ ; 
h) ( ) ( ) ( ) ( )( ) ( ) ( )9 9 0T T T T ZY Z Y T Y T Y T T Y Z Y Dα α α α α αα ′ ′∪′ ′= × ∪ × ∪ × ∪ × ∪ ∪ × ∪ ×



, where 9Z T Z′⊂ ⊂ ,  

\T T ′ ≠ ∅ , \T T′ ≠ ∅ , ( ) \T T Z′∪ ≠ ∅ , ( )\Z T T ′∪ ≠ ∅ , { },  ,  T T ZY Y Yα α α
′ ∉ ∅  and satisfies the condi- 

tions: 9 TY Y Tα α∪ ⊇ , 9 TY Y Tα α
′ ′∪ ⊇  9 T ZY Y Y Zα α α

′∪ ∪ ⊇ , TY Tα ∩ ≠ ∅ , TY Tα
′ ′∩ ≠ ∅ , ZY Zα ∩ ≠ ∅ . 

Proof. By Lemma 3 we know that 1 to 8 are an XI-semilattices. We prove only statement g. Indeed, if 

( ) ( ) ( ) ( ) ( )9 9 6 6 0T TY Z Y Z Y T Y T Y Dα α α α αα ′ ′= × ∪ × ∪ × ∪ × ∪ ×


, 

where { }6 ,  ,  T TY Y Yα α α
′ ∉ ∅ , then it is easy to see, that the set ( ) { }9 6 1, , ,D Z Z T Tα ′=  is a generating set of the 

semilattice { }9 6, , , ,Z Z T T D′


. Then the following equalities hold 
( ) { } ( ) { }
( ) { } ( ) { }

9 69 9 6

9 6 9 6

,   , ,

, , ,   , , .
Z Z

T T

D Z D Z Z

D Z Z T D Z Z T

α α

α α ′

= =

′= =

 

 

 

By statement a of the Theorem 6.2.1 (see [1]) we have: 

9 9 9 6 6 9 6 9 6,  ,  ,  T TY Z Y Y Z Y Y Y T Y Y Y Tα α α α α α α α α
′ ′⊇ ∪ ⊇ ∪ ∪ ⊇ ∪ ∪ ⊇ . 

Further, one can see, that the equalities are true: 

( )( ) ( ) { }( ) ( )( )
( )( ) ( ) { }( ) ( )( )
( )( ) ( ) { }( ) ( )( )

6 6 66 6 9 6 6 6 9

6 6

6 6

, \ ,   \ , \ ,

, \ ,   \ , \ ,

, \ ,   \ , \ ,

Z Z Z

T T T

T T T

l D Z D Z Z Z l D Z Z Z

l D T D T Z T l D T T Z

l D T D T Z T l D T T Z

α α α

α α α

α α α′ ′ ′

= ∪ = = ≠ ∅

= ∪ = = ≠ ∅

′ ′ ′ ′ ′= ∪ = = ≠ ∅

  

  

  

 

We have the elements Z6, T, T' are nonlimiting elements of the sets ( )
6ZD α , ( )TD α , ( )TD α ′

  respectively.  

By statement b of the Theorem 6.2.1 [1] it follows, that the conditions 6 6Y Zα ∩ ≠ ∅ , TY Tα ∩ ≠ ∅ , TY Tα
′ ′∩ ≠  

∅  hold. Therefore, the statement g is proved. Rest of statements can be proved analogously. 
Lemma 5. Let ( )1 ,10D X∈Σ  and 9Z ≠ ∅ . If X is a finite set, then the number ( )1I Q∗  may be calcu-

lated by the formula ( )1 10I Q∗ = . 
Lemma 6. Let ( )1 ,10D X∈Σ  and 9Z ≠ ∅ . If X is a finite set, then the number ( )2I Q∗  may be calcu-

lated by formula 

( ) 8 9 7 9 6 9 5 98 7 6 5

4 9 3 9 3 8 3 7 3 6 34

2 9 2 6

\ \ \ \\ \ \ \
2

\ \ \ \ \ \\

\ \

2 1 2 2 1 2 2 1 2 2 1 2

                2 1 2 2 2 2 2 4 2

                2 2 2

Z Z Z Z Z Z Z ZX Z X Z X Z X Z

Z Z Z Z Z Z Z Z Z Z X ZX Z

Z Z Z Z

I Q∗        = − ⋅ + − ⋅ + − ⋅ + − ⋅       
       
   + − ⋅ + + + + − ⋅   
   
+ + −

1 9 1 6 1 5 1 42 1

9 8 7 6 5 4 3 2 1

\ \ \ \\ \

\ \ \ \ \ \ \ \ \ \

2 2 2 2 2 4 2

                2 2 2 2 2 2 2 2 2 9 2 .

Z Z Z Z Z Z Z ZX Z X Z

D Z D Z D Z D Z D Z D Z D Z D Z D Z X D

  ⋅ + + + + − ⋅   
   
 

+ + + + + + + + + − ⋅ 
 

        


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Lemma 7. Let ( )1 ,10D X∈Σ  and 9Z ≠ ∅ . If X is a finite set, then the number ( )3I Q∗  may be calcu-
lated by formula 

( ) 8 8 7 78 9 7 9

6 6 5 56 9 5 9

\ \ \ \\ \\ \
3

\ \ \ \\ \\ \

2 1 3 2 3 2 1 3 2 3

                2 1 3 2 3 2 1 3 2 3

                

D Z D Z D Z D ZZ Z Z ZX D X D

D Z D Z D Z D ZZ Z Z ZX D X D

I Q∗       = − ⋅ − ⋅ + − ⋅ − ⋅            

      + − ⋅ − ⋅ + − ⋅ − ⋅            

   

 

   

 

4 4 3 34 9 3 9

2 2 1 12 9 1 9

8

\ \ \ \\ \\ \

\ \ \ \\ \\ \

2 1 3 2 3 2 1 3 2 3

                2 1 3 2 3 2 1 3 2 3

                2

D Z D Z D Z D ZZ Z Z ZX D X D

D Z D Z D Z D ZZ Z Z ZX D X D

Z

      + − ⋅ − ⋅ + − ⋅ − ⋅            

      + − ⋅ − ⋅ + − ⋅ − ⋅            

+

   

 

   

 

9 3 8 3 8 7 9 3 7 3 73 3

6 9 3 6 3 6 6 9 2 6 2 63 2

6 9

\ \ \ \ \ \\ \

\ \ \ \ \ \\ \

\

1 3 2 3 2 1 3 2 3

                2 1 3 2 3 2 1 3 2 3

                2

Z Z Z Z Z Z Z Z Z Z ZX Z X Z

Z Z Z Z Z Z Z Z Z Z Z ZX Z X Z

Z Z

       − ⋅ − ⋅ + − ⋅ − ⋅       
       

       + − ⋅ − ⋅ + − ⋅ − ⋅       
       

+ −
1 6 1 6 5 9 1 5 1 51 1

3 34 9 3 81 4 1 4 1

3 7

\ \ \ \ \\ \

\ \\ \\ \ \\

\

1 3 2 3 2 1 3 2 3

                2 1 3 2 3 2 1 3 2 3

                2 1

Z Z Z Z Z Z Z Z Z ZX Z X Z

D Z D ZZ Z Z ZZ Z Z Z X DX Z

Z Z

       ⋅ − ⋅ + − ⋅ − ⋅       
       

     + − ⋅ − ⋅ + − ⋅ − ⋅            

+ −


 



3 3 3 33 6

2 2 1 12 6 1 6

1 5

\ \ \ \\\ \

\ \ \ \\ \\ \

\

3 2 3 2 1 3 2 3

                2 1 3 2 3 2 1 3 2 3

                2 1

D Z D Z D Z D ZZ ZX D X D

D Z D Z D Z D ZZ Z Z ZX D X D

Z Z

     ⋅ − ⋅ + − ⋅ − ⋅          

      + − ⋅ − ⋅ + − ⋅ − ⋅            

 + − ⋅ 
 

   

 

   

 

1 1 1 11 4\ \ \ \\\ \3 2 3 2 1 3 2 3 .
D Z D Z D Z D ZZ ZX D X D    − ⋅ + − ⋅ − ⋅        

   

 

 

Lemma 8. Let ( )1 ,10D X∈Σ  and 9Z ≠ ∅ . If X is a finite set, then the number ( )4I Q∗  may be 
calculated by formula 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( )

3 38 9 3 8 3 8

3 37 9 3 7 3 7

3 36 9 3 6 3 6

6 9 2 6

\ \ \\ \ \
4

\ \ \\ \ \

\ \ \\ \ \

\ \

2 1 3 2 4 3 4

                 2 1 3 2 4 3 4

                 2 1 3 2 4 3 4

                 2 1 3

D Z D Z X DZ Z Z Z Z Z

D Z D Z X DZ Z Z Z Z Z

D Z D Z X DZ Z Z Z Z Z

Z Z Z Z

I Q∗ = − ⋅ − ⋅ − ⋅

+ − ⋅ − ⋅ − ⋅

+ − ⋅ − ⋅ − ⋅

+ − ⋅

  

  

  

( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )

2 22 6

1 16 9 1 6 1 6

1 15 9 1 5 1 5

14 9 1 4 1 4

\ \ \\

\ \ \\ \ \

\ \ \\ \ \

\ \\ \ \

2 4 3 4

                 2 1 3 2 4 3 4

                 2 1 3 2 4 3 4

                 2 1 3 2 4 3

D Z D Z X DZ Z

D Z D Z X DZ Z Z Z Z Z

D Z D Z X DZ Z Z Z Z Z

D Z D ZZ Z Z Z Z Z

− ⋅ − ⋅

+ − ⋅ − ⋅ − ⋅

+ − ⋅ − ⋅ − ⋅

+ − ⋅ − ⋅ −

  

  

  

 ( )1 \4 .X D⋅


 

Lemma 9. Let ( )1 ,10D X∈Σ  and 9Z ≠ ∅ . If X is a finite set, then the number ( )5I Q∗  may be 
calculated by formula 
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

5 4 4 5 6 4 4 61 1

6 5 5 6 7 6 6 7 31

8 6 6 8 3 8 7 7 8 3

\ \ \ \\ \
5

\ \ \ \ \\

\ \ \ \ \ \

2 1 2 1 4 2 1 2 1 4

                 2 1 2 1 4 2 1 2 1 4

                 2 1 2 1 4 2 1 2 1 4

                 

Z Z Z Z Z Z Z ZX Z X Z

Z Z Z Z Z Z Z Z X ZX Z

Z Z Z Z X Z Z Z Z Z X Z

I Q∗ = − ⋅ − ⋅ + − ⋅ − ⋅

+ − ⋅ − ⋅ + − ⋅ − ⋅

+ − ⋅ − ⋅ + − ⋅ − ⋅

+ ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

8 4 4 8 8 5 5 8

7 2 2 7 7 4 4 7

7 5 5 7 8 1 1 8

8

\ \\ \ \ \

\ \\ \ \ \

\ \\ \ \ \

\

2 1 2 1 4 2 1 2 1 4

                 2 1 2 1 4 2 1 2 1 4

                 2 1 2 1 4 2 1 2 1 4

                 2

X D X DZ Z Z Z Z Z Z Z

X D X DZ Z Z Z Z Z Z Z

X D X DZ Z Z Z Z Z Z Z

Z Z

− ⋅ − ⋅ + − ⋅ − ⋅

+ − ⋅ − ⋅ + − ⋅ − ⋅

+ − ⋅ − ⋅ + − ⋅ − ⋅

+

 

 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )

2 2 8 4 2 2 4

4 3 3 4 5 2 2 5

5 3 3 5 7 1 1 7

2 1

\ \\ \ \

\ \\ \ \ \

\ \\ \ \ \

\

1 2 1 4 2 1 2 1 4

                 2 1 2 1 4 2 1 2 1 4

                 2 1 2 1 4 2 1 2 1 4

                 2 2 1

X D X DZ Z Z Z Z Z

X D X DZ Z Z Z Z Z Z Z

X D X DZ Z Z Z Z Z Z Z

Z Z

− ⋅ − ⋅ + − ⋅ − ⋅

+ − ⋅ − ⋅ + − ⋅ − ⋅

+ − ⋅ − ⋅ + − ⋅ − ⋅

+ ⋅ −

 

 

 

( ) ( ) ( )
( ) ( )

3 1 1 31 2

3 2 2 3

\ \\ \\

\\ \

2 1 4 2 2 1 2 1 4

                 2 2 1 2 1 4 .

X D X DZ Z Z ZZ Z

X DZ Z Z Z

⋅ − ⋅ + ⋅ − ⋅ − ⋅

+ ⋅ − ⋅ − ⋅

 



 

Lemma 10. Let ( )1 ,10D X∈Σ  and 9Z ≠ ∅ . If X is a finite set, then the number ( )6I Q∗  may be calcu- 
lated by formula 

( )6 1 3 3 3 3 1 14I Q∗ = + + + + + =  

Lemma 11. Let ( )1 ,10D X∈Σ  and 9Z ≠ ∅ . If X is a finite set, then the number ( )7I Q∗  may be calcu- 
lated by formula 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 1 66 9 2 1 2 1 1 2 1 2

3 1 66 9 3 1 3 1 1 3 1 3

3 2 66 9 3 2 3 2 2 3 2 3

\\\ \ \ \ \
7

\\\ \ \ \ \

\\\ \ \ \ \

2 1 2 3 2 3 2 5

                2 1 2 3 2 3 2 5

                2 1 2 3 2 3 2 5 .

X DZ Z ZZ Z Z Z Z Z Z Z Z Z

X DZ Z ZZ Z Z Z Z Z Z Z Z Z

X DZ Z ZZ Z Z Z Z Z Z Z Z Z

I Q ∩∗

∩

∩

= − ⋅ ⋅ − ⋅ − ⋅

+ − ⋅ ⋅ − ⋅ − ⋅

+ − ⋅ ⋅ − ⋅ − ⋅







 

Lemma 12. Let ( )1 ,10D X∈Σ  and 9Z ≠ ∅ . If X is a finite set, then the number ( )8I Q∗  may be calcu- 
lated by formula 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )

8 2 6 8 2 3 2 3

8 1 6 8 1 3 1 3

7 2 6 7 2 3 2 3

7 1 6 7 1 3 1

\\ \ \ \
8

\\ \ \ \

\\ \ \ \

\ \ \ \

2 1 2 1 3 2 6

                 2 1 2 1 3 2 6

                 2 1 2 1 3 2 6

                 2 1 2 1 3 2

X DZ Z Z Z Z Z Z Z

X DZ Z Z Z Z Z Z Z

X DZ Z Z Z Z Z Z Z

Z Z Z Z Z Z Z Z

I Q∗ = − ⋅ − ⋅ − ⋅

+ − ⋅ − ⋅ − ⋅

+ − ⋅ − ⋅ − ⋅

+ − ⋅ − ⋅ −







( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( )

3

5 3 6 5 3 1 3 1

2 1 2 1

4 3 6 4 3 1 3 1

4 2

\

\\ \ \ \

\ \ \\ \5 2 6 5

\\ \ \ \

\

6

                 2 1 2 1 3 2 6

                 2 1 2 1 3 2 6

                 2 1 2 1 3 2 6

                 2 1 2

X D

X DZ Z Z Z Z Z Z Z

Z Z Z Z X DZ Z Z Z

X DZ Z Z Z Z Z Z Z

Z Z

⋅

+ − ⋅ − ⋅ − ⋅

+ − ⋅ − ⋅ − ⋅

+ − ⋅ − ⋅ − ⋅

+ − ⋅









( ) ( )6 4 2 1 2 1 \\ \ \1 3 2 6 .X DZ Z Z Z Z Z− ⋅ − ⋅


 

Figure 6 shows all XI-subsemilattices with six elements. 
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Figure 6. Diagram of all subsemilattices which are isomorphic. 

 
Theorem 11. Let ( )1 ,10D X∈Σ , 9Z ≠ ∅ . If X is a finite set and DI  is a set of all idempotent elements of 

the semigroup ( )XB D . Then ( )8
1D iiI I Q∗
=

= ∑ . 

Example 12. Let { }1,2,3,4,5,6,7,8X = , 

{ } { } { } { } { }
{ } { } { }

0 1 2 3 4

5 7 8 9 6

6 ,  1 ,  2 ,  3 ,  4 ,

5 ,  7 ,  8 ,  .

P P P P P

P P P P P

= = = = =

= = = = = ∅
 

Then { }1,2,3,4,5,6,7,8D =


, { }1 2,3, 4,5,6,7,8Z = , { }2 1,3, 4,5,6,7,8Z = , { }3 1, 2, 4,5,6,7,8Z = ,  

{ }4 2,3,5,6,7,8Z = , { }5 2,3, 4,6,7,8Z = , { }6 4,5,6,7,8Z = , { }7 1, 2, 4,5,6,8Z = , { }8 1, 2, 4,5,6,7Z =  and 

{ }9 6Z = . 

{ } { } { } { } { }{
{ } { } { } { } { }}
1,2,3,4,5,6,7,8 , 2,3,4,5,6,7,8 , 1,3,4,5,6,7,8 , 1,2,4,5,6,7,8 , 2,3,5,6,7,8 ,

        2,3, 4,6,7,8 , 4,5,6,7,8 , 1,2,4,5,6,8 , 1,2,4,5,6,7 , 6

D =
 

We have 9Z ≠ ∅ . Where ( )1 10I Q∗ = , ( )2 1169I Q∗ = , ( )3 2154I Q∗ = , ( )4 349I Q∗ = ,  

( )5 122I Q∗ = , ( )6 14I Q∗ = , ( )7 90I Q∗ = , ( )8 8I Q = , 3916DI = . 

3. Results 
Lemma 13. Let ( )1 ,10D X∈Σ  and 9Z = ∅ . Then the following sets exhaust all subsemilattices of the semi-
lattice { }9 8 7 6 5 4 3 2 1, , , , , , , , ,D Z Z Z Z Z Z Z Z Z D=



 which contains the empty set: 

1) { }∅   
(see diagram 1 of the Figure 2); 

2) { } { } { } { } { } { } { } { } { }8 7 6 5 4 3 2 1, ,  , ,  , ,  , ,  , ,  , ,  , ,  , ,  ,D Z Z Z Z Z Z Z Z∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅


 
(see diagram 2 of the Figure 2); 

3) { } { } { } { } { } { } { } { }8 7 6 5 4 3 2 1, , ,  , , ,  , , ,  , , ,  , , ,  , , ,  , , ,  , , ,Z D Z D Z D Z D Z D Z D Z D Z D∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
       

 

{ } { } { } { } { } { } { }8 3 7 3 6 3 6 2 6 1 5 1 4 1, , ,  , , ,  , , ,  , , ,  , , ,  , , ,  , ,Z Z Z Z Z Z Z Z Z Z Z Z Z Z∅ ∅ ∅ ∅ ∅ ∅ ∅  
(see diagram 3 of the Figure 2); 
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4) { } { } { } { } { }4 1 5 1 6 1 6 2 6 3, , , ,  , , , ,  , , , ,  , , , ,  , , , ,Z Z D Z Z D Z Z D Z Z D Z Z D∅ ∅ ∅ ∅ ∅
    

 

{ } { }7 3 8 3, , , ,  , , ,Z Z D Z Z D∅ ∅
 

 
(see diagram 4 of the Figure 2); 

5) { } { } { } { } { } { }5 4 1 6 4 1 6 5 1 7 6 3 8 6 3 8 7 3, , , ,  , , , ,  , , , ,  , , , ,  , , , ,  , , , ,Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z∅ ∅ ∅ ∅ ∅ ∅  

{ } { } { } { } { } { }8 4 8 5 7 2 7 4 7 5 8 1, , , ,  , , , ,  , , , ,  , , , ,  , , , ,  , , , ,Z Z D Z Z D Z Z D Z Z D Z Z D Z Z D∅ ∅ ∅ ∅ ∅ ∅
     

 

{ } { } { } { } { } { }8 2 4 2 4 3 5 2 5 3 7 1, , , ,  , , , ,  , , , ,  , , , ,  , , , ,  , , , ,Z Z D Z Z D Z Z D Z Z D Z Z D Z Z D∅ ∅ ∅ ∅ ∅ ∅
     

 

{ } { } { }2 1 3 1 3 2, , , ,  , , , ,  , , ,Z Z D Z Z D Z Z D∅ ∅ ∅
  

 
(see diagram 5 of the Figure 2); 

6) { } { } { } { }5 4 1 6 4 1 6 5 1 7 6 3, , , , ,  , , , , ,  , , , , ,  , , , , ,  Z Z Z D Z Z Z D Z Z Z D Z Z Z D∅ ∅ ∅ ∅
   

 

{ } { }8 6 3 8 7 3, , , , ,  , , , ,Z Z Z D Z Z Z D∅ ∅
 

 
(see diagram 6 of the Figure 2); 

7) { } { } { }6 2 1 6 3 1 6 3 2, , , , ,  , , , , ,  , , , ,Z Z Z D Z Z Z D Z Z Z D∅ ∅ ∅
  

 
(see diagram 7 of the Figure 2); 

8) { } { } { } { }8 6 3 2 8 6 3 1 7 6 3 2 7 6 3 1, , , , , ,  , , , , , ,  , , , , , ,  , , , , , ,Z Z Z Z D Z Z Z Z D Z Z Z Z D Z Z Z Z D∅ ∅ ∅ ∅
   

 

{ } { } { } { }6 5 3 1 6 5 2 1 6 4 3 1 6 4 2 1, , , , , ,  , , , , , ,  , , , , , ,  , , , , ,Z Z Z Z D Z Z Z Z D Z Z Z Z D Z Z Z Z D∅ ∅ ∅ ∅
   

 
(see diagram 8 of the Figure 2); 

Theorem 13. Let ( )1 ,10D X∈Σ , 9Z = ∅  and ( )XB Dα ∈ . Binary relation α  is an idempotent relation 
of the semmigroup ( )XB D  iff binary relation α  satisfies only one conditions of the following conditions: 

a) α = ∅ ; 
b) ( ) ( )9 TY Y Tα αα = ×∅ ∪ × , where T D∈ , T∅ ≠ , TYα ≠ ∅ , and satisfies the conditions: TY Tα ∩ ≠ ∅ ; 

c) ( ) ( ) ( )9 T TY Y T Y Tα α αα ′ ′= ×∅ ∪ × ∪ × , where ,  T T D′∈ , T T ′∅ ≠ ⊂ , { },  T TY Yα α
′ ∉ ∅ , and satisfies the  

conditions: 9 TY Y Tα α∪ ⊇ , TY Tα ∩ ≠ ∅ , TY Tα
′ ′∩ ≠ ∅ ; 

d) ( ) ( ) ( ) ( )9 0T TY Y T Y T Y Dα α α αα ′ ′= ×∅ ∪ × ∪ × ∪ ×


, where ,  T T D′∈ , T T D′∅ ≠ ⊂ ⊂


, TYα , TYα
′ , 0Yα ∉   

{ }∅ , and satisfies the conditions: 9 TY Y Tα α∪ ⊇ , 9 T TY Y Y Tα α α
′ ′∪ ∪ ⊇ , TY Tα ∩ ≠ ∅ , TY Tα

′ ′∩ ≠ ∅ ,  
0Y Dα ∩ ≠ ∅



; 
e) ( ) ( ) ( ) ( )( )9 T T T TY Y T Y T Y T Tα α α αα ′ ′∪′ ′= ×∅ ∪ × ∪ × ∪ × ∪ , where ,  T T D′∈ , \T T ′ ≠ ∅ , \T T′ ≠ ∅ , TYα ,  

{ }TYα
′ ∉ ∅  and satisfies the conditions: 9 TY Y Tα α∪ ⊇ , 9 TY Y Tα α

′ ′∪ ⊇ , TY Tα ∩ ≠ ∅ , TY Tα
′ ′∩ ≠ ∅ ; 

f) ( ) ( ) ( ) ( )( ) ( )9 0T T T TY Y T Y T Y T T Y Dα α α α αα ′ ′∪′ ′= ×∅ ∪ × ∪ × ∪ × ∪ ∪ ×


, where \T T ′ ≠ ∅ , \T T′ ≠ ∅ , TYα ,  

TYα
′ , { }0Yα ∉ ∅  and satisfies the conditions: 9 TY Y Tα α∪ ⊇ , 9 TY Y Tα α

′ ′∪ ⊇ , TY Tα ∩ ≠ ∅ , TY Tα
′ ′∩ ≠ ∅ , 

0Y Dα ∩ ≠ ∅


. 
g) ( ) ( ) ( ) ( ) ( )9 6 6 0T TY Y Z Y T Y T Y Dα α α α αα ′ ′= ×∅ ∪ × ∪ × ∪ × ∪ ×



, where ,  T T D′∈ , 6Z T⊂ , 6Z T ′⊂ ,  

\T T ′ ≠ ∅ , \T T′ ≠ ∅ , T T D′∪ =


, { }6 ,  ,  T TY Y Yα α α
′ ∉ ∅  and satisfies the conditions: 9 6 6Y Y Zα α∪ ⊇ ,  

9 6 TY Y Y Tα α α∪ ∪ ⊇ , 9 6 TY Y Y Tα α α
′ ′∪ ∪ ⊇ , 6 6Y Zα ∩ ≠ ∅ , TY Tα ∩ ≠ ∅ , TY Tα

′ ′∩ ≠ ∅ ; 
h) ( ) ( ) ( ) ( )( ) ( ) ( )9 0T T T T ZY Y T Y T Y T T Y Z Y Dα α α α α αα ′ ′∪′ ′= ×∅ ∪ × ∪ × ∪ × ∪ ∪ × ∪ ×



, where T Z′ ⊂ ,  

\T T ′ ≠ ∅ , \T T′ ≠ ∅ , ( ) \T T Z′∪ ≠ ∅ , ( )\Z T T ′∪ ≠ ∅ , { },  ,  T T ZY Y Yα α α
′ ∉ ∅  and satisfies the conditions: 

9 TY Y Tα α∪ ⊇ , 9 TY Y Tα α
′ ′∪ ⊇ , 9 T ZY Y Y Zα α α

′∪ ∪ ⊇ , TY Tα ∩ ≠ ∅ , TY Tα
′ ′∩ ≠ ∅ , ZY Zα ∩ ≠ ∅ ; 

Lemma 14. Let ( )1 ,10D X∈Σ  and 9Z = ∅ . If X is a finite set, then ( )1 1I Q∗ = . 

Lemma 15. Let ( )1 ,10D X∈Σ  and 9Z = ∅ . If X is a finite set, then the number ( )2I Q∗  may be calcu- 
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lated by formula 

( ) 8 7 68 7 6

5 345 34

2 12 1

\ \ \ \
2

\ \\

\ \

2 1 2 2 1 2 2 1 2 2 1 2

2 1 2 2 1 2 2 1 2

2 1 2 2 1 2 .

D Z Z ZX D X Z X Z X Z

Z ZZX Z X ZX Z

Z ZX Z X Z

I Q∗        = − ⋅ + − ⋅ + − ⋅ + − ⋅             
    + − ⋅ + − ⋅ + − ⋅    

    
   + − ⋅ + − ⋅   
   





 

Lemma 16. Let ( )1 ,10D X∈Σ  and 9Z = ∅ . If X is a finite set, then the number ( )3I Q∗  may be calcu- 
lated by formula 

( ) 8 8 7 78 7

6 6 5 56 5

4

\ \ \ \\ \
3

\ \ \ \\ \

2 1 3 2 3 2 1 3 2 3

                 2 1 3 2 3 2 1 3 2 3

                 2 1

D Z D Z D Z D ZZ ZX D X D

D Z D Z D Z D ZZ ZX D X D

Z

I Q∗       = − ⋅ − ⋅ + − ⋅ − ⋅            

      + − ⋅ − ⋅ + − ⋅ − ⋅            

 + −


   

 

   

 

4 4 3 33

2 2 1 12 1

8 3 8 3

\ \ \ \\ \

\ \ \ \\ \

\ \

3 2 3 2 1 3 2 3

                 2 1 3 2 3 2 1 3 2 3

                 2 1 3 2

D Z D Z D Z D ZZX D X D

D Z D Z D Z D ZZ ZX D X D

Z Z Z Z

    ⋅ − ⋅ + − ⋅ − ⋅          

      + − ⋅ − ⋅ + − ⋅ − ⋅            

 + − ⋅ − 
 

   

 

   

 

8 7 3 7 3 73 3

6 3 6 3 6 6 2 6 2 63 2

6 1 6 1 6 1

\ \\ \

\ \ \ \\ \

\ \ \

3 2 1 3 2 3

                 2 1 3 2 3 2 1 3 2 3

                 2 1 3 2 3

Z Z Z Z Z ZX Z X Z

Z Z Z Z Z Z Z Z Z ZX Z X Z

Z Z Z Z Z X Z

     ⋅ + − ⋅ − ⋅     
     

       + − ⋅ − ⋅ + − ⋅ − ⋅       
       

   + − ⋅ − ⋅   
   

5 1 5 1 5 1

4 1 4 1 4 1

\ \ \

\ \ \

2 1 3 2 3

                 2 1 3 2 3 .

Z Z Z Z Z X Z

Z Z Z Z Z X Z

   + − ⋅ − ⋅   
   

   + − ⋅ − ⋅   
   

 

Lemma 17. Let ( )1 ,10D X∈Σ  and 9Z = ∅ . If X is a finite set, then the number ( )4I Q∗  may be calcu- 
lated by formula 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )

1 14 1 4 1 4

1 15 1 5 1 5

1 16 1 6 1 6

6 2 6 2 6

\ \ \\ \
4

\ \ \\ \

\ \ \\ \

\\ \

2 1 3 2 4 3 4

                 2 1 3 2 4 3 4

                 2 1 3 2 4 3 4

                 2 1 3 2 4

D Z D Z X DZ Z Z Z Z

D Z D Z X DZ Z Z Z Z

D Z D Z X DZ Z Z Z Z

DZ Z Z Z Z

I Q∗ = − ⋅ − ⋅ − ⋅

+ − ⋅ − ⋅ − ⋅

+ − ⋅ − ⋅ − ⋅

+ − ⋅ − ⋅

  

  

  

( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2 2

3 36 3 6 3 6

3 37 3 7 3 7

3 38 3 8 3 8

\ \

\ \ \\ \

\ \ \\ \

\ \ \\ \

3 4

                 2 1 3 2 4 3 4

                 2 1 3 2 4 3 4

                 2 1 3 2 4 3 4 .

Z D Z X D

D Z D Z X DZ Z Z Z Z

D Z D Z X DZ Z Z Z Z

D Z D Z X DZ Z Z Z Z

− ⋅

+ − ⋅ − ⋅ − ⋅

+ − ⋅ − ⋅ − ⋅

+ − ⋅ − ⋅ − ⋅

 

  

  

  

 

Lemma 18. Let ( )1 ,10D X∈Σ  and 9Z = ∅ . If X is a finite set, then the number ( )5I Q∗  may be calcu- 
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lated by formula 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

5 4 4 5 6 4 4 61 1

6 5 5 6 7 6 6 7 31

8 6 6 8 3 8 7 7 8 3

\ \ \ \\ \
5

\ \ \ \ \\

\ \ \ \ \ \

2 1 2 1 4 2 1 2 1 4

                 2 1 2 1 4 2 1 2 1 4

                 2 1 2 1 4 2 1 2 1 4

                 

Z Z Z Z Z Z Z ZX Z X Z

Z Z Z Z Z Z Z Z X ZX Z

Z Z Z Z X Z Z Z Z Z X Z

I Q∗ = − ⋅ − ⋅ + − ⋅ − ⋅

+ − ⋅ − ⋅ + − ⋅ − ⋅

+ − ⋅ − ⋅ + − ⋅ − ⋅

+ ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

8 4 4 8 8 5 5 8

7 2 2 7 7 4 4 7

7 5 5 7 8 1 1 8

8

\ \\ \ \ \

\ \\ \ \ \

\ \\ \ \ \

\

2 1 2 1 4 2 1 2 1 4

                 2 1 2 1 4 2 1 2 1 4

                 2 1 2 1 4 2 1 2 1 4

                 2

X D X DZ Z Z Z Z Z Z Z

X D X DZ Z Z Z Z Z Z Z

X D X DZ Z Z Z Z Z Z Z

Z Z

− ⋅ − ⋅ + − ⋅ − ⋅

+ − ⋅ − ⋅ + − ⋅ − ⋅

+ − ⋅ − ⋅ + − ⋅ − ⋅

+

 

 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )

2 2 8 4 2 2 4

4 3 3 4 5 2 2 5

5 3 3 5 7 1 1 7

2 1

\ \\ \ \

\ \\ \ \ \

\ \\ \ \ \

\

1 2 1 4 2 1 2 1 4

                 2 1 2 1 4 2 1 2 1 4

                 2 1 2 1 4 2 1 2 1 4

                 2 1 2

X D X DZ Z Z Z Z Z

X D X DZ Z Z Z Z Z Z Z

X D X DZ Z Z Z Z Z Z Z

Z Z

− ⋅ − ⋅ + − ⋅ − ⋅

+ − ⋅ − ⋅ + − ⋅ − ⋅

+ − ⋅ − ⋅ + − ⋅ − ⋅

+ − ⋅

 

 

 

( ) ( ) ( )
( ) ( )

3 1 1 31 2

3 2 2 3

\ \\ \\

\\ \

1 4 2 1 2 1 4

                 2 1 2 1 4 .

X D X DZ Z Z ZZ Z

X DZ Z Z Z

− ⋅ + − ⋅ − ⋅

+ − ⋅ − ⋅

 



 

Lemma 19. Let ( )1 ,10D X∈Σ  and 9Z = ∅ . If X is a finite set, then the number ( )6I Q∗  may be calcu- 
lated by formula 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )

1 15 4 4 5

1 16 4 4 6

1 16 5 5 6

37 6 6 7

\ \ \\ \
6

\ \ \\ \

\ \ \\ \

\ \\ \

2 1 2 1 5 4 5

                 2 1 2 1 5 4 5

                 2 1 2 1 5 4 5

                 2 1 2 1 5 4

D Z D Z X DZ Z Z Z

D Z D Z X DZ Z Z Z

D Z D Z X DZ Z Z Z

D Z D ZZ Z Z Z

I Q∗ = − ⋅ − ⋅ − ⋅

+ − ⋅ − ⋅ − ⋅

+ − ⋅ − ⋅ − ⋅

+ − ⋅ − ⋅ −

  

  

  

 ( )
( ) ( ) ( )
( ) ( ) ( )

3

3 38 6 6 8

3 38 7 7 8

\

\ \ \\ \

\ \ \\ \

5

                 2 1 2 1 5 4 5

                 2 1 2 1 5 4 5 .

X D

D Z D Z X DZ Z Z Z

D Z D Z X DZ Z Z Z

⋅

+ − ⋅ − ⋅ − ⋅

+ − ⋅ − ⋅ − ⋅



  

  

 

Lemma 20. Let ( )1 ,10D X∈Σ  and 9Z = ∅ . If X is a finite set, then the number ( )7I Q∗  may be calcu- 
lated by formula 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 1 66 2 1 2 1 1 2 1 2

3 1 66 3 1 3 1 1 3 1 3

3 2 66 3 2 3 2 2 3 2 3

\\ \ \ \ \
7

\\ \ \ \ \

\\ \ \ \ \

2 1 2 3 2 3 2 5

                 2 1 2 3 2 3 2 5

                 2 1 2 3 2 3 2 5 .

X DZ Z ZZ Z Z Z Z Z Z Z Z

X DZ Z ZZ Z Z Z Z Z Z Z Z

X DZ Z ZZ Z Z Z Z Z Z Z Z

I Q ∩∗

∩

∩

= − ⋅ ⋅ − ⋅ − ⋅

+ − ⋅ ⋅ − ⋅ − ⋅

+ − ⋅ ⋅ − ⋅ − ⋅







 

Lemma 21. Let ( )1 ,7D X∈Σ  and 9Z = ∅ . If X is a finite set, then the number ( )8I Q∗  may be calcu- 
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lated by formula 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )

8 2 6 8 2 3 2 3

8 1 6 8 1 3 1 3

7 2 6 7 2 3 2 3

7 1 6 7 1 3

\\ \ \ \
8

\\ \ \ \

\\ \ \ \

\ \ \

2 1 2 1 3 2 6

                  2 1 2 1 3 2 6

                  2 1 2 1 3 2 6

                  2 1 2 1 3 2

X DZ Z Z Z Z Z Z Z

X DZ Z Z Z Z Z Z Z

X DZ Z Z Z Z Z Z Z

Z Z Z Z Z Z Z

I Q∗ = − ⋅ − ⋅ − ⋅

+ − ⋅ − ⋅ − ⋅

+ − ⋅ − ⋅ − ⋅

+ − ⋅ − ⋅ −







( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 3

5 3 6 5 3 1 3 1

5 2 6 5 2 1 2 1

4 3 6 4 3 1 3 1

4

\\

\\ \ \ \

\\ \ \ \

\\ \ \ \

6

                  2 1 2 1 3 2 6

                  2 1 2 1 3 2 6

                  2 1 2 1 3 2 6

                  2

X DZ

X DZ Z Z Z Z Z Z Z

X DZ Z Z Z Z Z Z Z

X DZ Z Z Z Z Z Z Z

Z

⋅

+ − ⋅ − ⋅ − ⋅

+ − ⋅ − ⋅ − ⋅

+ − ⋅ − ⋅ − ⋅

+









( ) ( ) ( )6 42 2 1 2 1 \\\ \ \1 2 1 3 2 6 .X DZ ZZ Z Z Z Z− ⋅ − ⋅ − ⋅


 

Theorem 14. Let ( )1 ,10D X∈Σ , 9Z = ∅ . If X is a finite set and DI  is a set of all idempotent elements of  
the semigroup ( )XB D , then ( )8

1D iiI I Q∗
=

= ∑ . 

Example 15. Let { }1,2,3,4,5,6,7X = , 

{ } { } { } { } { } { } { }1 2 3 4 5 7 8 0 6 91 ,  2 ,  3 ,  4 ,  5 ,  6 ,  7 ,  P P P P P P P P P P= = = = = = = = = = ∅ . 

Then { }1,2,3,4,5,6,7D =


, { }1 2,3, 4,5,6,7Z = , { }2 1,3, 4,5,6,7Z = , { }3 1, 2, 4,5,6,7Z = ,  

{ }4 2,3,5,6,7Z = , { }5 2,3, 4,6,7Z = , { }6 4,5,6,7Z = , { }7 1, 2, 4,5,7Z = , { }8 1, 2, 4,5,6Z =  and 9Z = ∅ . 

{ } { } { } { } { }{
{ } { } { } { } }
1,2,3,4,5,6,7 , 2,3,4,5,6,7 , 1,3,4,5,6,7 , 1, 2,4,5,6,7 , 2,3,5,6,7 ,

         2,3, 4,6,7 , 4,5,6,7 , 1,2,4,5,7 , 1,2,4,5,6 ,

D =

∅
 

We have 9Z = ∅ . Where ( )1 1I Q∗ = , ( )2 1121I Q∗ = , ( )3 2141I Q∗ = , ( )4 349I Q∗ = , ( )5 119I Q∗ = , 

( )6 14I Q∗ = , ( )7 90I Q∗ = , ( )8 8I Q = , 3843DI = . 

It was seen in ([4], Theorem 2) that if α  and β  are regular elements of ( )XB D  then ( ),V D α β  is an 
XI-subsemilattice of D. Therefore α β  is regular elements of ( )XB D . That is the set of all regular elements 
of ( )XB D  is a subsemigroup of ( )XB D . 
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Abstract 
The steady two-dimensional laminar boundary layer flow and heat transfer of a viscous incom-
pressible electrically conducting fluid over an exponentially stretching surface in the presence of a 
uniform magnetic field with thermal radiation are investigated. The governing boundary layer 
equations are transformed to ordinary differential equations by taking suitable similarity trans-
formation and solved numerically by shooting method. The effects of various parameters such as 
magnetic parameter, radiation parameter, Prandtl number and Eckert number on local skin-fric- 
tion coefficient, local Nusselt number, velocity and temperature distributions are computed and 
represented graphically. 

 
Keywords 
Thermal Radiation, MHD, Boundary Layer Flow, Exponentially Stretching Surface 

 
 

1. Introduction 
The study of boundary layer flow and its applications are vital for advancement in the field of technology and 
engineering. The computation and computer coordinated applications of flow over a stretching surface are play-
ing a pivotal role in different realm of industrial products of aerodynamics, polymers and metallurgy, such as 
liquid films in condensation process, artificial fibers, glass fiber, metal spinning, the cooling process of metallic 
plate in a cooling bath and glass, wire drawing, paper production, aerodynamic extrusion of plastic sheets, crys-
tal growing, cable coating and many others, to get end product of desired quality and parameters. Sakiadis [1] 
probably was the first who investigated boundary layer flow on a moving continuous solid surface. Crane [2] 
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extended this concept to a linearly stretching plate whose velocity is linearly proportional to the distance from 
the slit and produced an exact analytical solution for the steady two-dimensional flow problems. Gupta and 
Gupta [3], Carragher and Crane [4], Grubka and Bobba [5], Chen and Char [6], Ali [7], Andersson [8], Ariel et 
al. [9], Ishak et al. [10], Jat and Chaudhary [11] [12], Wang [13] and Nadeem et al. [14] analyzed the effects of 
heat transfer on a stretching surface taking into account different aspects of the problem. 

Boundary layer flow and heat transfer over an exponentially stretching surface have wider applications in 
technology such as in case of annealing and thinning of copper wires. Magyari and Keller [15] obtained analyti-
cal and numerical solutions for boundary layer flow over an exponentially stretching continuous surface with an 
exponential temperature distribution. Many other problems on exponentially stretching surface under different 
physical situations were observed by Elbashbeshy [16], Partha et al. [17], Khan [18], Sanjayanand and Khan [19] 
and El-Aziz [20]. 

At higher operating temperature, the effects of thermal radiation and heat transfer play a pivotal role on the 
fluid flow problem of boundary layer. The application of controlled heat transfer in polymer industries is very 
important to get final product of desired parameters. The modern system of electric power generation, plasma, 
space vehicles, astrophysical flows and cooling of nuclear reactors are governed by applications of thermal radi-
ation and heat transfer of fluid flow. Elbashbeshy [21] determined the effect of radiation on flow of an incom-
pressible fluid along a heated horizontal stretching sheet. Sajid and Hayat [22] extended this concept by investi-
gating the influence of thermal radiation on the boundary layer flow over an exponentially stretching sheet and 
solved the problem analytically. Recently, Bidin and Nazar [23], Jat and Chaudhary [24], Nadeem et al. [25] and 
Mukhopadhyay and Gorla [26] investigated various aspects of such problem either analytically or numerically. 

With reference to above significant studies and in view of importance of MHD applications in various field of 
technologies, the objective of present paper is to investigate the effect of thermal radiation on an electrically 
conducting two-dimensional boundary layer incompressible viscous fluid flow over an exponentially stretching 
surface in the presence of uniform magnetic field by using Rosseland approximation. Numerical results of the 
momentum and energy equations are computed by using shooting method. The promising results of velocity and 
temperature distributions, local skin-friction coefficient and surface heat transfer are discussed for various phys-
ical parameters and simplified their effects for different conditions. 

2. Problem Formulation 
Consider the steady two-dimensional laminar boundary layer flow ( ), ,0u v  of a viscous incompressible electr-
ically conducting radiative fluid over continuous exponentially stretching surface in the presence of an external-
ly applied normal magnetic field of constant strength ( )00, ,0B . The x-axis is taken along the stretching surface 
in the direction of motion and y-axis is taken perpendicular to it. The stretching surface has a uniform tempera-
ture ( ) 2

0ex L
wT x T T∞= +  and a linear velocity ( ) 0ex L

wU x U=  while temperature of flow external to the 
boundary layer is T∞ . The system of governing boundary layer equations (which model Figure 1) are given by: 
 

 
Figure 1. Sketch of the physical problem. 

x

y

0B

O ,w wU T

T∞
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0u v
x y
∂ ∂

+ =
∂ ∂

                                       (1) 

22
0

2

B uu u uu v
x y y

σ
υ

ρ
∂ ∂ ∂

+ = −
∂ ∂ ∂

                                 (2) 

22

2
r

p
qT T T uC u v

x y y yy
ρ κ µ

     ∂∂ ∂ ∂ ∂
+ = + −    ∂ ∂ ∂ ∂∂    

                         (3) 

where T0 is the reference temperature, L is the reference length, U0 is the reference velocity, µυ
ρ

=  is the coef-  

ficient of kinematic viscosity, µ  is the coefficient of viscosity, ρ  is the fluid density, σ  is the electrical 
conductivity, Cp is the specific heat at constant pressure, T is the temperature, κ  is the thermal conductivity 
and qr is the radiative heat flux. The other symbols have their usual meanings. 

The boundary conditions are: 

( ) ( )0 : , 0;
: 0; .

w wy u U x v T T x
y u T T∞

= = = =

→∞ → →
                             (4) 

By using Rosseland approximation of the radiation for an optically thick boundary layer, the radiative heat 
flux qr is expressed (Bidin and Nazar [23]) as: 

44
3r

Tq
y

σ
κ

∗

∗

∂
= −

∂
                                     (5) 

where σ ∗  is the Stefan-Boltzmann constant and κ∗  is the mean absorption coefficient. The above radiative 
heat flux qr is effective at a point away from boundary layer surface in an intensive absorption flow. Considering 
that the temperature variation within the flow is very small, the T4 may be expressed as a linear function of tem-
perature T. Expanding T4 by Taylor’s series about temperature T∞  and neglecting higher-order terms, hence 

4 3 44 3T T T T∞ ∞≅ −                                     (6) 

Using Equation (5) and (6), equation (3) is reduced to: 
23 2

2

16
3p

TT T T uC u v
x y yy

σ
ρ κ µ

κ

∗
∞

∗

    ∂ ∂ ∂ ∂
+ = + +    ∂ ∂ ∂∂    

                      (7) 

3. Similarity Analysis 
The continuity Equation (1) is identically satisfied if we defined stream function ( ),x yψ  as: 

,    u v
y x
ψ ψ∂ ∂

= = −
∂ ∂

                                   (8) 

For the solution of momentum and energy Equations (2) and (7), introducing the following dimensionless va-
riables: 

( ) ( ), 2 wx y LU fψ υ η=                                 (9) 

2
wU

y
L

η
υ

=                                     (10) 

( )2
0ex LT T T θ η∞= +                                  (11) 

Using Equations (8) to (11), Equations (2) and (7) are reduced to: 
22 0f ff f Mf′′′ ′′ ′ ′+ − − =                                (12) 
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241 Pr Pr PrEc 0
3

K f f fθ θ θ  ′′ ′ ′ ′′+ + − + = 
 

                          (13) 

The boundary conditions are: 
0 : 0,   1;     1

: 0;     0
f f
f

η θ
η θ

′= = = =
′= ∞ = =

                                (14) 

where prime (') denote differentiation with respect to η, 
2
02

w

B L
M

U
σ
ρ

=  is the Magnetic parameter, 
34 TK σ

κ κ

∗
∞

∗=  

is the Radiation parameter, Pr pCµ
κ

=  is the Prandtl number and 
2

2
0

Ec
e
w

x L
p

U
C T

=  is the Eckert number. 

4. Numerical Solution of the Problem 
For numerical solution of the Equations (12) and (13), we use the following power series in terms of small 
magnetic parameter M as: 

( ) ( )
0

i
i

i
f M fη η

∞

=

= ∑                                    (15) 

( ) ( )
0

j
j

j
Mθ η θ η

∞

=

= ∑                                    (16) 

Substituting the values of ( )f η  and ( )θ η  from Equations (15) and (16) and its derivatives in Equations 
(12) and (13), and then equating the coefficients of like powers of M, we get the following set of equations: 

2
0 0 0 02 0f f f f′′′ ′′ ′+ − =                                    (17) 

2
0 0 0 0 0 0

41 Pr Pr PrEc
3

K f f fθ θ θ  ′′ ′ ′ ′′+ + − = − 
 

                           (18) 

1 0 1 0 1 0 1 04f f f f f f f f′′′ ′′ ′ ′ ′′ ′+ − + =                                 (19) 

1 0 1 0 1 1 0 1 0 0 1
41 Pr Pr Pr Pr 2PrEc
3

K f f f f f fθ θ θ θ θ  ′′ ′ ′ ′ ′ ′′ ′′+ + − = − + − 
 

                   (20) 

2
2 0 2 0 2 0 2 1 1 1 14 2f f f f f f f f f f f′′′ ′′ ′ ′ ′′ ′′ ′ ′+ − + = − + +                           (21) 

2
2 0 2 0 2 1 1 1 1 2 0 2 0 0 2 1

41 Pr Pr Pr Pr Pr Pr 2PrEc PrEc
3

K f f f f f f f f fθ θ θ θ θ θ θ  ′′ ′ ′ ′ ′ ′ ′ ′′ ′′ ′′+ + − = − + − + − − 
 

         (22) 

The corresponding boundary conditions are: 

0 00 : 0,   1,   0; 1, 0

: 0; 0; 0,   0
i j j

i i

f f f

f i j

η θ θ

η θ

′ ′= = = = = =

′= ∞ = = ≥ >
                          (23) 

The Equation (17) is same as that obtained by Bidin and Nazar [23] for non-magnetic case and the remaining 
equations from (18) to (22) are ordinary linear differential equations and have been solved numerically by 
Shooting method with boundary condition (23). The velocity and temperature distributions for various values of 
parameters are shown in Figures 2-6 respectively. 

5. Local Skin Friction Coefficient and Local Nusselt Number 
The important physical quantities are the local skin-friction coefficient Cf and the local Nusselt number Nu, 
which are defined as: 
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Figure 2. Velocity distribution against η for various values of M. 

 

 
Figure 3. Temperature distribution against η for various values of M with K = 
0.5, Pr = 1 and Ec = 0.0. 

 

 
Figure 4. Temperature distribution against η for various values of K with M = 
0.04, Pr = 1 and Ec = 0.0. 
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Figure 5. Temperature distribution against η for various values of Pr with M = 
0.04, K = 0.5 and Ec = 0.0. 

 

 
Figure 6. Temperature distribution against η for various values of Ec with M = 
0.04, K = 0.5 and Pr = 1. 
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and  

0Nu y

w

TL
y

T T
=

∞

 ∂
 ∂ 

= −
−

                                  (25) 

In the present case which can be expressed in dimensionless form as: 

( ) ( )
0

2 20 0
Re Re

i
f i

i
C f M f

∞

=

 ′′ ′′= =   
∑                           (26) 
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( ) ( )
0

Re ReNu 0 0
2

j
j

j
M

L
θ θ

∞

=

 
′ ′= − = −  

 
∑                           (27) 

where 
0

w
y

u
y

τ µ
=

 ∂
=  ∂ 

 is the surface shear stress and Re wU L
υ

=  is the local Reynolds number. The numerical  

values of ( )0f ′′  and ( )0θ ′  are proportional to the local skin-friction coefficient Cf and local Nusselt number 
Nu at the surface respectively and these are presented by Table 1 for various values of the physical parameters. 

6. Results and Discussion 
Figure 2 shows variation of velocity distribution ( )f η′  against η  for various values of the magnetic para-
meter M. This figure shows that the fluid velocity decreases with increasing value of the magnetic parameter M, 
due to the effect of Lorentz force produced by transverse magnetic field causes deceleration of fluid velocity. 

Figures 3-6 show the temperature distributions ( )θ η  against η  for various values of the magnetic para-
meter M, the radiation parameter K, the Prandtl number Pr and the Eckert number Ec. It is observed from these 
figures that the temperature distribution ( )θ η  increases with increasing value of any parameter, such as the 
magnetic parameter M, the radiation parameter K and the Eckert number Ec. However, it decreases with in-
creasing value of the Prandtl number Pr. An increasing Prandtl number Pr, causes decrease in thermal boundary 
layer of fluid flow. 

The values of the local skin-friction coefficient Cf and the local Nusselt number Nu in terms of ( )0f ′′  and 
( )0θ ′  respectively, are presented in the Table 1, for various values of the magnetic parameter M, the radiation 

parameter K and the Prandtl number Pr, with the Eckert number Ec = 0.0. It is significant that the local 
skin-friction coefficient Cf and the local Nusselt number Nu decreases with increasing value of the magnetic pa-
rameter M. Moreover, the local Nusselt number Nu decreases with increasing value of the radiation parameter K, 
whereas the reverse phenomena occurs for the Prandtl number Pr. Further, Table 1 shows that all values of 

( )0f ′′  and ( )0θ ′  are negative, corresponding to various values of physical parameters. A negative sign of 
( )0f ′′  implies the exertion of drag force on the surface and a negative sign of ( )0θ ′  implies heat transfer 

from the surface. 
 

Table 1. Variation of surface shear stress f'' (0) with M and surface heat 
transfer rate θ' (0) with M, K, Pr and Ec = 0.0. 

f'' (0) 

M = 0.00 M = 0.04 M = 0.25 

−1.2821 −1.3135 −1.4642 

θ' (0) 

K
 

Pr
 

Ec = 0.0 

M = 0.00 M = 0.04 M = 0.25 

0.0 

1 −0.9559 −0.9475 −0.9080 

2 −1.4712 −1.4627 −1.4217 

3 −1.8689 −1.8605 −1.8202 

0.5 

1 −0.6860 −0.6786 −0.6455 

2 −1.0737 −1.0652 −1.0246 

3 −1.3805 −1.3720 −1.3309 

1.0 

1 −0.5528 −0.5466 −0.5192 

2 −0.8653 −0.8571 −0.8190 

3 −1.1215 −1.1129 −1.0721 
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7. Conclusion 
The characteristic relationships among various parameters influencing viscous incompressible electrically con-
ducting fluid over an exponentially stretching surface in the presence of a uniform magnetic field with thermal 
radiation have been analyzed and illustrated graphically. The similarity equations are determined and solved 
numerically by shooting method. It is observed that thickness of the velocity boundary layer, the local skin-friction 
coefficient and the local Nusselt number decreases with increasing value of the magnetic parameter. However, 
thickness of the thermal boundary layer increases with increasing value of the magnetic parameter. Further, it is 
observed that thickness of thermal boundary layer increases with increasing value of the radiation parameter or 
the Eckert number, whereas, reverse phenomenon observed for the Prandtl number. Moreover, the local Nusselt 
number decreases with increasing value of the radiation parameter, while reverse behaviour observed for the 
Prandtl number. 
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Abstract 
This paper describes a method of calculating the Schur complement of a sparse positive definite 
matrix A. The main idea of this approach is to represent matrix A in the form of an elimination tree 
using a reordering algorithm like METIS and putting columns/rows for which the Schur comple-
ment is needed into the top node of the elimination tree. Any problem with a degenerate part of 
the initial matrix can be resolved with the help of iterative refinement. The proposed approach is 
close to the “multifrontal” one which was implemented by Ian Duff and others in 1980s. Schur 
complement computations described in this paper are available in Intel® Math Kernel Library 
(Intel® MKL). In this paper we present the algorithm for Schur complement computations, expe-
riments that demonstrate a negligible increase in the number of elements in the factored matrix, 
and comparison with existing alternatives. 

 
Keywords 
Multifrontal Method, Direct Method, Sparse Linear System, Schur Complement, HPC, Intel® MKL 

 
 

1. Introduction 
According to F. Zhang [1], the term “Schur complement” was used first by E. Haynsworth [2]. Haynsworth 
chose this term because of the lemma (Schur determinant lemma) in the paper [3] that was edited by Schur him-
self. In spite of matrix 1A BD C−−  being used in this lemma as a secondary term, later this matrix came to play 
an important role in mathematical algorithms as the Schur complement. It is denoted as ( ) 1

locA D A BD C−= − . 
For example, in mathematical statistics, the Schur complement matrix is important in computation of the proba-
bility density function of multivariate normal distribution, and in computational mechanics the Schur comple-
ment matrix correlates to media stiffness. 

Partial solving of systems of linear equations plays an important role in linear algebra for implementation of 
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efficient preconditioners based on domain decomposition algorithms. Partial solutions usually involve sparse 
matrices. For this reason Schur complement computations and partial solving have been implemented in Intel® 
Math Kernel Library (Intel® MKL) [4]. This paper covers the ideas behind the implementation. 

There are a number of papers that focused on efficient implementation of the Schur complement. As example, 
Aleksandrov and Samuel [5] in their paper proposed algorithm to calcluate the Schur complement for Sparse 
system. Yamazaki and Li published an idea [6] of how to implement Schur complement efficiently on cluster. 
And we need to mention MUMPS solver [7] that integrated the Schur complement computation a few years ago. 

Intel® MKL PARDISO [4] can be considered as one of the multifrontal methods that have been proposed by 
Duff [8] and further expanded by Liu [9]. This method is divided into three stages. First, the initial matrix un-
dergoes a reordering procedure like the one developed by Karypis [10] [11] in order to represent it in the form of 
a dependency tree. Then symbolic factorization takes place, where the total number of nonzero elements is 
computed in LDU decomposition. And finally, factorization of the permuted matrix in the LDU form is per-
formed like the factorization proposed in Amestoy [12]-[16]. In the last stage, both forward and backward subs-
titutions are implemented to compute a solution for the two triangular systems. 

The proposed implementation of the Schur complement continues the work of the authors in the area of mul-
tifrontal direct sparse solvers. In Kalinkin [17], the basic algorithm was implemented for symmetric, positive 
definite matrices. In the presentations [18] and [19], the proposed algorithm was significantly improved by ba-
lancing the dependency tree. In [20], the algorithm was expanded to non-positive definite matrices and non- 
symmetric matrices. In this paper, we propose to move all matrix elements that correlate to Schur complement to 
the top of the dependency tree in order to improve parallelization of computations. 

Let A be a symmetric positive definite sparse matrix (the symmetry and positive definiteness of the matrix is 
set in order to simplify the algorithm description avoiding the case of degenerate matrix minors): 

T

,locA B
A

B C
 

=  
 

                                     (1) 

where locA  and C are square sparse positive definite matrices, and B is a sparse rectangular matrix. Then we 
can make the following decomposition, which is similar to a Cholesky decomposition of matrix A: 

T T
11 11 12

12

0 0
,

0 0
L I L L

A
L I S I

    
= ∗ ∗    

    
                             (2) 

where 
T T 1 T

11 11 12 11;    ;    .loc locA L L B L L S C BA B−= = = −  

The matrix ( )locS A A=  is the Schur complement. The general approach to computing the Schur comple-
ment based on this formula and mathematical kernels can be expressed in the form of pseudocode: 
 

Algorithm 1. Simple Schur complement computational algorithm. 

1) Calculate decomposition of T
11 11locA L L=  with the factorization step of the direct solver; 

2) Calculate 1 T
temp locB A B−=  with the solving step applied to multiple right-hand sides; 

3) Calculate temp tempC BB=  as sparse-dense matrix-matrix multiplication; 

4) Calculate tempS C C= −  as a difference. 

 
This algorithm has several significant disadvantages that can form barriers for its implementation for large 

sparse systems. The main disadvantage is in the step 2 of Algorithm 1 involving the conversion of sparse matrix 
BT into a dense matrix, which requires allocating a lot of memory for storing temporary data. Also, if we con-
sider BT as a dense matrix a large number of zero elements are processed in multiplication 1

locA−  BT, which 
would make this step one of the most computational intensive parts of the algorithm and would significantly in-
crease the overall computational time. To prevent this, we propose the following algorithm based on the multi-
frontal approach which calculates the Schur complement matrix first, and then the factorization of the matrix A 
without significant memory requirements for the computations to proceed. 
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2. Schur Complement Computational Algorithm 
As in the papers [17]-[20], consider a sparse symmetric matrix Aloc as in the left of Figure 1, where each shaded 
block is a sparse sub-matrix and each white block is a zero sub-matrix. Using reordering algorithm procedures 
[10] [11], this matrix can be rotated to the pattern shown in the right of Figure 1. A reordered matrix is more 
convenient for computations than the initial one since Cholesky decomposition can start simultaneously from 
several entry points (for the matrix on the right of Figure 1, the first, second, fourth, and fifth rows of the matrix 
L can be calculated independently. 

Let us append the original matrix Aloc stored in the sparse format with zeroes so that its nonzero pattern 
matches completely that of the matrix L. The elements of L in row 3 can be computed only after the elements in 
rows 1 and 2 are computed; similarly, element in row 6 can be computed only after elements in rows 4 and 5 are 
computed. The elements in the 7th row can be computed last. This allows us to construct the dependency tree 
[10] [11]: a graph, where each node corresponds to a single row of the matrix and each graph node can be com-
puted only if its children (nodes on which it depends) are computed. A deeper discussion of the algorithm with 
pseudocode of the distribution of nodes of the tree between processes can be found in [17]. The dependency tree 
for the matrix is given in Figure 2 (the number in the center of a node shows the row number). 

Such a representation allows us to modify Algorithm 1 using the following notation: node Zj is a child of Zi if 
Zj resides lower than Zi in the dependency tree (Figure 2) and there is a connection from Zj to Zi. 
 

Algorithm 2. LLT decomposition based on the dependency tree. 

1) locL A=  

2) for i = 1, number_of_tree_nodes do 

3) 

 
 

Zi = node of tree; 

4) for all Zj child of Zi do 

5) 

 
 

,i j j i jZ Z mask Z= ∗  prepare update of Zi by j-th child; 

6) ,i i i jZ Z Z= − ; 

7) end 

8) Calculate LLT decomposition of Zi; 

9) end 

 
where by maskiZj we denote a submatrix built as intersection of columns corresponding to node Zi with rows 
corresponding to node Zj. In terms of representation in the right of the Figure 1 that would mean the ij-th square. 

To calculate the Schur complement let us add to the representation in the columns and rows of matrices B, BT, 
and C to achieve full representation of matrix A as in left part of the Figure 3. As one can see, we achieve simi-
lar representation to the Figure 2 with additional rows corresponding to those of matrices B and C in Figure 3  
 

    
Figure 1. Nonzero pattern of the original matrix (left) and of the same 
matrix after reordering (right). 



A. Kalinkin et al. 
 

 
307 

 
Figure 2. Dependency tree sample. 

 

      
Figure 3. Nonzero pattern of matrix A after reordering of Aloc 
(left) and its tree representation (right). 

 
(right). Note that blocks corresponding to the columns and rows of matrices BT, B, and C are sparse. After facto-
rization of the full matrix A the number of nonzero elements there increases significantly, but our experiments 
show that the blocks remain sparse and do not become dense. 

Let’s introduce the following notation: iZ  is Zi node of the tree expanded by the corresponding rows of the 
matrix BT, ZC is a node of the tree corresponding to the matrix C. Then we can modify Algorithm 2 to take into 
account the elements of matrices B, BT, and C. 
 

Algorithm 3. LLT decomposition based on the dependency tree. 

1) L = A; 

2) parallel for i = 1, number_of_tree_nodes do 

3) 

 
 

iZ  = node of tree; 

4) for all jZ  child of iZ  do 

5) 

 
 

,i j j i jZ Z mask Z= ∗    prepare update of iZ  by j-th child; 

6) ,i i i jZ Z Z= −   ; 

7) end 

8) Calculate LLT decomposition of iZ ; 

9) end 

10) for j = 1, number_of_tree_node do 

11) 

 
 

,C j j C jZ Z mask Z= ∗   prepare update of ZC by j-th child; 

12) ,C C C jZ Z Z= − ; 

13) end 

 
This algorithm produces CZ S= . In fact, the Algorithm 3 fully corresponds to the simple Algorithm 2 

without calculations of the LLT decomposition of the last submatrix. 
The approach proposed can be implemented on a parallel computers with a small modification of Algorithm 

3. 
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Algorithm 4. Parallel implementation of LLT decomposition based 
on the dependency tree.  

1) L = A; 

2) for i = 1, number_of_tree_nodes do 

3) 

 
 

iZ  = node of tree; 

4) for all jZ  child of iZ  do 

5) 

 
 

,i j j i jZ Z mask Z= ∗    prepare update of iZ  by j-th child; 

6) atomic ,i i i jZ Z Z= −   ; 

7) end 

8) Calculate LLT decomposition of iZ ; 

9) end 

10) parallel for j = 1, number_of_tree_node do 

11) 

 
 

,C j j C jZ Z mask Z= ∗   prepare update of ZC by j-th child; 

12) atomic ,C C C jZ Z Z= − ; 

13) end 

 
Approach presented in Algorithm 4 allows us to implement the Schur complement of sparse matrix in Intel® 

Math Kernel Library. 

3. Experiments 
For all experiments we used a compute node with two Intel® Xeon® processors E5-2697 v3 (35MB cache, 2.60 
GHz) with 64GB RAM, MUMPS version 4.10.0 [7], Intel MKL 11.2 Update 1 [4]. 

Figure 4 shows a cubic domain in which we apply seven-point approximation for a Laplace operator with 
mesh size 70nx ny nz= = =  to generate matrix A, and its cut-off through one of the axes as a domain for which 
we want to calculate the Schur complement (Figure 4 (left)). 

Figure 4 shows the portrait of matrix A before factorization (center) and the portrait of matrix L after factori-
zation (right). One can see that the sparsity of L in the Schur complement columns decreased versus the sparsity 
of the part of L that corresponds to matrix Aloc, though it stays sparse and overall the number of nonzero ele-
ments increases slightly. For this test, we see that the number of nonzero elements is only five percent higher in 
the case when we calculate the Schur complement (Algorithm 3) compared to the case without Schur comple-
ment calculations (straight factorization). 

In Figure 5 and Figure 6 we compare the performance of the implemented functionality with the similar 
functionality provided by the MUMPS package [7]. We compare the time needed to compute Schur complement 
matrix and return it in the dense format. The last 5000 rows and columns of the matrices presented are chosen 
for Schur complement computations. 

For Figure 5 we chose 2 matrices from Florida Matrix collection [21]: Fault_639 with about 600 K rows and 
columns and 27 M nonzero elements, and Serena with 1.3 M rows and columns and 64 M nonzero elements. On 
the x axis we plotted the number of threads on the compute node used for computation of the Schur complement. 
One can see that the time for computing Schur complement is almost the same for a small number of threads, 
but the time needed for Intel MKL PARDISO solver decreases when the number of threads increases. 

For Figure 6 we chose 2 matricesfrom Florida Matrix collection [21]: Geo_1438 with about 1.4 M rows and 
columns and 602 M nonzero elements, and Flan_1565 with 1.5 M rows and columns and 114 M nonzero ele-
ments. As before, on the x axis we plotted the number of threads on the compute node used for computation of 
the Schur complement. Notice that overall picture does not change significantly. The main difference between 
this set of matrices and the previous one is in sparsity—average number of nonzero elements per row. In the first 
set of experiments (Fault_639 and Serena) we used sparse matrices with fewer than 50 nonzero elements per  
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Figure 4. A domain with a dividing plane corresponding to Schur submatrix (left), portraits of the matrix before (center) 
and after factorization (right). 

 

 
Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance  
of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual  
performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are  
considering purchasing. For more information on performance tests and on the performance of Intel products, refer to  
http://www.intel.com/content/www/us/en/benchmarks/resources-benchmark-limitations.html Refer to our Optimization Notice for more  
information regarding performance and optimization choices in Intel software products at:  
http://software.intel.com/enru/articles/optimization-notice/  

Figure 5. Schur complement computational time for matrices Fault 639 and Serena with Intel MKL PARDISO and 
MUMPS. 

 

 
Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance  
of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual  
performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are  
considering purchasing. For more information on performance tests and on the performance of Intel products, refer to  
http://www.intel.com/content/www/us/en/benchmarks/resources-benchmark-limitations.html Refer to our Optimization Notice for more  
information regarding performance and optimization choices in Intel software products at:  
http://software.intel.com/enru/articles/optimization-notice/  

Figure 6. Schur complement computational time for matrices Geo 1438 and Flan 1565 with Intel® MKL PARDISO and 
MUMPS. 

http://www.intel.com/content/www/us/en/benchmarks/resources-benchmark-limitations.html
http://software.intel.com/enru/articles/optimization-notice/
http://www.intel.com/content/www/us/en/benchmarks/resources-benchmark-limitations.html
http://software.intel.com/enru/articles/optimization-notice/
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row on average, while the sparsity of Flan_1565 is about 70 nonzero elements per row and the sparsity of 
Geo_1438 is more than 400 nonzero elements per row. In both cases the time for Schur complement computa-
tions is almost the same when the number of threads is small for the Intel MKL and MUMPS, but the time 
needed for Intel MKL PARDISO solver significantly decreases when the number of threads increases. Moreover, 
comparison of Figure 5 and Figure 6 indicates that the performance of Intel MKL PARDISO becomes better if 
sparsity increases. 

4. Conclusion  
We demonstrated an approach that calculates the Schur complement for a sparse matrix implemented in Intel 
Math Kernel Library using the Intel MKL PARDISO interface. This implementation allows one to use a Schur 
complement for sparse matrices appearing in various mathematical applications, from statistical analysis to al-
gebraic solvers. The proposed approach shows good scalability in terms of computational time and better per-
formance than similar approaches proposed elsewhere. 
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Abstract 
In this paper, we take Q16 subsemilattice of D and we will calculate the number of right unit, idem- 
potent and regular elements α of BX (Q16) satisfied that V (D, α) = Q16 for a finite set X. Also we will 
give a formula for calculate idempotent and regular elements of BX (Q) defined by an X-semilattice 
of unions D. 

 
Keywords 
Semilattice, Semigroup, Binary Relation 

 
 

1. Introduction 
Let X be a nonempty set and BX be semigroup of all binary relations on the set X. If D is a nonempty set of sub-
sets of X which is closed under the union then D is called a complete X-semilattice of unions. 

Let f be an arbitrary mapping from X into D. Then one can construct a binary relation fα  on X by  
{ } ( )( )f

x X
x f xα

∈

= ×


. The set of all such binary relations is denoted by ( )XB D  and called a complete semi- 

group of binary relations defined by an X-semilattice of unions D. 
We use the notations, { }y x X y xα α= ∈ , 

y Y
Y yα α

∈

=


, ( ) { },V D Y Y Dα α= ∈ , { }TY y X y Tα α= ∈ = . 

A representation of a binary relation α  of the form ( )
( ),

T
T V X

Y Tα

α

α
∗∈

= ×


 is called quasinormal. Note that, 

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2015.62029
http://dx.doi.org/10.4236/am.2015.62029
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if ( )
( ),

T
T V X

Y Tα

α

α
∗∈

= ×


 is a quasinormal representation of the binary relation α , then T TY Yα α
′∩ = ∅  for T, 

( ),T V X α∗′∈  and T T ′≠ . 
A complete X-semilattice of unions D is an XI-semilattice of unions if ( ), tD D DΛ ∈  for any t D∈



 and  
( ), t

t Z
Z D D

∈

= Λ


 for any nonempty element Z of D. 

Now, ( )XB Dα ∈  is said to be right unit if β α β=  for all ( )XB Dβ ∈ . Also, ( )XB Dα ∈  is idempotent 
if α α α= . And ( )XB Dα ∈  is said to be regular if α β α α=   for some ( )XB Dβ ∈ . 

Let D', D'' be complete X-semilattices of unions and ϕ  be a one-to-one mapping from D' to D''. A mapping  
: D Dϕ ′ ′′→  is a complete isomorphism provided ( ) ( )

1

1
T D

D Tϕ ϕ
′∈

′∪ =


 for all nonempty subset D1 of the se-  

milattice D'. Besides that, if ( ): ,V D Dϕ α ′→  is a complete isomorphism where ( )XB Dα ∈ , ( )T Tϕ α =  
for all ( ),T V D α∈ , ϕ  is said to be a complete α -isomorphism. 

Let Q and D' be respectively some XI and X-subsemilattices of the complete X-semilattice of unions D. Then 

( ) ( ){ },  regular element,  complete -isomorphismXR Q D B Dϕ α α ϕ α′ = ∈  

where : Q Dϕ ′→  complete isomorphism and ( ),V D Qα = . Besides, let us denote 

( ) ( )
( ),

, ,
Q D

R Q D R Q Dϕ
ϕ ′∈Φ

′ ′=


 and ( ) ( )
( )

,
Q Q

R D R Q D
′∈Ω

′ ′ ′=


 

where 
( ) ( ){ }, :  is a complete -isomorhism XQ D Q D B Dϕ ϕ α α′ ′Φ = → ∃ ∈|  

( ) { } is -subsemilattices of  which is complete isomorphic to Q Q Q XI D Q′ ′Ω =  

This structure was comprehensively investigated in Diasamidze [1]. 
Lemma 1. [1] If Q is complete X-semilattice of unions and ( )I Q  is the set all right units of the semigroup 
( )XB Q  then ( ) ( ),

QidI Q R Q Q= . 
Lemma 2. [2] Let X be a finite set, D be a complete X-semilattice of unions and  
{ }1 2 3 4 5 6 7 8, , , , , , ,Q T T T T T T T T=  be X-subsemilattice of unions of D satisfies the following conditions 

1 2 3 5 6 8 1 2 3 5 7 8

1 2 4 5 6 8 1 2 4 5 7 8

4 3 3 4 6 7 7 6

3 4 5, 6 7 8 1

, ,
, ,

\ , \ , \ ,   \ ,
.

T T T T T T T T T T T T
T T T T T T T T T T T T
T T T T T T T T
T T T T T T T

⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂
⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂

≠ ∅ ≠ ∅ ≠ ∅ ≠ ∅
∪ = ∪ = ≠ ∅

 

Q is XI-semilattice of unions. 
Theorem 1. [2] Let X be a finite set and Q be XI-semilattice. If { }1 2 3 4 5 6 7 8, , , , , , ,D T T T T T T T T′ =  is α -iso- 

morphic to Q and ( ) 0Q mΩ = , then 

( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( )
3 4 1 7 6 52 1 4 3 4 3 3 4 3 4

7 6 7 6 6 7 6 7 8

\ \\ \ \ \ \
0

\ \ \ \ \

4 2 2 1 3 2 3 2 5

              6 5 6 5 8 .

T T T T T TT T T T T T T T T T

T T T T T T T T X T

R D m ∩ ∩′ = ⋅ ⋅ − ⋅ − ⋅ − ⋅

⋅ − ⋅ − ⋅
 

Theorem 2. [2] Let ( )XB Qα ∈  be a quasinormal representation of the form ( )
8

1
i i

i
Y Tαα

=

= ×


 such that  

( ),V D Qα = . ( )XB Dα ∈  is a regular iff for some complete α -isomorphism : Q D Dϕ ′→ ⊆ , the following 
conditions are satisfied: 

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( ) ( )

1 1 1 2 2 1 2 3 3

1 2 4 4 1 2 3 4 5 6 6

1 2 3 4 5 7 7 2 2

3 3 4 4 6 6 7 7

,    ,    ,
,    ,

,     , 
,    ,    ,    .

Y T Y Y T Y Y Y T
Y Y Y T Y Y Y Y Y Y T
Y Y Y Y Y Y T Y T
Y T Y T Y T Y T

α α α α α α

α α α α α α α α α

α α α α α α α

α α α α

ϕ ϕ ϕ
ϕ ϕ

ϕ ϕ
ϕ ϕ ϕ ϕ

⊇ ∪ ⊇ ∪ ∪ ⊇
∪ ∪ ⊇ ∪ ∪ ∪ ∪ ∪ ⊇
∪ ∪ ∪ ∪ ∪ ⊇ ∩ ≠ ∅
∩ ≠ ∅ ∩ ≠ ∅ ∩ ≠ ∅ ∩ ≠ ∅
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Let X be a finite set and { }1 2 3 4 5 6 7 8 9, , , , , , , ,D T T T T T T T T T=  be a complete X-semilattice of unions which satis-
fies the following conditions 

1 3 5 6 8 9

1 3 5 6 7 9

1 3 4 6 8 9

1 3 4 6 7 9

2 3 5 6 8 9

2 3 5 6 7 9

2 3 4 6 8 9

2 3 4 6 7 9

1 2 2 1 4 5

5 4 7 8 8 7

1

,
,
,
,
,
,
,
,

\ ,  \ ,  \ ,
\ ,  \ ,  \ ,

T T T T T T
T T T T T T
T T T T T T
T T T T T T
T T T T T T
T T T T T T
T T T T T T
T T T T T T

T T T T T T
T T T T T T

T T

⊂ ⊂ ⊂ ⊂ ⊂
⊂ ⊂ ⊂ ⊂ ⊂
⊂ ⊂ ⊂ ⊂ ⊂
⊂ ⊂ ⊂ ⊂ ⊂
⊂ ⊂ ⊂ ⊂ ⊂
⊂ ⊂ ⊂ ⊂ ⊂
⊂ ⊂ ⊂ ⊂ ⊂
⊂ ⊂ ⊂ ⊂ ⊂
≠ ∅ ≠ ∅ ≠ ∅
≠ ∅ ≠ ∅ ≠ ∅
∪ 2 3 4 5 6

7 8 9 1 2

,  ,
,  

T T T T
T T T T T

= ∪ =
∪ = ∩ ≠ ∅

 

The diagram of the D is shown in Figure 1. By the symbol ( )3 ,9X∑  we denote the class of all complete X- 
semilattice of unions whose every element is isomophic to an X-semilattice of the form D. 

All subsemilattice of { }1 2 3 4 5 6 7 8 9, , , , , , , ,D T T T T T T T T T=  are given in Figure 2. 
In Diasamidze [1], it has shown that subsemilattices 1 - 15 are XI-semilattice of unions and subsemilattices 17 - 

24 are not XI-semilattice of unions. In Yeşil Sungur [3] and Albayrak [4], they have shown that subsemilattices 
25 and 26 are XI-semilattice of unions if and only if 1 2T T∩ =∅ ”. Also they found that number of right unit, 
idempotent and regular elements in subsemilattices. 

In this paper, we take in particular, { }16 3 4 5 6 7 8 9, , , , , , ,Q T T T T T T T T=  subsemilattice of D. We will calculate the 
number of right unit, idempotent and regular elements α  of ( )16XB Q  satisfied that ( ) 16,V D Qα =  for a fi-
nite set X. Also we will give a formula for calculate idempotent and regular elements of ( )XB D  defined by an 
X-semilattice of unions { }1 2 3 4 5 6 7 8 9, , , , , , , ,D T T T T T T T T T= . 
 

 
Figure 1. Diagram of D. 
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2. Results 
Let { }16 3 4 5 6 7 8 9, , , , , , ,Q T T T T T T T T=  be complete X-subsemilattice of D satisfies the following conditions 

3 4 6 7 9

3 5 6 7 9

3 4 6 8 9

3 5 6 8 9

4 5 5 4

7 8 8 7

4 5 6 8 7 9

,
,
,
,

\ ,   \ ,
\ ,   \ ,

= ,  =
.

T T T T T T
T T T T T T
T T T T T T
T T T T T T

T T T T
T T T T

T T T T T T
T

⊂ ⊂ ⊂ ⊂ ⊂
⊂ ⊂ ⊂ ⊂ ⊂
⊂ ⊂ ⊂ ⊂ ⊂
⊂ ⊂ ⊂ ⊂ ⊂

≠ ∅ ≠ ∅
≠ ∅ ≠ ∅

∪ ∪
≠ ∅

 

The diagram of the Q16 is shown in Figure 3. From Lemma 2 Q16 is XI-semilattice of unions. 
Let 16 XIQ ϑ  denote the set of all XI-subsemilattice of the semilattice D which are isomorphic of the X-semi- 

lattice Q16. Then we get 

{ } { }{ }16 1 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9, , , , , , , , , , , , , , ,XIQ T T T T T T T T T T T T T T T Tϑ =  

Let ( )16XB Qα ∈  be a idempotent element having a quasinormal representation of the form  
 

 
Figure 2. All subsemilattice of D.  

 

 
Figure 3. The diagram of the Q16. 
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( ) ( )
9

3
T i i

i
Y T Y Tα αα

=

= × ∪ ×


, such that ( ) 16,V D Qα = . First we calculate number of this idempotent elements in 

( )16XB Q . 
Lemma 3. If X is a finite set and ( )16I Q  is the set all right units of the semigroup ( )16XB Q , then the num-

ber ( )16I Q  may be calculated by formula: 

( ) ( )( ) ( ) ( )
( ) ( ) ( )

5 4 33 5 4 5 4 4 5 4 5

7 8 6 8 7 8 7 7 8 7 8 9

\\ \ \ \ \
16

\ \ \ \ \ \

(2 1) 2 3 2 3 2

               5 6 5 6 5 8 .

T T TT T T T T T T T T T

T T T T T T T T T T T X T

I Q ∩

∩

= − ⋅ ⋅ − ⋅ −

⋅ ⋅ − ⋅ − ⋅
 

Proof. From Lemma 1 we have ( ) ( )
1616 16 16,

QidI Q R Q Q=  where 
16Qid  is identity mapping of the set Q16.  

For this reason D Q′ =  in Theorem 1. Then we obtain 

( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( )

5 4 33 5 4 5 4 4 5 4 5

7 8 6 8 7 8 7 7 8 7 8 9

\\ \ \ \ \
16

\ \ \ \ \ \

2 1 2 3 2 3 2

               5 6 5 6 5 8 .

T T TT T T T T T T T T T

T T T T T T T T T T T X T

I Q ∩

∩

= − ⋅ ⋅ − ⋅ −

⋅ ⋅ − ⋅ − ⋅
     

Theorem 3. If X is a finite set and ( )16I Q∗  is the set all idempotent elements of the semigroup ( )16XB Q , 
then the number ( )16I Q∗  may be calculated by formula: 

( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( )
( ) ( )( ) ( ) ( )

5 4 33 2 5 4 5 4 4 5 4 5

7 8 6 8 7 8 7 7 8 7 8 9

5 4 33 1 5 4 5 4 4 5 4 5

\\ \ \ \ \
16

\ \ \ \ \ \

\\ \ \ \ \

2 1 2 3 2 3 2

                  5 6 5 6 5 8

                  2 1 2 3 2 3 2

                  5

T T TT T T T T T T T T T

T T T T T T T T T T T X T

T T TT T T T T T T T T T

T

I Q ∩∗

∩

∩

= − ⋅ ⋅ − ⋅ −

⋅ ⋅ − ⋅ − ⋅

+ − ⋅ ⋅ − ⋅ −

⋅ ( ) ( ) ( )7 8 6 8 7 8 7 7 8 7 8 9\ \ \ \ \ \6 5 6 5 8 .T T T T T T T T T T X T∩ ⋅ − ⋅ − ⋅

 

Proof. By using Lemma 3 we have number of right units of the semigroup ( )16XB Q  defined by  
{ }16 3 4 5 6 7 8 9, , , , , , ,Q T T T T T T T T=  for { }1 2,T T T∈ . Then number of idempotent elements of ( )16I Q∗  calculated  

by formula ( ) ( )
16

16
XID Q

I Q I D
ϑ

∗

′∈

′= ∑ . By using 

{ } { }{ }16 1 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9, , , , , , , , , , , , , , ,XIQ T T T T T T T T T T T T T T T Tϑ =  

we obtain above formula.   
Now we will calculate number of regular elements ( )16XB Qα ∈  having a quasinormal representation of the  

form ( ) ( )
9

3
T i i

i
Y T Y Tα αα

=

= × ∪ ×


 such that ( ) 16,V D Qα = . Let ( )16R Q∗  be the set all regular elements of the  

semigroup ( )16XB Q . By using { } { }{ }16 1 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9, , , , , , , , , , , , , , ,XIQ T T T T T T T T T T T T T T T Tϑ =  we get  
( )16 2QΩ = . The number of all automorphisms of the semilattice Q16 is q = 4. These are 

3 4 5 6 7 8 9 3 4 5 6 7 8 9

3 4 5 6 7 8 9 3 5 4 6 7 8 9

3 4 5 6 7 8 9 3 4 5 6 7 8 9

3 4 5 6 8 7 9 3 5 4 6 8 7

              
              

              
             

Q

T T T T T T T T T T T T T T T T
I

T T T T T T T T T T T T T T T T

T T T T T T T T T T T T T T T T
T T T T T T T T T T T T T T T

ϕ

θ τ

   
= =   
   
 

= = 
  9 T

 
 
 

 

Then ( )16 4QΦ = . Also by using 

{ } { }
{ } { }
{ } { }
{ }

1 2 3 4 5 6 7 8 9 2 2 3 5 4 6 7 8 9

3 2 3 4 5 6 8 7 9 4 2 3 5 4 6 8 7 9

5 1 3 4 5 6 7 8 9 6 1 3 5 4 6 7 8 9

7 1 3 4 5 6 8 7 9 8 1

= , , , , , , , , = , , , , , , ,
= , , , , , , , , = , , , , , , ,
= , , , , , , , , = , , , , , , ,
= , , , , , , , , = ,

D T T T T T T T T D T T T T T T T T
D T T T T T T T T D T T T T T T T T
D T T T T T T T T D T T T T T T T T
D T T T T T T T T D T

′ ′
′ ′
′ ′
′ ′ { }3 5 4 6 8 7 9, , , , , ,T T T T T T T
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we get ( ) ( )
8

16
1

i
i

R Q R D∗

=

=


. 

Theorem 4. If X is a finite set and ( )16R Q∗  is the set all regular elements of the semigroup ( )16XB Q , then 
the number ( )16R Q∗  may be calculated by formula: 

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )
( ) ( )( ) ( ) ( )

5 4 3 7 8 63 2 5 4 5 4

4 5 4 5 8 7 8 7 7 8 7 8 9

5 4 3 7 8 63 1 5 4 5 4

\ \\ \ \
16

\ \ \ \ \ \ \

\ \\ \ \

4 2 2 1 2 3 2 5

                  3 2 6 5 6 5 8

                  4 2 2 1 2 3 2 5

                  

T T T T T TT T T T T T

T T T T T T T T T T T T X T

T T T T T TT T T T T T

R Q ∩ ∩∗

∩ ∩

= ⋅ − ⋅ ⋅ − ⋅

⋅ − ⋅ − ⋅ − ⋅

+ ⋅ ⋅ − ⋅ ⋅ − ⋅

( ) ( ) ( )4 5 4 5 8 7 8 7 7 8 7 8 9\ \ \ \ \ \ \3 2 6 5 6 5 8 .T T T T T T T T T T T T X T⋅ − ⋅ − ⋅ − ⋅

 

Proof. To account for the elements that are in ( )16R Q∗ , we first subtract out intersection of ( )iR D′ ’s. Let 
( ) ( )1 2R D R Dα ′ ′∈ ∩ . By using Theorem 2 and { }16 3 4 5 6 7 8 9, , , , , , ,Q T T T T T T T T=  

( ) ( ) ( ) ( )1 2 1 2

2 3 3 3 5 5

3 4 4 3 4 5 6 8 8

  and  

                               ,  ,  

                                     ,  ,

                       

T T T

T T

R D R D R D R D

Y T Y Y T Y Y Y T

Y Y Y T Y Y Y Y Y Y T

α α α α α α

α α α α α α α α α

α α α′ ′ ′ ′∈ ∩ ⇒ ∈ ∈

⇒ ⊇ ∪ ⊇ ∪ ∪ ⊇

∪ ∪ ⊇ ∪ ∪ ∪ ∪ ∪ ⊇

3 4 5 6 7 7 3 3

4 4 5 5 7 7 8 8

2 3 3 3 5 4

              ,  ,

                                     ,  ,  ,  ,

                                     ,  ,  ,

T

T T T

Y Y Y Y Y Y T Y T

Y T Y T Y T Y T

Y T Y Y T Y Y Y T

α α α α α α α

α α α α

α α α α α α

∪ ∪ ∪ ∪ ∪ ⊇ ∩ ≠ ∅

∩ ≠ ∅ ∩ ≠ ∅ ∩ ≠ ∅ ∩ ≠ ∅

⊇ ∪ ⊇ ∪ ∪ ⊇

3 4 5 3 4 5 6 8 8

3 4 5 6 7 7 3 3

5 4

                                     ,  ,

                                     ,  ,

                                     ,

T T

T

Y Y Y T Y Y Y Y Y Y T

Y Y Y Y Y Y T Y T

Y T

α α α α α α α α α

α α α α α α α

α

∪ ∪ ⊇ ∪ ∪ ∪ ∪ ∪ ⊇

∪ ∪ ∪ ∪ ∪ ⊇ ∩ ≠ ∅

∩ ≠ ∅ 4 5 7 7 8 8 ,  ,  .Y T Y T Y Tα α α∩ ≠ ∅ ∩ ≠ ∅ ∩ ≠ ∅

 

We get ( )4 4 4 3 5TY T Y Y Y Yα α α α α∅ ≠ ∩ ⊆ ∩ ∪ ∪  which is a contradiction with 4Yα , TYα , 3Yα , 5Yα  are dis- 
joint sets. Then ( ) ( )1 2R D R D′ ′∩ = ∅ . Smilarly ( ) ( )i jR D R D′ ′∩ = ∅  for , 1, ,6i j =  . Thus we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )16 1 2 3 4 5 6 7 8R Q R D R D R D R D R D R D R D R D∗ ′ ′ ′ ′ ′ ′ ′ ′= + + + + + + +  

From Theorem 1 we get above formula.   
Corollary 1. If X is a finite set, ID is the set all idempotent elements of the semigroup ( )XB D  and RD is the 

set all regular elements of the semigroup ( )XB D , then the number DI  and DR  may be calculated by for-
mula: 

( ) ( ) ( ) ( )
16 16

1 1
,     D i D i

i i
I I Q R R Q∗ ∗

= =

= =∑ ∑  

Proof. Let ID be the set of all idempotent elements of the semigroup ( )XB D . Then number of idempotent 
element of ( )XB D  is equal to sum of idempotent elements of the subsemigroup defined by XI-subsemilattice 
of D. ( )iI Q∗  is given in Diasamidze [1] for ( )1, 2, ,15i =  . From Theorem 3 we have number of idempotent 
elements of the subsemigroup ( )16XB Q . Then the number DI  may be calculated by formula  

( ) ( )
16

1
D i

i
I I Q∗

=

= ∑ . Similarly the number DR  may be calculated by formula ( ) ( )
16

1
D i

i
R R Q∗

=

= ∑ .   
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Abstract 
In this paper we study estimator of mean residual life function in fixed design regression model 
when life times are subjected to informative random censoring from both sides. We prove an 
asymptotic normality of estimators. 

 
Keywords 
Informative Censoring, Power Estimator, Regression, Mean Residual Lifetime 

 
 

1. Introduction 
In survival data analysis, response random variable (r.v.) Z, the survival time of a individual (in medical study) 
or failure time of a machine (in industrial study) that usually can be influenced by r.v. X, is often called prognos-
tic factor (or covariate). X represents e.g. the dose of a drug for individual or some environmental conditions of a 
machine (temperature, pressure,…). Moreover, in such practical situations it often occurs that not all of survival 
times 1, , nZ Z  of n identical objects are complete observed, that they can be censored by other r.v.-s. 

In this article we consider a regression model in which the response r.v.-s are subjected to random censoring 
from both sides. 

We first introduce some notations. Let the support of covariate is the interval [0,1] and we describe our re-
gression results in the situation of fixed design points 1 20 1nx x x≤ ≤ ≤ ≤ ≤  at which we consider nonnega-
tive independent responses 1, , nZ Z . Suppose that these responses are censored from the left and right by 

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2015.62030
http://dx.doi.org/10.4236/am.2015.62030
http://www.scirp.org
mailto:a_abdushukurov@rambler.ru
http://creativecommons.org/licenses/by/4.0/
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nonnegative r.v.-s 1, , nL L  and 1, , nY Y  and the observed r.v.-s at design points xi are in fact  
( ) ( ) ( ){ }0 1 2, , ,i i i iξ χ χ χ  with ( )( )max ,min ,i i i iL Z Yξ = , ( ) ( )( )0 min ,i i i iI Z Y Lχ = < , ( ) ( )1

i i i iI L Z Yχ = ≤ ≤  and  
( ) ( )2
i i i iL Y Zχ = ≤ < , where ( )I A  denote the indicator of event A. Hence the observed data is consist of n 

vectors: 
( ) ( ) ( ) ( )( ){ }0 1 2, , , , , 1, ,n

i i i i iS X i nξ χ χ χ= =  . 
Assume that components of vectors ( ), ,i i iZ L Y  are independent for a given covariate i iX x= . In sample 
( )nS  the r.v.-s of interest Zi’s are observable only when ( )1 1iχ = . Denote by Fx, Kx and Gx the conditional dis-

tribution functions (d.f.-s) of r.v.-s Zx, Lx and Yx respectively, given that X x=  and suppose that they are con-
tinuous. 

Let Hx and Nx are conditional d.f.-s of xξ  and ( )min ,x x xZ Yη =  for X x= . Then it’s easy to see that  
( ) ( ) ( )x x xH t K t N t=  with ( ) ( )( ) ( )( )1 1 1x x xN t F t G t= − − − , 0t ≥ . In particular, if for all [ ]0,1x∈ , 

( ) 1x xP L Y≤ = , then we obtain the interval random censoring model. 
The main problem in considered fixed design regression model is consist on estimation the conditional d.f. Fx 

of lifetimes and its functionals from the samples ( )nS  under nuisance d.f.-s Kx and Gx. The first product-limit 
type estimators for Fx in the case of no censoring from the left (that is ( ) 1xP L = −∞ =  or ( ) 1xK t ≡ ) proposed 
by Beran [1] and has been investigated by many authors (see, for example [2] [3]). In this article supposing that 
the random censoring from both sides is informative we use twice power type estimator of Fx from [4] [5] for 
estimation the mean conditional residual life function. Suppose that d.f.-s Kx and Gx are expressed from Fx by 
following parametric relationships for all 0t ≥ : 

( ) ( )( )
( ) ( )( )

1 1 ,

,

x

x

x x

x x

G t F t

K t N t

θ

β

 − = −

 =

                                (1.1) 

where xθ  and xβ  are positive unknown nuisance parameters, depending on the covariate value x. Informative 
model (1.1) include the well-known conditional proportional hazards model (PHM) of Koziol-Green, which 
follows under absence of left random censorship (that is 0xβ ≡ ). Estimation of Fx in conditional PHM is con-
sidered in [6]. Model (1.1) one can considered as an extended two sided conditional PHM. In the case of no co-
variates, model (1.1) first is proposed in [7] [8]. 

It is not difficult to verify that from (1.1) one can obtain following expression of d.f. Fx: 

( ) ( )( )1 1 ,     0,
xx

x xF t H t t
γλ − = − ≥  

                           (1.2) 

where ( )01 1
1x x

x

pλ
β

= = −
+

, 
( )

( )

1

0

1
1 1

x
x

x x

p
p

γ
θ

= =
+ −

 and ( ) ( )( )1m m
x xp P χ= = , 0m = , 1, 2, with  

( ) ( ) ( )0 1 2 1x x xp p p+ + = . Then estimator of Fx one can constructed by natural plugging method as follows: 

( ) ( ){ }1 1 ,     0.
xhxh

xh xhF t H t t
γλ

− = − ≥                            (1.3) 

Here ( ) ( )( ) 11 01xh xh xhp pγ
−

= − , ( )01xh xhpλ = − , 

( ) ( ) ( )

1
; ,     0,1, 2,

n
m m

xh ni n i
i

p x h mω χ
=

= =∑  

and 

( ) ( ) ( )
1

;
n

xh ni n i
i

H t x h I tω ξ
=

= ≤∑ , 

are smoothed estimators of ( ),  ,  m
x x xpλ γ  and ( )xH t , used Gasser-Müllers weights ( ){ } 1

;
n

ni n i
x hω

=
: 

( )
1

1

0

1 1; π d π d
i n

i

x x

ni n
n n n nx

x y x yx h y y
h h h h

ω
−

−
    − −

=          
∫ ∫ , 
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0 0x = , ( )π y  is a known probability density function (kernel), and { }nh  is a sequence of positive constants 
tending to 0 as n →∞ , called the bandwidth sequence. Note that in the case of no censoring from the left the 
estimator (1.3) is coincides with estimator in conditional Koziol-Green model in [6]. Note also that a class of 
power type estimators for conditional d.f.-s for several models authors have considered in book [9]. Estimator 
(1.3) was presented in [4] and its asymptotic properties have been investigated in [5]. Now we demonstrate some 
of these results. 

2. Asymptotic Results for Estimator of Conditional Distribution Function 
For asymptotic properties of estimator (1.3) we need some notations. For the design points 1, , nx x  and kernel 
π we denote 

( ) ( )1 11 1
min ,     maxn i i n i ii n i n

x x x x− −≤ ≤ ≤ ≤
∆ = − ∆ = − , 

( ) ( ) ( )2 2
2π π d ,     π π d ,     1, 2v

vy y m y y y v
∞ ∞

−∞ −∞

= = =∫ ∫ . 

Let ( ){ }sup 0 : 0
xF xt F tτ = ≥ =  and ( ){ }inf 0 : 1

xF xT t F t= ≥ =  are lower and upper bounds of support of 
d.f. Fx. Then by (1.1): 

   and   
x x x x x x x x x xF G N K H F G N K HT T T T Tτ τ τ τ τ= = = = = = = = . 

In [4] authors have proved the following property of two sided conditional PHM (1.1). 
Theorem 2.1 [5]. For a given covariate x, the model (1.1) holds if and only if r.v. xξ  and the vector 
( ) ( ) ( )( )0 1 2, ,x x xχ χ χ  are independent. 

This characterization of submodel (1.1) plays an important role for investigation the properties of estimator 
(1.3). 

Let’s introduce some conditions: 

(C1) As n →∞ , 1nx → , 1
n O

n
 ∆ =  
 

, 1
n n o

n
 ∆ − ∆ =  
 

. 

(C2) π is a probability density function with compact support [ ],M M−  for some 0M > , with ( )1 π 0m =  
and ( ) ( ) ππ πy y C y y′ ′− ≤ − , where πC  is some constant. 

(C3) ( ) ( )x xF t F t
x
∂

=
∂

  and ( ) ( )
2

2x xF t F t
x
∂

=
∂

  exist and are continuous for 0 1x≤ ≤  and t Tτ ≤ ≤ , with 

x xF FT Tτ τ< < < . 

(C4) 
d
dx xx

θ θ=  and 
d
dx xx

β β=  exist and are continuous for 0 1x≤ ≤ . 

Let’s also denote: ( )( )
( )

( )
0 1

1 sup xp
x x

t T
r H t H t

τ

−
−

≤ ≤

 = −  
, 

( ) ( ) ( ) ( )
( ) [ ] [ ]

( )
( ) [ ] [ ]

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

2
; 0,1 , ; 0,1 ,

2

2
0 1 0 1

,   ,   sup ,   sup ,

d d,   ,   sup ,   sup ,     0,1.
d d

x x x x x x
x t T x t T

m m m m m m m m
x x x x x x x x

x x

H t H t H t H t H H t H H t
x x

p p p p p p p p m
x x

τ τ∈ × ∈ ×

≤ ≤ ≤ ≤

∂ ∂
= = = =
∂ ∂

= = = = =

     

     

 

Note that existence of all these derivatives follows from conditions (C3) and (C4). Now we state some 
asymptotic results for estimator (1.3), which have proved in [5]. 

Theorem 2.2 [5] (uniform strong consistency with rate). Assume (C1)-(C4), 
x xF FT Tτ τ< < < . If 0nh → , 

( )
5

1
log

nnh
O

n
= , as n →∞ , then 

( ) ( )
1 2

a.s. logsup .xh x
t T n

nF t F t O
nhτ ≤ ≤

   − =     
 



A. A. Abdushukurov, F. A. Abdikalikov 
 

 
322 

Theorem 2.3 [5] (almost sure asymptotic representation with weighted sums). Under the conditions of 
Theorem 2.2 with 0r > , we have for ( ),

x xF Ft Tτ∈ : 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )0 1 2

1
; , , , , ,

n

xh x ni n tx i i i i n
i

F t F t x h q t xω ξ χ χ χ
=

− = Ψ +∑  

where 

( ) ( ) ( )( ) ( )( ) ( ) ( )( )
( )

( ) ( ) ( )( )

( )

( )( )
( )( )

( ) ( )

( ) ( ) ( ) ( )( )
( )

( )

0

0 0

1
0 1 2 1

11 1
1

2 00

, , , 1

                                      log 1 log
11

                             

x

x x

p
tx i i i i x x x x i x

p px x
x x x x x

xx

F t p H t H t I t H t

p p
H t H t H t H t H t

pp

ξ χ χ χ ξ
−

−
−


  Ψ = − − ≤ −   


 
    − − + −       −−  

( ) ( )( ) ( ) ( )( )
( )

( ) ( )( )
010 0 1 1

0

1         log 1 .
1

xp
i x x i x

x

p H t p
p

χ χ
−


 × − − − −   − 


 

and as n →∞ , 

( )
a.s. logsup , .n

t T n

nq t x O
nhτ ≤ ≤

 
=  

 
 

Corollary. Under the conditions of Theorem 2.3, and as n →∞ , for t Tτ ≤ ≤ : 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )
( )

a.s.1 2 1 2 0 1 2
1 2

1

log; , , ,
n

n xh x n ni n tx i i i i
i n

nnh F t F t nh x h O
nh

ω ξ χ χ χ
=

 
 − = Ψ +
 
 

∑ . 

Theorem 2.4 [5] (asymptotic normality). Assume (C1)-(C4). 
x xF FT Tτ τ< < < . 

(A) If 5 0nnh →  and ( )1 2 log 0nnh n → , then for t Tτ ≤ ≤ , as n →∞ , 

( ) ( ) ( )( ) ( )( )1 2 20, ;
d

n xh x xnh F t F t N tσ− →  

(B) If 1 5
nh Cn−=  for some 0C > , then for t Tτ ≤ ≤ , as n →∞ , 

( ) ( ) ( )( ) ( ) ( )( )1 2 2, ,
d

n xh x x xnh F t F t N a t tσ− →  

where 

( ) ( )( ) ( ) ( )( )
( )

( ) ( )

( )

( )( )
( )( )

( ) ( )

( )( ) ( ) ( ) ( )( )
( )

( ) ( )

( ) ( )( )
( )

( ) ( )

0

0 0

0

1
1

11 1
1 0

2 00

1 1 5 2
20

1 1
2

           log 1 log
11

1           log 1 π ,
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with 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )0 0 1 1 0 12 2 21 1 1 2 ,x x x x x x x x x x x x x xt A t H t H t B t p p C t p p B t C t p pγ = − + − + − −  
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It is necessary to note that Theorems 2.1-2.4 are extended the corresponding theorems in conditional PHM of 
Koziol-Green from [6]. 

In the next Section 3 we use these theorems for investigation the properties of the estimator of mean condi-
tional residual life function. 

3. Asymptotic Normality of Estimator of Mean Conditional Residual Life Function 
The conditional residual lifetime distribution defined as 

( ) ( )x x xF s t P Z t s Z t= − ≤ > , 

i.e. the d.f. of residual lifetime, conditional on survival upon a given time t and at a given value of the covariate 
x. Then for 0

xFs T< < , 

( ) ( ) ( )
( )1

x x
x

x

F t s F t
F s t

F t
+ −

=
−

.                              (3.1) 

One of main characteristics of d.f. (3.1) is its mean, i.e. mean conditional residual life function 

( ) ( ) ( )( ) ( )( )1
1 1 d ,     0x x x x x

t

t E Z t Z t F t F s s tµ
∞

−
= − > = − − >∫ .                (3.2) 

We estimate functional ( )x tµ  by plugging in estimator (1.3) instead of Fx in (3.2). But from section 2 we 
know that estimator (1.3) have consistent properties in some interval [ ],Tτ  with 

x xF FT Tτ τ< < < . Therefore, 
we will consider the following truncated version of (3.2): 

( ) ( )( ) ( )( )1
1 1 d ,     

T
T
x x x

t

t F t F s s t Tµ τ
−

= − − < <∫ .                      (3.3) 

Now we estimate (3.3) by statistics 

( ) ( )( ) ( )( )1
1 1 d ,     

T
T
xh xh xh

t

t F t F s s t Tµ τ
−

= − − < <∫ .                     (3.4) 

We have following asymptotic normality result. 
Theorem 3.1. Assume (C1)-(C3) in [ ],Tτ  with 

xFτ τ< , 
xFT T< . 

(A) If 5 0nnh →  and 
( )1 2

log 0
n

n
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→ , as n →∞ , then 

( ) ( ) ( )( ) ( )( )1 2 20, ;
d

T T
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(B) If 1 5
nh Cn−=  for some 0C > , then as n →∞ , 

( ) ( ) ( )( ) ( ) ( )( )1 2 2, .
d

T T
n xh x x xnh t t N t tµ µ α β− →  
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Here 
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−  

∫ ∫ , 

and ( )x tγ  from Theorem 2.4. 
Proof of theorem 3.1. By standard manipulations and Theorem 2.3 we have that 
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For ( )1
nxQ  and ( )2

nxQ  we use Theorem 2.3, for ( )3
nxQ  and ( )4

nxQ , Theorem 2.2. Then we see that all these re-  

mainder terms uniformly on [ ],Tτ  almost surely have order ( )( )1 lognO nh n− . 

Now statements (A) and (B) of theorem follows from corresponding statements of the theorem 2.4 by stan-
dard arguments. 

Theorem 3.1 is proved. 
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Abstract 
One-shot systems such as missiles and extinguishers are placed in storage for a long time and used 
only once during their lives. Their reliability deteriorates with time even when they are in storage, 
and their failures are detected only through inspections for their characteristics. Thus, we need to 
decide an appropriate inspection policy for such systems. In this paper, we deal with a system 
comprising non-identical units in series, where only minimal repairs are performed when unit 
failures are detected by periodic inspections. The system is replaced and becomes “as good as new” 
when the nth failure of the system is detected. Our objective is to find the optimal inspection in-
terval and number of failures before replacement that minimize the expected total system cost per 
unit of time. 

 
Keywords 
One-Shot System, Maintenance Policy, Minimal Repair, Cost Rate 

 
 

1. Introduction 
Systems such as missiles and extinguishers are used only once during their lives. Once the system is placed in an 
operational position or a nearby depot, it spends almost its entire life in storage until it is used. Usually, such 
systems are not moved except for inspections or other special situations. Because of these characteristics, these 
systems are called one-shot systems or storage systems. 

The reliability of a one-shot system decreases with time even if it is placed in storage. Hence, inspections 
should be carried out at appropriate times to ensure high reliability. Frequent inspections will ensure its high 
availability, while they sometimes incur a high cost that may not be acceptable to users. 
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Inspection policy problems for a one-shot system have been studied by numerous researchers. Barlow and 
Proschan [1] found an optimum inspection policy that minimized the cost rate in the case that a system was per-
fectly repaired upon failure detection. Ito and other researchers assumed that a system consisted of two and three 
types of unit [2]-[4]. They formulated the periodic inspection policy for a system requiring high reliability. Yun 
and other researchers considered the inspection policy for a system with two types of unit, where intrinsic re-
placement times for one type of unit were predetermined [5]-[7]. They determined the optimum inspection 
schedule of another type of unit by simulation to meet the goal of reliability. 

All the above papers dealt with perfect repairs upon the detection of failures. On the other hand, there is 
another type of repair action. A minimal repair simply restores a failed unit to the working state. In this case, the 
hazard rate of the minimally repaired unit is the same as that immediately before the failure. Minimal repairs are 
useful for a complex one-shot system because they have a much lower cost than perfect repairs or replacements. 
Nakagawa [8] discussed an inspection policy for the case that the failures of a unit were detected instantly and 
minimally repaired. As we explained above, failures are not always detected instantly in a one-shot system. Thus, 
we have to take system down into account to develop a more practical model of a one-shot system. 

In this paper, we deal with an inspection policy for a one-shot system that consists of m units in series. The 
system is not available when at least one unit is out of order. We assume that the system is inspected at periodic 
time intervals, T, and failures are detected only by inspections. A minimal repair is performed when a failure is 
detected, and all units in the system are replaced and become “as good as new” when a total of n failures are de-
tected after the last replacement. The system has a predetermined limitation for the number of minimal repairs, 
N. We minimize the expected cost rate, which is expressed as a function of n and T. In Section 2, we explain the 
proposed model and derive the cost rate. A numerical example is shown in Section 3. 

2. Model Assumptions and Analysis 
2.1. Notations & Nomenclature 
The following notations and nomenclature are used. 
Cost rate: cost per unit time 
N : limitation of number of minimal repairs for a system 
n : number of failures until replacement, i.e., 1n N≤ + . 
T : inspection interval 
m : number of units in a system 

IC : inspection cost of a system 
RiC : minimal repair cost of unit i 
DC : risk (i.e., cost) per unit of time resulting from system down 
PC : replacement cost of a system 
( )1

sF : failure distribution function of a system until first failure 
( )1

sF : reliability function of a system between ( )1l − th failure and lth failure, which can be given by as the 
product of reliability function of each unit, where the 0th failure indicates the time that a system is in ser-
vice. 

( )l
sµ : mean operating time of a system between ( )1l − th failure and lth failure 
iH : cumulative hazard rate function of unit i 
( )lτ : expected total time until detection of lth failure 
( )l
oC : expected total cost until detection of lth failure 
( )n
iρ : ratio of the number of failures of unit i to n 
( ),C n T : cost rate function, given by ( ) ( )l l

oC τ  

2.2. Model Assumptions 
We consider a one-shot system that is described in the following. Figure 1 shows an example of the process 
of the proposed model. 

1) The system has a series structure of m units (unit 1, unit 2, …, unit m) and the system’s hazard rate in-
creases with time. 
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Figure 1. Example of process of the model. 

 
2) All the units in the system are inspected periodically and simultaneously. 
3) A failure of a unit is detected at the following inspection, and a minimal repair is performed upon the 

detection. The hazard rate of a failed unit is not changed by the minimal repair. 
4) System down incurs some risk, which is the product of the system down probability and the incurred 

cost. In this paper, we regard the risk as the system down cost per unit of time for simplicity. 
5) When a total of n failures are detected since the last replacement, all the units in the system are re-

placed and the system becomes “as good as new.” 
6) Times needed for inspections, minimal repairs, and replacements are negligible. 

2.3. Model Analysis 
Here we derive the cost rate function of the system. We can regard the time interval between replacements as 
one cycle because the system is renewed when n failures are detected after the last replacement. The expected 
cost rate is calculated from the expected cost per cycle and the expected time per cycle. 

First, we consider the case that n = 1, which means that the system is replaced when the first failure is de-
tected. In this case, the expected total cost until replacement is obtained as 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

1 1

1
1

1 1

0

d

,

kT
o I D P sk T

k

I D s D s P
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C C k C kT t C F t

C C T F kT C Cµ

∞

−
=

∞

=

= + − +  

= + − +

∑∫

∑
                        (1) 

where ( ) ( ) ( )1 1

0
ds sF t tµ

∞
= ∫ . 

Similarly, we can derive ( )1τ  as 

( ) ( ) ( )( )
( ) ( )1 1 1

1
1 0

d
kT

s sk T
k k

kT F t T F kTτ
∞ ∞

−
= =

= =∑ ∑∫ .                          (2) 

The cost rate function when 1n =  is 

( )
( )

( )

( )

( ) ( )

1 1

1
1

0

1, o P D sI
D

s
k

C C CCC T C
T T F kT

µ
τ ∞

=

−
= = + +

∑
.                          (3) 

The result also can be derived using the results in [1]. 
To calculate the cost rate for 2n ≥ , we use two approximations for the system parameters. One is used for 

the mean operating time and the other is used for the number of repairs of each unit. We have found that these 
approximations are useful in many cases, as shown in the numerical example in Section 3. 

1) Mean operating time 
The exact mean operating time until the second or a later failure is obtained by applying multiple integrals. It 

is not easy to calculate these integrals when n becomes large. Thus, we focus on the fact that the probability of 
detecting multiple failures at one inspection is very small. If we ignore the multiple failures and assume that the 
first failure of the system occurs at exactly ( )1

sµ , we express ( )2
sF  and ( )2

sµ  as 
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( ) ( ) ( )( ) ( )( ){ }2 1 1

1
exp

m

s i s i s
i

F t H t Hµ µ
=

= − + +∏ ,                           (4) 

( ) ( ) ( )2 2

0
ds sF t tµ

∞
= ∫ .                                     (5) 

( ) ( )3 , , n
s sµ µ  are also obtained similarly. In other words, we assume that the system operating time between the 

( )1k − th failure and the kth failure ( )k l<  is exactly ( )k
sµ . Then, ( )l

sF  and ( )l
sµ ( )2l ≥  are given by 

( ) ( ) ( ) ( )
1 1

1 11
exp

m l l
l j j

s i s i s
j ji

F t H t Hµ µ
− −

= ==

     = − + +    
     

∑ ∑∏ ,                       (6) 

( ) ( ) ( )
0

dl l
s sF t tµ

∞
= ∫ .                                     (7) 

2) Number of failures of unit i 
We introduce ( )n

iρ , which represents the ratio of the number of failures of unit i to n. Ignoring the downtime, 
the expected number of failures of unit i until a specific time would be calculated theoretically using the cumu-
lative hazard rate function. We also use the cumulative hazard rate function and express ( )n

iρ  as 
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∑ ∑
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Using these two approximations, we can obtain the expected cost and time until replacement as 

( ) ( ) ( ) ( ) ( ) ( ) ( )
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The expected cost rate until replacement, ( ),C n T , is given by 
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The larger n and T become, the longer the downtime becomes. However, too small value of n and T incur high 
replacement and inspection costs per unit of time. Thus, we have to determine the optimum values of n and T 
that minimize Equation (11).We determine the optimum values of n and T that minimize Equation (11) subject 
to 1n N≤ +  by the steepest decent method. 

3. Numerical Example 
We show a numerical example of a missile system. The missile has three units; unit 1 is a blasting case, unit 2 is a 
guide and control unit, and unit 3 is an engine unit. Calculated results are compared with simulation results and 
errors are evaluated. 

Parameters are given in Table 1, where Wei ( ),η β  indicates Weibull distributions whose reliability function 
is ( ){ }exp t βη− . The unit of time is a day and the unit of cost is 1000 dollars. The optimum solutions and the 
errors are shown in Table 2. The sample number of the simulation is 1 million, and the error is estimated assum-
ing that the simulation result is correct. 

In this case, the optimum value of n is the same in both methods, but the optimum values of T and the mini-
mum cost rate have some errors. 

Figure 2 shows the cost rate plotted against n and T. It can be seen that the cost rate function is unimodal with 
respect to both n and T and the optimal policy can be determined uniquely. 
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Hence, we describe the tendency of the errors. First, we used the approximation for the mean operating times 
(Equation (7)). Table 3 shows the errors for the example. The error increases as T or n increases in many cases. 
When T increases, the probability of detecting multiple failures at inspections increases, but this effect is ignored 
in Equations (6) and (7). That is why the mean operating time calculated using the approximation is longer than 
the value computed by simulation in many situations. Next, we also used the approximation for the number of 
repairs for each unit (Equation (8)). The errors are smaller than those for the mean operating time in many cases. 
In this example, the errors are about 1%. They also appear to depend on the values of n and T, but the behaviors 
are complex. 
 

 
Figure 2. Cost rates plotted against inspection interval. 

 
Table 1. Parameters. 

N m Unit No.(i) CDF CRi CI CD CP 

4 3 

1 Wei (4000, 1.2) 30 

10 0.35 400 2 Wei (5000, 1.5) 40 

3 Wei (6000, 2.0) 50 

 
Table 2. Optimum solutions and errors. 

Method n T ( ),C n T  

Proposed approximation 5 346 0.1433 

Simulation 5 320 0.1451 

Errors (%) 0 8.1 −1.2 

 
Table 3. Errors of mean operating time (%). 

n 
T 2 3 4 5 

10 −1.93 −2.19 −2.11 −2.03 

100 −1.17 −0.93 −0.71 −0.37 

300 0.68 1.63 2.57 3.51 

500 2.42 4.30 5.90 7.29 
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4. Conclusion 
We considered a multiple-unit repairable system that is inspected periodically and whose failures are detected at 
the next inspection. We derived the cost rate function by using two approximations and determined the optimum 
number of failures until replacement and the inspection interval. We confirmed the effectiveness of our ap-
proximate method by a numerical example. Note that the proposed method does not always find the optimal so-
lution. Establishing a search method to find global optimal solutions remains as a future work. Moreover, we 
assumed that no maintenance was performed before failure. However, in practice, not only repairs but also other 
preventive maintenance actions are performed for many types of systems. This should be considered when ex-
panding the proposed model. 
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Abstract 
In this paper, we study availability and profit optimization of a series-parallel system consisting of 
three subsystems A, B and C in which A and B are cold standby. Subsystem A consists of linear con-
secutive k-out-of-n units while subsystems B and C consist of a single unit each. The system works 
if any of A or B and C work. The objective of this study is to maximize the steady-state availability 
and profit. To solve the optimization problem, different numbers of units for n = 2, 3, 4, 5 in sub-
system A are considered. Explicit expressions for busy period of repairmen, steady-state availabil-
ity and profit function are derived using linear first order differential equations. Several cases are 
analyzed graphically for n = 2, 3, 4, 5 to investigate the effects of various system parameters on 
availability and profit. The paper also presents graphical comparison for specific values of system 
parameters and finds that the optimal system configuration is when n = 5. 

 
Keywords 
Availability, Profit, Cold Standby, Optimization 

 
 

1. Introduction 
The series-parallel systems consist of subsystems connected in series where each subsystem consists of units ar-
ranged in parallel. Failure of any one of the subsystems leads to the failure of the system. These systems are 
used in industries, power stations, manufacturing, production and telecommunications. Due to their importance 
in promoting and sustaining industries and economy, reliability measures of such systems have become an area 
of interest. Among the reliability measures of interest there are the steady-state availability, busy period, profit 
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function and mean time to system failure (MTSF). Availability and profit of redundant systems can be enhanced 
using highly reliable structural system design. Improving the reliability and availability of system/subsystem 
leads to an increase in production and associated profit. Researches carried out on optimization problem for series- 
parallel/k-out-of-n G systems can be found in Hu et al. [1], Khatab et al. [2] who analyzed the availability of 
k-out-of-n G system with non identical components subject to repair priorities, Krishnan et al. [3] analyzed the 
reliability and profit analysis of repairable k-out-of-n system with sensor, Juang et al. [4], Levitin [5], Li et al. [6] 
and Wang et al. [7]. Wang et al. [8] performed comparative analysis of availability among three systems with 
general repair times, reboot delay and switching failure. Wang et al. [9] performed comparative analysis of 
availability between two systems with warm standby units and different imperfect coverage. The problem con-
sidered in the present paper is different from the work of the above mentioned authors in the sense that a number 
of units incorporated in subsystem A as a linear consecutive k-out-of-n. The contribution of this paper is twofold. 
First is to develop the explicit expressions for steady-state availability, busy period of repair man and profit 
function. Second is to perform numerical investigation on the effect of system parameters on reliability indices 
mentioned above. Models developed in this paper are found to be highly beneficial to engineers, maintenance 
managers, system designers and plant management for proper maintenance analysis, decision, and evaluation of 
performance. Comparisons are performed for n = 2, 3, 4, 5, for steady-state availability and profit based on as-
sumed numerical values given to the system parameters.  

The organization of the paper is as follows. Assumptions’ of the study and states of the systems are presented 
in Section 2. Models formulations are given in Section 3. The results of our numerical simulations and discus-
sions are presented in Section 4. Finally, we make a concluding remark in Section 5. 

2. Assumptions and States of the Systems 
2.1. Assumptions 

1) The system is attended by three repairmen;  
2) The failure and repair time are to be assumed exponential; 
3) Units in subsystem A are linear consecutive k-out-of-n; 
4) Subsystem A and B are in cold standby; 
5) Repair is instantaneous; 
6) Repaired unit is as good as new. 

2.2. States of the System  
System I 

( )0 1 2, , , ,O S S OS A A B C  

( )1 1 2, , , ,R O S OS A A B C  

( )2 1 2, , , ,W R O OS A A B C  

( )3 1 2, , , ,G S S RS A A B C  

( )4 1 2, , , ,W G S RS A A B C  

( )5 1 2, , , ,W R W GS A A B C  

( )6 1 2, , , .W R G RS A A B C  

System II 

( )0 1 2 3, , , , ,O O S S OS A A A B C  

( )1 1 2 3, , , , ,R O O S OS A A A B C  

( )2 1 2 3, , , , ,G R G O OS A A A B C  
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( )3 1 2 3, , , , ,W R G O OS A A A B C  

( )4 1 2 3, , , , ,G G S S RS A A A B C  

( )5 1 2 3, , , , ,R G G S RS A A A B C  

( )6 1 2 3, , , , ,G R G R GS A A A B C  

( )7 1 2 3, , , , ,G R G G RS A A A B C  

( )8 1 2 3, , , , ,W R G R GS A A A B C  

( )9 1 2 3, , , , .W R G G RS A A A B C  

System III 

( )0 1 2 3 4, , , , , ,O O S S S OS A A A A B C  

( )1 1 2 3 4, , , , , ,R O O S S OS A A A A B C  

( )2 1 2 3 4, , , , , ,G R O O S OS A A A A B C  

( )3 1 2 3 4, , , , , ,W R O O S OS A A A A B C  

( )4 1 2 3 4, , , , , ,W W R G O OS A A A A B C  

( )5 1 2 3 4, , , , , ,G W R G O OS A A A A B C  

( )6 1 2 3 4, , , , , ,R G G S S RS A A A A B C  

( )7 1 2 3 4, , , , , ,W R G G S RS A A A A B C  

( )8 1 2 3 4, , , , , ,W W R G R GS A A A A B C  

( )9 1 2 3 4, , , , , ,W W R G G RS A A A A B C  

( )10 1 2 3 4, , , , , ,G W R G R GS A A A A B C  

( )11 1 2 3 4, , , , , ,G W R G G RS A A A A B C  

( )12 1 2 3 4, , , , , ,G G S S S RS A A A A B C  

( )13 1 2 3 4, , , , , .G R G G S RS A A A A B C  

System IV 
( )0 1 2 3 4 5, , , , , , ,O O S S S S OS A A A A A B C  

( )1 1 2 3 4 5, , , , , , ,R O O S S S OS A A A A A B C  

( )2 1 2 3 4 5, , , , , , ,G R O O S S OS A A A A A B C  

( )3 1 2 3 4 5, , , , , , ,W R O O S S OS A A A A A B C  

( )4 1 2 3 4 5, , , , , , ,W W R O O S OS A A A A A B C  

( )5 1 2 3 4 5, , , , , , ,W W W R S O OS A A A A A B C  

( )6 1 2 3 4 5, , , , , , ,G W R O O S OS A A A A A B C  

( )7 1 2 3 4 5, , , , , , ,G W W R G O OS A A A A A B C  
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( )8 1 2 3 4 5, , , , , , ,G G G S S RS A A A A A B C  

( )9 1 2 3 4 5, , , , , , ,R G G S S S RS A A A A A B C  

( )10 1 2 3 4 5, , , , , , ,W R G S S S RS A A A A A B C  

( )11 1 2 3 4 5, , , , , , ,W W R G S G RS A A A A A B C  

( )12 1 2 3 4 5, , , , , , ,W W W R G R GS A A A A A B C  

( )13 1 2 3 4 5, , , , , , ,W W W R G G RS A A A A A B C  

( )14 1 2 3 4 5, , , , , , ,G R G G S S RS A A A A A B C  

( )15 1 2 3 4 5, , , , , , ,G W R G G S RS A A A A A B C  

( )16 1 2 3 4 5, , , , , , ,G W W R G R RS A A A A A B C  

( )17 1 2 3 4 5, , , , , , .G W W R G G RS A A A A A B C  

3. Models Formulation 
3.1. Availability, Busy Period and Profit Modeling for n = 2  
Let ( ) ( ) ( ) ( ) ( ) ( )0 1 2 3 60 0 , 0 , 0 , 0 , , 0P P P P P P=     be the probability vector for system at time 0t ≥ . Relating 
the state of the system at time t and dt t+ , the differential equations for the system when 2n =  can be ex-
pressed in the form: 

( )( ) ( )1
d
d

P t A P t
t

=                                    (1) 

where 
11 11 2

11 22 12 2

12 33 1 2

1 2 2

2 2

1 1

2 2

0 0 0 0
0 0 0

0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

y
y

y
A

α α
β α α

β α α
β α

β α
β α
β α

− 
 − 
 −
 

= − 
 −
 

− 
 − 

 

For the analysis of availability and busy period cases of system, we use the following procedure to obtain the 
steady-state availability, busy period and profit function. In steady-state, the derivatives of the state probabilities 
become zero and we obtain 

( )
( )
( )
( )
( )
( )
( )

11 11 2 0

11 22 12 2 1

12 33 1 2 2

2 2 3

2 4

1 1 5

2 2 2 6

0 0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0

y P t
y P t

y P t
P t
P t
P t
P t

α α
β α α

β α α
β α

α
β α

β β α

−     
    −     
    −
    =−     
    −
    

−     
    −     

                   (2) 

Replacing the last row of (2) with the normalizing condition below  

( )
6

0
1i

i
P

=

∞ =∑                                       (3) 
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to obtain the states probabilities ( ) ( ) ( )0 1 6,  ,  ,  P P P∞ ∞ ∞ . 
Let T be the time to failure of the system for system.  
The explicit expression for the steady-state availability is as follows: 
The steady-state availability is given by  

( ) ( ) ( ) 1
1 0 1 2

1
T

HA P P P
D

= ∞ + ∞ + ∞ =                               (4) 

From state 1 to 6 the repairmen are busy in those states repairing the failed units. Let ( )1TB ∞  be the proba-
bilities that the repairmen are busy in the states repairing the failed units. Using (2) and (3) above, the explicit 
expressions for the steady-state busy period of repairmen are as follows: 

( ) ( ) ( ) ( ) ( ) ( ) 2
1 1 2 3 4 5 6

1
T

HB P P P P P P
D

= ∞ + ∞ + ∞ + ∞ + ∞ + ∞ =                     (5) 

The system/subsystems/units are subjected to corrective maintenance at failure as can be observed in states 1, 
2, 3, 4, 5 and 6 of system I. In those states, the repairmen are busy performing corrective maintenance action to 
the system/subsystems/units at failure. The expected profit PF1 per unit time incurred to the system in the 
steady-state is given by: 

Profit = total revenue generated − accumulated cost incurred due corrective maintenance to the failed system/ 
subsystems/units. Thus 

( ) ( )1 0 1 1 1T TPF C A C B= ∞ − ∞                                 (6) 

3.2. Availability, Busy Period and Profit Modeling for n = 3 
Let ( ) ( ) ( ) ( ) ( )1 2 3 90 0 , 0 , 0 , , 0P P P P P=     be the probability vector for system at time 0t ≥ . Relating the 
state of the system at time t and dt t+  the differential equations for the system when 3n =  can be expressed 
in the form: 

( )( ) ( )2
d
d

P t A P t
t

=                                    (7) 

1 11 12 2

11 2 12 2

12 3 1 2

12 4 1 2

2 2
2

2 2

1 1

2 2

1 1

2 2

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

y
y

y
y

A

α α α
β α α
β α α

β α α
β α

β α
β α
β α

β α
β α

− 
 − 
 −
 

− 
 − =
 −
 

− 
 −
 

− 
 − 

 

( )1 2 11 12 ,y β β β= + +  

( )2 11 2 12 ,y α β β= + +  

( )3 12 1 2 ,y α β β= + +  

( )4 12 1 2 .y α β β= + +  

For the analysis of availability and busy period cases of system, we use the following procedure to obtain the 
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steady-state availability, busy period and profit function. In steady-state, the derivatives of the state probabilities 
become zero and we obtain 

( )
( )
( )
( )
( )
( )
( )

01 11 12 2

111 2 12 2

212 3 1 2

312 4 1 2

42 2

52 2

61 1

2 2

1 1

2 2

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

P ty
P ty
P ty
P ty
P t
P t
P t
P

α α α
β α α
β α α

β α α
β α

β α
β α
β α

β α
β α

− 
 − 
 −
 

− 
 

− 
 −
 
 −
 

− 
 − 
 − 

( )
( )
( )

7

8

9

0
0
0
0
0
0
0
0
0
0

t
P t
P t

   
   
   
   
   
   
   
   =   
   
   
   
   
   
   
     

             (8) 

Solving (8) and using the following normalizing condition 

( )
9

0
1i

i
P

=

∞ =∑                                       (9) 

to obtain ( ) ( ) ( ) ( )0 1 2 9, , , ,P P P P∞ ∞ ∞ ∞ . 
The explicit expression for the steady-state availability is as follows: 

( ) ( ) ( ) ( ) ( ) 3
2 0 1 2 3

2
T

H
A P P P P

D
∞ = ∞ + ∞ + ∞ + ∞ =                       (10) 

where 

3 1 2 11 12 1 2 12 11 1 2 11 12 1 2 11 12H α α α α α α α β α α α β α α β β= + + +  

2 1 2 12 11 1 2 11 12 1 2 11 12 1 2 11 12 1 12 2 11

1 2 11 12 1 11 12 2 1 11 2 12 2 1 11 12 1 11 1 12.
D α α α β α α β β α α α α α α α β α α β β

α β β β α α α β α α β β α β β β α α β β
= + + + +
+ + + + +

 

From state 1 to 9 the repairmen are busy in those states repairing the failed units. Let ( )2TB ∞  be the proba-
bilities that the repairmen are busy in those states repairing the failed units. Using (8) and (9) above, the explicit 
expressions for the steady-state busy period of repairmen are as follows: 

( ) ( ) ( ) ( ) ( ) 4
2 1 2 3 9

2
T

HB P P P P
D

∞ = ∞ + ∞ + ∞ + + ∞ =                     (11) 

The expected profit PF2 per unit time incurred to the system in the steady-state is given by: 
Profit = total revenue generated − accumulated cost incurred due corrective maintenance to the failed system/ 

subsystems/units. 

( ) ( )2 0 2 1 2T TPF C A C B= ∞ − ∞                               (12) 

3.3. Availability, Busy Period and Profit Modeling for n = 4 
Let ( ) ( ) ( ) ( ) ( ) ( )0 1 2 3 130 0 , 0 , 0 , 0 , , 0P P P P P P=     be the probability vector for system at time 0t ≥ . Relat-
ing the state of the system at time t and dt t+  the differential equations for the system when 4n =  can be ex-
pressed in the form: 

( )( ) ( )3
d
d

P t A P t
t

=                                   (13) 

where 
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1 11 12 2

11 2 12 2

12 3 13 2

12 4 13 2

13 5 1 2

13 6 1 2

2 2
3

2 2

1 1

2 2

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0

h
h

h
h

h
h

A

α α α
β α α
β α α

β α α
β α α

β α α
β α

β α
β α
β α

−
−

−
−

−
−

−
=

−
−

−

1 1

2 2

2 2

2 2

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

β α
β α

β α
β α

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

− 
 −
 

− 
 − 

 

( )1 2 11 12 ,h β β β= + +  

( )2 11 2 12 ,h α β β= + +  

( )3 12 2 13 ,h α β β= + +  

( )4 12 2 13 ,h α β β= + +  

( )5 13 1 2 ,h α β β= + +  

( )6 13 1 2 .h α β β= + +  

In steady-state, the derivatives of the state probabilities become zero and we obtain 

1 11 12 2

11 2 12 2

12 3 13 2

12 4 13 2

13 5 1 2

13 6 1 2

2 2

2 2

1 1

2 2

1

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0

h
h

h
h

h
h

α α α
β α α
β α α

β α α
β α α

β α α
β α

β α
β α
β α

β

−
−

−
−

−
−

−
−

−
−

( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )

0

1

2

3

4

5

6

7

8

9

1 10

2 2 11

2 2 12

2 2 13

0
0
0
0
0

0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

P t
P t
P t
P t
P t
P t
P t
P t
P t
P t
P t
P t
P t
P t

α
β α

β α
β α

  
  
  
  
  
  
  
  
  
  
   =
  
  
  
  
  

−   
  −   

−   
  −   

0
0
0
0
0
0
0
0
0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solving (8) and using the following normalizing condition 

( )
13

0
1i

i
P

=

∞ =∑                                      (15) 

and obtain ( ) ( ) ( ) ( ) ( )0 1 2 12 13, , , , ,P P P P P∞ ∞ ∞ ∞ ∞ . 
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The explicit expression for the steady-state availability is as  

( ) ( ) ( ) ( ) ( ) ( ) ( ) 5
3 0 1 2 3 4 5

3
T

H
A P P P P P P

D
∞ = ∞ + ∞ + ∞ + ∞ + ∞ + ∞ =                 (16) 

From state 1 to 13 the repairmen are busy in those states repairing the failed units. Let ( )3TB ∞  be the prob-
abilities that the repairmen are busy in those states repairing the failed units. Using (14) and (15) above, the ex-
plicit expressions for the steady-state busy period of repairmen are as follows: 

( ) ( ) ( ) ( ) ( ) ( ) 6
3 1 2 3 4 13

3
T

H
B P P P P P

D
∞ = ∞ + ∞ + ∞ + ∞ + + ∞ =                  (17) 

The expected profit 3PF  per unit time incurred to the system in the steady-state is given by: 
Profit = total revenue generated − accumulated cost incurred due corrective maintenance to the failed system/ 

subsystems/units. 

( ) ( )3 0 3 1 3T TPF C A C B= ∞ − ∞                               (18) 

3.4. Availability, Busy Period and Profit Modeling for n = 5 
Let ( ) ( ) ( ) ( ) ( )1 2 3 170 0 , 0 , 0 , , 0P P P P P=     be the probability vector for system at time 0t ≥ . Relating the 
state of the system at time t and dt t+  the differential equations for n = 5 can be expressed in the form: 

( )( ) ( )4
d
d

P t A P t
t

=                                  (19) 

where 

1 11 12 2

11 2 12 2

12 3 13 2

12 4 13 2

13 5 14 2

14 6 1 2

13 7 14 2

14 8 1

4

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

k
k

k
k

k
k

k
k

A

α α α
β α α
β α α

β α α
β α α

β α α
β α α

β α α

−

−

−

−

−

−

−

−

=

2

2 2

2 2

2 2

2 2

1 1

2 2

2 2

2 2

1 1

2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

β α
β α

β α
β α

β α
β α

β α
β α

β α
β

−

−

−

−

−

−

−

−

−

20 0 0 0 0 0 0 0 α

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

− 
 

( )1 11 12 2 ,k β β β= + +  

( )2 11 12 2 ,k α β β= + +  

( )3 12 13 2 ,k α β β= + +  
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( )4 12 13 2 ,k α β β= + +  

( )5 13 14 2 ,k α β β= + +  

( )6 14 1 2 ,k α β β= + +  

( )7 13 14 2 ,k α β β= + +  

( )8 14 1 2 .k α β β= + +  

In steady-state, the derivatives of the state probabilities become zero and we obtain 

1 11 12 2

11 2 12 2

12 3 13 2

12 4 13 2

13 5 14 2

14 6 1 2

13 7 14 2

14 8 1 2

2

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

k
k

k
k

k
k

k
k

α α α
β α α
β α α

β α α
β α α

β α α
β α α

β α α
β

−

−

−

−

−

−

−

−

2

2 2

2 2

2 2

1 1

2 2

2 2

2 2

1 1

2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

α
β α

β α
β α

β α
β α

β α
β α

β α
β

−

−

−

−

−

−

−

−

−

( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

172

0
0
0
0
0
0
0
0
0

0 0 0 0 0

P t
P t
P t
P t
P t
P t
P t
P t
P t
P t
P t
P t
P t
P t
P t
P t
P t
P tα

  
  
  
  
  
  
  
  
  
  
  
  
  
  
   =
  
  
  
  
  
  
  
  
  
  
  
  
  
  −   

0
0
0
0
0
0
0
0
0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (20) 

( )
17

0
1i

i
P

=

∞ =∑                                      (21) 

to obtain ( )iP ∞ , 1, 2,3, ,17i =  . 
States 0, 1, 2, 3, 4, 5, 6 and 7 in the states of the system IV above are operational states and states 1, 2, 3, ∙∙∙, 

17 are busy period states, putting (21) in the last rows of (20), the system availability, busy period and profit 
function are given by: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 7
4 0 1 2 3 4 5 6 7

4
T

H
A P P P P P P P P

D
∞ = ∞ + ∞ + ∞ + ∞ + ∞ + ∞ + ∞ + ∞ =           (22) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 8
4 1 2 3 4 5 6 17

4
T

H
B P P P P P P P

D
∞ = ∞ + ∞ + ∞ + ∞ + ∞ + ∞ + + ∞ =            (23) 

The expected profit PF4 per unit time incurred to the system in the steady-state is given by: 
Profit = total revenue generated − accumulated cost incurred due corrective maintenance to the failed system/ 

subsystems/units. 
Thus 

( ) ( )4 0 4 1 4T TPF C A C B= ∞ − ∞                                (24) 
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4. Numerical Illustration 
In this section, we numerically obtained and compared the results for system availability and profit function for 
the developed models. The objectives here are to analyze graphically the effects of system parameters on availa-
bility and profit and make comparison for different values of n. For each model the following set of parameters 
values are fixed throughout the simulations for consistency. 

1 0.4β = , 2 0.3β = , 11 0.3β = , 12 0.1β = , 13 0.2β = , 14 0.3β = ,  

1 0.2α = , 11 0.3α = , 2 0.3α = , 12 0.4α = , 13 0.4α = , 14 0.5α = ,  

0 100,000C = , 1 20,000C = . 

It is can be seen from Figure 1, that availability increases with increase in repair rate 1α  for n = 2, 3, 4, 5 
and also the availability increases as n increases. It is evident from Figure 1 that as n increases, the steady state 
availability also increases. The result in Figure 1 also shows that steady state availability increases with increase 
in repair and provision of more standby units. Figure 2 shows that the availability decreases with increase in 
failure rate 1β . However, availability for n = 2, n = 3, n = 4 decreases more compared to when n = 5. Here the 
optimal availability result with respect to 1β  is when n = 5. The result here indicates that the availability of the 
system with more standby units tend to decrease slightly than the system with less standby units. Figure 3 
shows that the generated profit increases with increase in repair rate 1α  for n = 2, 3, 4, 5. The profit is higher 
when n = 5 than when n = 2, 3, 4. It is evident here that provision of more standby units lead to increase in the 
generated profit. Figure 4 shows that the generated profit decreases with increase in failure rate 1β . However, 
the generated profit for n = 2, n = 3, n = 4 decreases more compared to when n = 5. Here the optimal profit with 
respect to 1β  is when n = 5. This indicates that the generated profit of the system with more standby units tend 
to decrease slightly than the system with less standby units. These numerical results are summarized in Table 1. 
 

 
Figure 1. Availability against α1.  

 

 
Figure 2. Availability against β1. 
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Figure 3. Profit against α1. 

 

 
β1 

Figure 4. Profit against β1. 
 

Table 1. Comparison of availability and profit for n = 2, 3, 4, 5. 

Parameter Range of parameter Results 

1β  10 1β≤ ≤  
( ) ( )4 3 2 1T T T TA A A A> ∞ > ∞ >  

( ) ( )4 3 2 1PF PF PF PF> ∞ > ∞ >  

1α  10 1α≤ ≤  
( ) ( )4 3 2 1T T T TA A A A> ∞ > ∞ >  

( ) ( )4 3 2 1PF PF PF PF> ∞ > ∞ >  

5. Conclusion 
In this paper, we constructed four different series-parallel systems consisting of subsystems A, B and C. Subsys-
tems A and B are cold standby with subsystem A containing linear consecutive k-out-of-n units while subsystem 
B and C consist of a single unit each. We developed the explicit expressions for the availability, busy period and 
profit for the four systems and performed a comparative analysis. It is interesting to see that as the number of 
units in subsystem A increases, the availability and profit also increase. Parametric investigation of various sys-
tem parameters on system availability and profit function has been captured. It is evident from Table 1 that the 
system with n = 5 units in subsystem A is optimal. The results of this paper are found to be highly beneficial to 
maintenance managers, reliability engineers, plant management and system designers for the proper mainten-
ance analysis, decision making, system safety, and performance evaluation.  
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Appendix 
Notations 

jSA , jOA , jRA , jWA , jGA : Unit in subsystem A is in standby, in operation, failed and under repair, failed and 
waiting for repair, idle for 1, 2,3, 4,5j =  

SB , OB , RB , GB : Subsystem B is in standby, operation, failed and is under repair, is idle 
OC , RC , GC : Subsystem C is in operation, failed and is under repair, is idle 

T : Time to failure of the system 
TiA , TiB , iPF : Steady-state availability, Busy period and Profit function for 1, 2,3, 4i =  
( )mP t : Probability that the system is in state mS  at 0t ≥  for 0,1, 2,3, ,17m =   

1wβ , 1wα : Failure and repair rate of unit 1wA  in subsystem A for 1, 2,3, 4w =  
1β , 1α : Failure and repair rate of subsystem B 
2β , 2α : Failure and repair rates of subsystem C 

n : Total number of units in subsystem A 
0C : Revenue generated when the system is in working state and no income when in failed state 
1C : Cost of each repair for failed system/subsystems/units 

1 2 1 11 12 1 2 11 12 2 1 2 11 1 2 12 11 1 2 2 11 1 2 11 12 1 2 11 12 1 12 2 11
2

1 2 11 1 11 12 2 ,

D α β β β α α β β α β β β α α α β α α β β α α α α α β β β α α β β

α β β α α α β

= + + + + + + +

+ +  

2 1 2 12 11 1 2 11 12 1 2 11 12 1 2 11 12 1 12 2 11 1 2 11 12 1 11 12 2 1 11 2 12

2 1 11 12 1 11 1 12 ,
D α α α β α α β β α α α α α α α β α α β β α β β β α α α β α α β β

α β β β α α β β
= + + + + + + +
+ +  

3 1 2 11 13 12 1 2 11 12 13 1 2 11 12 13 1 2 13 11 12 1 2 12 13 11 1 2 11 12 13

1 11 13 2 12 1 11 2 12 13 1 11 12 13 2 1 13 2 11 12 1 12 13 2 11 1 2 11 12 13

2 11 1 12 13 2 1 11 12 13,

D α α α α β α α α β β α α α α α α α α β β α α α α β α α β β β
α α α β β α α β β β α α α α β α α β β β α α α β β α β β β β
α α β β β α β β β β

= + + + + +

+ + + + + +

+ +
 

4 1 2 11 12 13 14 1 2 11 12 13 14 1 2 13 14 11 12 1 2 12 13 14 11 1 2 11 12 13 14

1 2 11 14 12 13 1 2 11 13 14 12 1 2 11 12 13 14 2 11 12 13 14 1 14 2 11 12 13

1 13 14 2 1

        
        

D α α β β β β α α β β β β α α α α β β α α α α α β α α α β β β
α α α α β β α α α α α β α α α α α α αβ β β β β α α β β β β
α α α β β

= + + + +

+ + + + +

+ 1 12 1 12 13 14 2 11 1 11 2 12 13 14 1 11 14 2 12 13 1 11 13 14 2 12

1 11 12 13 14 2 2 1 11 12 13 14 2 11 1 12 13 14        ,
β α α α α β β α α β β β β α α α β β β α α α α β β

α α α α α β α β β β β β α α β β β β
+ + + +

+ + +

 

( )1 1 2 11 12 1 2 12 11 1 2 11 12 2H α α α α α α α β α α β β β= + + +  

( ) ( ) ( )2 1 2 12 11 1 2 11 2 12 1 11 12 2 2 1 11 2 12 1 2 11 12 12 2H α α α β α α β β β α α α β α β β β β α β β α β β= + + + + + + + +  
3 1 2 11 12 1 2 12 11 1 2 11 12 1 2 11 12H α α α α α α α β α α α β α α β β= + + +  

4 1 2 12 11 1 2 11 12 1 2 11 12 1 11 12 2 1 12 2 11 2 11 1 12 1 11 2 12 2 1 11 12

1 2 11 12        ,
H α α α β α α α β α α β β α α α β α α β β α α β β α α β β α α β β

α α β β
= + + + + + + +
+

 

5 1 2 11 12 13 1 2 12 13 11 1 2 11 13 12 1 2 13 11 12 1 2 11 12 13 1 2 11 12 13H α α α α α α α α α β α α α α β α α α β β α α β β β α α α β β= + + + + +  

6 1 2 12 13 11 1 2 11 13 12 1 2 13 11 12 1 2 11 12 13 1 2 11 12 13 1 12 13 2 11

1 13 2 11 12 2 1 11 12 13 1 2 11 12 13 2 11 1 12 13 1 11 2 12 13 1 11 12 13 2

1 2 11 2 12 ,

H α α α α β α α α α β α α α β β α α β β β α α α β β α α α β β
α α β β β α β β β β α β β β β α α β β β α α β β β α α α α β
α α α β β

= + + + + +

+ + + + + +

+
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Abstract 
The topology-based explanation of the origin of the fractional quantum Hall effect is summarized. 
The cyclotron braid subgroups crucial for this approach are introduced in order to identify the 
origin of Laughlin correlations in 2D Hall systems. The so-called composite fermions are explained 
in terms of the homotopy cyclotron braids. Some new concept for fractional Chern insulator states 
is formulated in terms of the homotopy condition applied to the Berry field flux quantization. 

 
Keywords 
Quantum Hall Effects, Braid Groups, Homotopy Methods 

 
 

1. Introduction 
Topology plays increasing role in the development of current understanding of fundamentals in physics [1]. The 
field theory employs homotopy methods, even the classical electro-magnetics by Maxwell is formulated in terms 
of topological defects for vector fields in 3D. The notion of the spin is also closely related with the topological 
concepts visible in related covering symmetry groups or in the odd manifestation of the time reversion for spin 
expressed by yiσ  operator with the square −1 and not identity. The homotopy methods [2] [3] have found ap-
plication in condensed matter structures with multicomponent phase parameters, as for superfluid He3 or for liq-
uid crystals [4]. Recently, the strong increase of the interest in topological methods is related with so-called to-
pological insulators [5]-[7]. The topological insight starts to be dominant in current understanding of Integer 
Quantum Hall Effect (IQHE) [8] and in rich applications of geometrical phase by Berry in various condensed 
matter problems [9] [10]. Application of the simple methods of the topological algebra in two dimensional 
spaces and also in locally two dimensional ones, like a sphere or torus, is linked with the exceptional richness of 
the topological structure for multiparticle planar systems which is expressed by the π1 group of the related con-
figuration spaces, called the braid groups [11]. For the indistinguishable N-particle planar systems the braid 
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groups are infinite in contrary to 3D systems where the full braid groups are finite permutation groups. The fun-
damental role of one dimensional unitary representations (1DURs) of the related full braid groups is noticeable 
in using of the path integrals by Feynman to determine statistics of quantum particles [12]. In the present paper 
we summarize the topological approach to Fractional Quantum Hall Effect (FQHE) via introduction of so-called 
cyclotron braid subgroups which help us in understanding of the Laughlin correlations specific for FQHE [13] 
[14]. 

2. FQHE Revisted 
Shortly after discovery of the integer quantum Hall effect (IQHE) in two dimensional electron system (2DEG) 
upon strong magnetic fields corresponding to complete fillings of succeeding Landau levels (LLs), the surpris-
ing observation of the fractional quantum Hall effect (FQHE) was reported at stronger magnetic fields resulting 
in the fractional fillings of the lowest Landau level (LLL). Both discoveries were awarded with Nobel prizes, 
with regard to IQHE for K. von Klitzing (1985) and to FQHE for D. Tsui, H. Störmer and R. Laughlin (1989). 
While IQHE can be understood within single particle approach including topology arguments [16], the FQHE is 
a collective phenomenon regarded as a manifestation of strong interparticle correlations. The crucial prerequisite 
for FQHE is the flat band with quenched kinetic energy, as in the almost degenerated LLL in the presence of in-
teraction (and massively degenerated without the interaction). Reducing of the kinetic energy allows for the sub-
tle interaction effects resulting in the organization of correlated multiparticle states. The special role plays the 
very special 2D topology, what is convincingly supported by the absence of FQHE in 3D samples. 

In order to describe correlations in 2D charged multi-particle systems in the presence of strong perpendicular  

magnetic field corresponding to fractional LLL fillings 1
q

 (q odd integer), the famous Laughlin wave-function  

(LF) was introduced [16]. The representation of the Coulomb interaction of particles in terms of the so-called 
Haldane pseudopotential allowed then for an observation [17]-[19] that the LF describes exactly the ground state  

for N charged 2D particles at the LLL filling 1
q

, if one neglects the long-range part of the Coulomb forces. Di-  

vision of the interaction for the near- and long-range parts is expressed by the projection of the interaction onto 
the relative angular momenta of particle pairs and for chosen q the values of relative angular momenta greater 
than 2q −  correspond to the long-range tail of interaction, whereas lower than 2q − , to the near-range part of 
the field. It has been proved that the long-range part of the interaction only weekly influences the exact ground 
state given by LF for the near-range interaction only. The LF was a generalization of the Slater function for N 
noninteracting electrons completely filling LLL, written in this case in the form of the Vandermonde determi-
nant multiplied by the Gaussian factor [20]. The LF has the same structure but with the Vandermonde determi-
nant substituted by the Jastrow polynomial [16],  
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where, i i iz x iy= +  is the complex representation of the position of i-th particle on a plane, 
e

cl
B

=
  is a  

“magnetic” distance scale (magnetic length). For 1q =  the above function is the Slater function with the Van-
dermonde determinant. This function (1) expresses correlations in the system, called Laughlin correlations. The 
main property is here the phase shift acquired by the LF if two particles interchange on the plane. This phase 
shift is qπ for interchange of two neighboring particles, which differentiates Laughlin correlations from ordinary 
fermion correlations corresponding to the phase shift π when these particles interchange. Note that a simple 
permutation of indices coincides with algebraic properties of the multi-argument wave function and corresponds 
to the fact, that in 3D (and in higher dimensions) the full braid group is the permutation group. For 2D manifolds 
association of the algebraic properties of multi-argument functions with exchanges of particles described by 
these functions may be misleading and exchanges of function arguments must be referred as to the braid group 
distinct than the permutation group. The unitary factor πe 1iq = −  equals, however, to πe 1i = −  and this prop-
erty does not allow for distinguishing of Laughlin correlated particles from the ordinary fermions though they 
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are distinguished with the phase shift. This coincidence of exponential factors masks to some extent the topo-
logical difference between 2D and 3D and lies in foundations of using simplified and confusing analogies from 
3D case to 2D one. Of that type is an assertion that the particles creating the correlated Laughlin state can be 
modeled as ordinary electrons dressed with the Coulomb interaction in analogy to quasiparticles common in 
solids [21]. Along this line the Laughlin correlations were modeled by so-called composite fermions (CFs) [22], 
i.e., by electrons dressed with quantized magnetic field flux-tubes attached to particles as the result of the Cou-
lomb interaction. By virtue of the Aharonov-Bohm effect, these flux-tubes, of 1q −  flux quanta each, attached 
to particles produce the required by the LF phase shift when the composite particles interchange. The advantage 
of the CF construction was recognized in possibility of interpretation of the FQHE in an external magnetic field 
as IQHE in resultant field diminished by the averaged field of the auxiliary field flux-tubes [22]. However, nei-
ther the origin of the auxiliary magnetic field nor the mechanism of fixing flux-tubes to particles were not ex-
plained and the assertion that magnetic flux tubes are result of the Coulomb interaction was not demonstrated. 
Moreover the hierarchy of LLL fractional fillings obtained by mapping of FQHE on IGHE in resultant magnetic 
field does not cover all fractional states, cf. Figure 1. 

The role of topology in creation of the strongly correlated state of FQHE was noticed [23]-[25] in the context 
of exceptional topological properties of 2D plane or of locally 2D manifolds like sphere or torus. This special 
topology of planar systems is linked with the exceptionally rich structure of the braid groups for 2D manifolds 
(R2, or sphere and torus) in comparison to braid groups for higher dimensional spaces (Rd, d > 2) [11]. The full 
braid group is defined as π1 homotopy group of the configuration space for N indistinguishable particles, i.e., the 
group of multi-particle closed trajectory classes, disjoint and topologically nonequivalent (trajectories from var-
ious classes cannot be continuously deformed one into another one). The full braid group is infinite for 2D case 
while this group is finite (and equal to the ordinary permutation group SN) in higher dimensions of the manifold 
on which particles can be located [11]. This property makes two dimensional systems exceptional in geometry- 
topology sense which inherently lies in foundations of FQHE. 

For matching the topological properties with quantum system properties, the quantization according to the 
Feynman path integral method is useful [12] [23] [24]. Due to a fundamental ideas of path integral quantization 
in the case of not simply-connected configuration spaces (distinguished by the nontrivial π1 groups), like for the 
multi-particle systems, additional phase factors—the weights of nonequivalent (nonhomotopic) trajectory 
classes and summation over these classes must be included in the path integral definition. It means that a meas-
ure in the trajectory space is distributed over separated disjoint homotopy classes of π1 because in general this 
measure cannot be defined uniformly over the domain consisting of disjoint pieces owing to the continuity re-
quirements. As it was proved [12], these weight factors form a one-dimensional unitary representation (1DUR) 
of the related braid group. Different 1DURs of the full braid group give rise to distinct types of quantum par-
ticles corresponding to the same classical ones. In this manner one can get fermions and bosons corresponding  
 

 
Figure 1. FQHE features in a quantum well GaAs/AlGaAs with 

electron density of 1011 1/cm−2; Rxx for 2 2
3 7

ν> >  at the tem-

perature equal T ~ 35 mK (after Ref. [15]); the fractions outside 
the standard CF hierarchy are indicated in color. 
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to only possible 1DURs of the permutation group SN, πei
iσ →  and 0ei

iσ → , respectively (the permutation 
group SN is the full braid group in 3D and in higher dimensions, iσ , 1, ,i N=   denote generators of SN, i.e., 
the exchanges between elements—particles i-th and i + 1-th). For the far more rich braid groups in 2D one en-
counters, however, the infinite number of possible so-called anyons (including bosons an fermions) related to 
1DURs, ei

iσ
Θ→ , [ )0,2πΘ∈  ( iσ  are here generators of the full braid group in 2D, cf. Figure 2) [11] [23]- 

[25]. 
We will develop the topological approach to Hall systems and recover Laughlin correlations by employing 

geometry properties of the so-called cyclotron braids [13] [14] in the framework of formal braid group approach 
and without invoking to any auxiliary elements inherent to the CF concepts. We will demonstrate that particles 
with statistics properties familiar in the CF model are 2D quantum particles characterized by appropriate 1DURs 
of the cyclotron braid subgroups. 

3. Too-Short for Interchanges Cyclotron Trajectories in FQHE 
3.1. 2D Full Braid Group without Magnetic Field—Anyons 
One-dimensional unitary representations (1DURs) of the full braid group [11], i.e., of π1 homotopy group of the 
configuration space for indistinguishable N particles define weights for the path integral summation over trajec-
tories [12] [24]. All trajectories fall into separated homotopy classes that are distinguished by non-equivalent 
closed loops (from π1) attached to open trajectories ,a bλ  (linking in the configuration space points, a and b). 
Then an additional summation over these classes with an appropriate unitary factor (the weight of the particular 
trajectory class) should be included in the path integral (for transition from the point a at the time moment 1t t=  
to the point b at 2t t= ) [23] [24]:  
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where π1 stands for the full braid group and the index l enumerates π1 group elements, lλ  indicates an open 
trajectory ( ),a bλ  between a and b with added lth loop from π1 (the full braid group here). The factors e liα  form 
a 1DUR of the full braid group and the distinct representations correspond to the distinct types of quantum par-
ticles [12] [24]. The closed loops from the full braid group describe exchanges of identical particles, thus, the 
full braid group 1DURs indicate the statistics of particles [23]-[25]. The full braid group for 2D manifold has in-
finite number of 1DURs, eiα , with [ )0,2πα ∈ . The corresponding particles are called anyons, including bo-
sons for 0α =  and fermions for πα = . 

Nevertheless, it is impossible to relate CFs with the 1DURs of the full braid group in 2D, because 1DURs are 
periodic with a period of 2π, whereas the CFs require the statistics phase shift qπ, q-odd integer. In order to 
solve this problem, we propose to associate CFs with the appropriately constructed braid subgroups instead of 
the full braid group and in this way to distinguish CFs from the ordinary fermions. 
 

 
Figure 2. The geometrical presentation of the gene-
rator iσ  of the full braid group for R2 and its inverse 

1
iσ
−  (left); in 2D 2 eiσ ≠  (right). 
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3.2. Cyclotron Structure of Braid Group in 2D Charged Systems at Strong Magnetic Field 
Presence 

The full braid group contains all accessible closed multi-particle classical trajectories, i.e., braids (with initial 
and final orderings of particles that may differ by permutation as is admitted for indistinguishable particles). One 
can, however, notice that inclusion of a strong magnetic field may substantially change trajectories—a classical 
cyclotron motion may confine a variety of accessible braids if magnetic field is strong enough and the manifold 
is two-dimensional. When the separation of particles is greater than twice the cyclotron radius, which situation 
occurs at fractional LLL fillings, the exchanges of particles along single-looped cyclotron trajectories are prec-
luded, because the cyclotron orbits are too short for particle interchanges in this case. Interaction cannot enhance 
cyclotron orbit size in the uniform multiparticle system. 

Particles must, however, interchange in the braid picture for the reason of defining the statistics and creation 
of the collective correlated state. Therefore, in order to allow exchanges again, the cyclotron radius must some-
how be enhanced. This can be achieved by screening the external field, like in the construction of the CFs with 
flux tubes oppositely oriented with respect to the external field [22]. We suppose that the natural way to enhance 
the range of cyclotronic movement is to exclude inaccessible braids from the full braid group. We will show that 
remaining braids would be sufficiently large in size for particle exchanges realization [13] [14]. We will demon-
strate below that at high magnetic fields in 2D charged N-particle systems, the multi-looped braids allow for the 
effective enlargement of cyclotron orbits, thus restoring particle exchanges in a natural way. 

4. Cyclotron Braid Subgroups—Restitution of Particle Interchanges in 2D 
The multi-looped braids form the cyclotron braid subgroups which are generated by the following generators:  

( ) ( ),   3,5 ,   1, , 1q q
i ib q i Nσ= = = −  ,                              (3) 

where each q corresponds to a different type of the cyclotron subgroup and iσ  are the generators of the full  

braid group. The group element ( )q
ib  represents the interchanges of the ith and (i + 1)th particles with 

1
2

q −
  

loops, which is clear by virtue of the definition of the single interchange iσ  (cf. Figure 3, e.g., for q = 3 one  
 

 
Figure 3. The generator σi of the full braid group and the cor-
responding relative trajectory of the ith and (i + 1)th particles 
exchange (upper); the generator of the cyclotron braid sub-
group, ( )q q

i ib σ=  (in the figure, q = 3), corresponds to addi-

tional 1
2

q −  loops when the ith particle interchanges with the 

(i + 1)th one (lower) (2R0 is the inter-particle separation, Rc is 
the cyclotron radius, 3D view added for better visualization). 
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deals with elementary particle exchange braid with one additional loop). It is clear that ( )q
ib  generate a sub-

group of the full braid group as they are expressed by the full braid group generators iσ . 
The 1DURs of the full group confined to the cyclotron subgroup (they do not depend on i as 1DURs of the 

full braid group do not depend on i by virtue of the iσ  generators property, 1 1 1i i i i i iσ σ σ σ σ σ+ + += , 1 1i N≤ ≤ − , 
[11]) are 1DURs of the cyclotron subgroup:  

( ) e ,     1, , 1q iq
ib i Nα→ = − ,                                (4) 

where q is an odd integer and ( ]π, πα ∈ − . We argue, that these 1DURs, enumerated by the pairs ( ),q α , de-
scribe composite anyons (CFs, for πα = ). Thus in order to distinguish various types of composite particles one 
has to consider ( ),q α  1DURs of cyclotron braid subgroups. 

In agreement with the general rules of quantization [25], the N-particle wave function must transform accord-
ing to the 1DUR of an appropriate element of the braid group, when the particles traverse, in classical terms, a 
closed loop in the configuration space corresponding to this particular braid element. In this way the wave func-
tion acquires an appropriate phase shift due to particle interchanges (i.e., due to exchanges of its positions as ar-
guments of the wave function, according to the prescription given by braids in 2D configuration space). Using 
1DURs as given by (4), the Aharonov-Bohm phase of CFs fictitious fluxes is replaced by the contribution of ad-
ditional loops (each loop adds 2π to the total phase shift, if one considers 1DUR with πα =  related to CFs, cf. 
Figure 3 (right)). Let us emphasize that the real particles do not traverse the braid trajectories, as quantum par-
ticles do not have any trajectories, but the exchanges of arguments of the N-particle wave function can be 
represented by braid group elements; in 2D an exchange of particle positions described by coordinates on the 
plane does not resolve itself to the permutation only, as it was in 3D, but must be performed according to an ap-
propriate element of the braid group, being in 2D not the same as the permutation group [25]. Hence, for the 
braid cyclotron subgroup generated by ( )q

ib , 1, , 1i N= − , we obtain the statistics phase shifts qπ for CFs (i.e., 
for πα =  in Equation (4)), as required by Laughlin correlations, without the need to model them with the aux-
iliary field flux tubes. 

Each additional loop of a relative trajectory for the particle pair interchange (as defined by the generators ( )q
ib ) 

reproduces an additional loop in the individual cyclotron trajectories for both interchanging particles—cf. 
Figure 4. The cyclotron trajectories are repeated in the relative trajectory (c, d) with twice the radius of the indi-
vidual particle trajectories (a, b). In quantum language, with regards to classical multi-looped cyclotron trajecto-  

ries, one can conclude only about the number, 
e

BS hc
N

, of flux quanta per single particle in the system, which 

for the filling 1
q

 is q (for odd integer q), i.e., the same as the number of individual particle cyclotron loops 

(which equals to 2 1q n= + , where 1,2,n =   indicates the number of additional braid-loops for particle in-

terchange trajectories). From this observation it follows a simple rule: for 1
q

ν =  (q odd), each additional loop  

of a cyclotron braid corresponding to particle interchange, results in two additional flux quanta piercing the in-
dividual particle cyclotron trajectories. This rule follows immediately from the definition of the cyclotron tra-
jectory, which must be a closed individual particle trajectory related to a double interchange of the particle pair 
(cf. Figure 5). In this way, the cyclotron trajectories of both interchanging particles are closed, just like the 
closed relative trajectory for the double interchange (the braid trajectory for the elementary exchange of the in-
distinguishable particles is open in the geometrical presentation, and therefore the double interchange is needed 
to close this trajectory in this presentation). If the interchange is simple, i.e., without any additional loops, the 
corresponding individual particle cyclotron trajectories are also simple, i.e., single-looped. Nevertheless, when 
the interchange of particles is multi-looped, as associated with the q-type cyclotron subgroup ( )1q > , the  

double interchange relative trajectory has 
12 1

2
q q−

+ =  closed loops, and the individual cyclotron trajectories 

are also multi-looped, with q loops [14]. 
In 2D additional loops cannot enhance the total surface of the system. In this regard, it is important to em-

phasize the basic difference between the circumvolutions of a 3D winding (e.g., of a wire) and of multi-looped 
2D cyclotron trajectories. 2D multi-looped trajectories do not enhance the surface of the system and therefore do  
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Figure 4. Half of the individual particle cyclotron trajectories of the ith and (i + 1)th particles (top) and the corresponding 
relative trajectories (bottom) for interchanges of the ith and (i + 1)th 2D-particles under a strong magnetic field, for 1ν =  

(left) and for 1
3

ν =  (right), respectively (Rc—cyclotron radius, 2R0—particle separation, 3D added for better visualiza-

tion). 
 

 
Figure 5. Cyclotron trajectories of individual particles must be closed, therefore they correspond to double exchange braids, 
for both, simple exchanges (upper) and exchanges with additional loops (lower), in the right part, quantization of flux per 

particle, for 1ν =  and 1
3

ν = , is indicated. 

 
not enhance the total magnetic field flux BS piercing the system, in opposition to 3D case. In 3D case, each cir-
cumvolution of the winding adds a new portion of the flux, just as a new circumvolution adds a new surface, 
which is, however, impossible in 2D. Thus in 2D all loops must share the same total flux, which results in dimi-
nishing flux-portion per a single loop and, effectively, in longer cyclotron radius (allowing again particle inter-
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changes). 

The additional loops in 2D take away the flux-portions (equal to 1q −  flux quanta just at 1
q

ν = , q odd) si-  

multaneously diminishing the effective field; this gives an explanation for Jain’s auxiliary fluxes screening the 
external field B. Thus, it is clear that the CFs are actually not compositions of particles with flux-tubes, but are 
rightful particles in 2D corresponding to 1DURs of the cyclotron subgroups instead of the full braid group, 
which is unavoidably forced by too short ordinary single-looped cyclotron trajectories. The original name 
“composite fermions” can be, however, still used for history reason. Moreover, one can use a similar name, 
“composite anyons”, for particles associated with fractional 1DURs (i.e., with fractional α ) of the cyclotron 
subgroup instead of the full braid group, the latter linked rather with ordinary anyons (without magnetic field). 

How Additional Loops Enhance the Cyclotron Radius in 2D Hall System 
It is important to emphasize that braid group approach in terms of trajectories does not describe detailed classic-
al trajectories of particles in the system but only determines classes of trajectories which are available upon to-
pological constraints. Thus, if one considers physical factors which restrict availability of particular classes of 
trajectories (e.g., specific topology of configuration space of N particles system located on specified manifold), 
one should describe a condition upon which one can determine whether a specific trajectory class is possible or 
not. In the case of N particles system on 2D plane in the presence of a perpendicular strong magnetic field such a 
condition can be based on the cyclotron radius. Although cyclotron radius is properly defined for free particles 
one can still consider some kind of focusing of charged particle motion on the cyclotron radius scale even in the 
presence of interaction, especially in homogeneous planar system with isotropic interaction. One can also ob-
serve that for noninteracting fermions we have in the case of completely filled LLL exactly one external field  

flux quantum 
e

hc
 per particle which means that the cyclotron radius is defined by the single flux quantum.  

Here must be emphasized that in the case of the degenerated LLL all particles have the same cyclotron radius. 
Even though the velocity is not well determined in the LLL (their coordinates do not commute as the operators), 
all particles have, however, the same kinetic energy, thus all particles have the same averaged velocity and the 
same cyclotron radius. In order to determine whether a trajectory class is available for particles in the system can 
be brought to comparison of cyclotron orbit size with distance between particles, which for homogeneous sys-
tem is defined from density and blocked by Coulomb repulsion preventing approaching one particle onto anoth-
er one. The distance between particles in homogeneous system is protected by the short-range part of the Cou-
lomb interaction. Thus potentially available trajectory must ensure reaching neighboring particles, i.e., the tra-
jectory must fit to the minimal distance between particles. The rigorous requirement to keep minimal distance 
intact leads to the observation that in too strong magnetic field (when the cyclotron radius is smaller than half of 
the minimal distance) some trajectory classes are unavailable for particles—as shown in Figure 6. 

In 2D charged system in the presence of the perpendicular magnetic field only cyclotron trajectories are 
available for particles. Thus if one increases the magnetic field magnitude then the cyclotron radius will de-
crease causing the trajectory of particles exchange impossible. The simplest exchange was the implementation  

 

 
Figure 6. Schematic presentation of effective growth of cyclotron 
radius in 2D case for multi-looped cyclotron trajectory in compari-
son to single-looped trajectory (length A − B means uniform separa-
tion between particles in the system). 
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of the generators of the full braid group and now they cannot be defined. If one excludes unavailable trajectories 
too short for exchanges, the rest of the full braid group occurs a subgroup generated by new generators describ-
ing in 2D multi-looped braids and corresponding to multi-looped cyclotron trajectories. These multi-looped 
cyclotron trajectories have the larger effective size allowing to match neighboring particles at strong magnetic 
field presence. This subgroup we call cyclotron braid group (or subgroup). 

The exchange trajectories of neighboring particles—the generators of braid group—are open trajectories i the 
geometrical presentation (in fact for indistinguishable particles the initial and final particle ordering are bound 
despite remunerations, but for geometrical presentation of braid group some selected, arbitrary ordering of par-
ticles is assumed). Nevertheless, the cyclotron trajectories are closed trajectories despite the enumeration of par-
ticles (only for closed trajectories one can define the piercing flux of the magnetic field). Thus, one must con-
sider closed cyclotron trajectories. The smallest closed trajectory is a double exchange (two semicircles create 
closed circle in the simplest case of single-looped exchanges). If now one considers multi-looped exchanges (for 

1 qν = , q—odd), one has to take also into account closed trajectories related to cyclotron trajectories—each 
particle traverses a closed cyclotron trajectory with 1q −  additional loops. Closed loops can be added only by 
one, therefore the simplest exchange with one additional loop results in three-looped cyclotron trajectory of in-
dividual particles. This explains why FQHE manifests in simplest case for 1 3ν = . Summarizing this argumen-
tation, we emphasize that additional loops can be added to single exchange trajectory (braid group generator) 
one by one (in order to keep the exchange character of the trajectory). Then to the closed trajectories (double 
exchange) must be added the double number of the additional loops, two in the case of 1 3ν = . That is why 
braid trajectories are odd-looped trajectories (1, 3, 5, 7, etc. for respectively 1ν = , 1 3ν = , 1 5nu =  etc.) and 
not even-looped closed trajectories (such trajectories divided on half will not give an exchange trajectory). For 

1 qν =  LLL fillings particles traverse the closed individual cyclotron trajectories with 1q −  additional loops 
and simultaneously open exchange trajectories with ( )1 2q −  additional loops. 

Those multi-looped closed trajectories in case of 2D have enhanced effective cyclotron radius which allows 
particles to exchange and to define the statistics. Each additional loop cannot add any new surface in 2D space. 
For e.g., 1 3ν =  the cyclotron radius is too short for exchanges. For each particle at corresponding magnetic 
field we have 3 flux quanta 3 ehc . But the cyclotron trajectory is defined by a single flux quantum. However, 
if one considers 3-looped cyclotron trajectory in 2D with the size as trajectory corresponding to 3 ehc  then the 
total flux of external field does not change. The surface of the multi-looped trajectory also fits to the particle se-
paration distance, but through every loop passes only single flux quantum because in 2D the total flux must be 
shared between all loops, which means that in the multi-looped case the effective cyclotron radius is greater than 
for single-looped trajectory. It is illustrated in Figure 6 for 1 3ν =  case and the arrow represents the single 
flux quantum defining the cyclotron radius. 

The Coulomb interaction plays a central role in the collective state with Laughlin correlations [17]-[19] pro-
tecting the uniform equidistant distribution of particles. Nevertheless, in 2D systems upon the quantized mag-
netic field, the interaction of charges cannot be accounted for in a manner of the standard dressing of particles 
with the interaction as it was typical for quasiparticles in solids, because in 2D Hall regime this interaction does 
not have a continuous spectrum with respect to particle separation expressed by relative angular momentum 
projection [17] [18]. This non-continuous character of the interaction contribution in 2D charged systems upon 
sufficiently strong magnetic fields precludes the continuity of the mass operator which prevents the quasiparticle 
definition (as a pole of the retarded single-particle Green function). 

5. Topological Chern Insulators 
Investigation of IQHE and then of FQHE in 2D charged systems opened a broad area of topologically condi-
tioned effects [26]. Especially deeply developed with this regard is the present understanding of IQHE treated in 
single-particle and topological terms [7]. This is based on the observation that the IQHE states protected by 
Landau quantization gaps are not connected with symmetry breaking as many other condensed matter phases in 
scenario of ordinary phase transitions, but rather with some topological invariants associated to a particular 
geometry and matter organization [6] [27]. These invariants are better and better recognized currently in terms 
of homotopy groups related to specially defined multidimensional transformations of physically conditioned ob-
jects like Green functions and their derivatives [28] [29], previously developed for description of topology of 
textures in multicomponent condensed matter states with rich matrix order parameter, including superfluid He3 
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or liquid crystals [4]. The role of various factors protecting gaps separating flat bands (almost degenerated, as 
LLs at the interaction presence, and massively degenerated in the absence of the interaction) are of particular in-
terest in view of the role of the magnetic field breaking time reversion or other effects like spin-orbit interaction 
or special type (time-reversion breaking) traversing around the closed loop inside an elementary cell with com-
plex hopping constants. Generalization of the familiar in mathematics Chern invariants [5] is developed in order 
to grasp the essential topology of various multiparticle structures [5]-[7]. The mappings of the Brillouin zone 
into the state related objects can be in that manner classified by disjoint classes corresponding to topologically 
nonequivalent band organizations protected by energy gaps conditioned by various physical factors and leading 
to distinct incompressible states in analogy to their prototype in the form of IQHE. The distinctive character of 
2D space is linked in the latter case with the magnetic field flux quantization. 

Topological notions allow for definition of a new state of crystal called topological insulator. Despite of the 
local similarity between the gapped states of the ordinary and the topological insulator, the global arrangement 
of the band, noticeable only non-locally (on the Brillouin zone as a whole), induces different overall behavior of 
the system. In the case of topological insulator one deals with insulating state inside the sample, whereas with 
conducting non-dissipative state on the sample edge, protected topologically, what is, however, no case for or-
dinary insulating state. This surprising phenomenon was confirmed experimentally, which was a strong stimulus 
to the rapid and enormous great growth of the interest. 

The topological insulators from point of view of band organization must be characterized by flat bands which 
meet in summits of locally cone shaped valleys resembling Dirac points in graphene. These Dirac points 
changes the topology and allow Chern-type invariant to attain nonzero value, indicating the emergence of the 
different global state. Spin degrees of freedom are of high significance with regard to topological arrangement 
and related spin-type topological insulators are referred as to spin IQHE. 

Commonly accepted definition of the topological insulator emphasizes the robust metallic character of the 
edge or surface states and extended bulk insulating states that are also robust against disorder. This is an ex-
traordinary behavior, especially in two-dimensional models—when an edge or a surface is cut in a sample of 
topological insulator, the emerging edge states seem to be connected to these bulk states. The edge states can be 
viewed as these extended bulk states terminating at the boundary. For this reason, the bulk and the edge proper-
ties of the topological insulators are equally important and mutually dependent. This is the development of the 
interpretation of IQHE revealed a spectacular emergence of non-dissipative charge currents flowing around the 
edges of any finite IQHE sample. The IQHE was observed only in the presence of an externally applied mag-
netic field. 

In 1988 Haldane presented a model of a condensed matter phase that exhibits IQHE without the need of a 
macroscopic magnetic field [30]. The general idea of this effect can be sketched by writing a model Hamiltonian, 
for the system of spinless particles occupying a honeycomb-type planar lattice with one state n  per site,  

, ,

ˆ . .n
n m n m

H n m n m h cξ= +  +  ∑ ∑ ,                           (5) 

where ,n m  indicates summation over nearest neighbors, whereas the symbol ,n m  indicates that the 
summation includes also next-nearest neighbors, the hopping factor ( )0.5n nt iξ η α= +  is assumed artificially 
as a complex number, and 1nα = ±  depending on how n is positioned in the unit cell (equivalently an isospin 
can be introduced here), as is shown in Figure 7. The essence of the topological effect is linked with imaginary 
contribution to hopping factor given by η. The band structure corresponding to this Hamiltonian depends on pa-
rameters t, η and exhibits nontrivial topological properties (expressed by the Chern number C) for various values 
t, η. 

The difference between a quantum Hall state and an ordinary insulator is a matter of topology [8]. A 2D band 
structure consists of a mapping from the momentum k defined on a torus of the Brillouin zone to the Bloch Ha-
miltonian ( )H k . Gapped band structures can be classified topologically by considering the equivalence classes 
of this mapping that can not be continuously deformed into one another without closing the energy gap. These 
classes are distinguished by integer topological invariants—the Chern numbers. The Chern numbers were intro-
duced in the theory of fiber bundles [10], and they can be understood physically in terms of the Berry phase [9] 
associated with the Bloch wave functions ( )mu k . When k traverses a closed loop, the Bloch function acquires 
a Berry phase given by the line integral of m m k mi u u= ∇A , or by a surface integral of the Berry field 

m m= ∇×F A . The Chern invariant is the total Berry field flux for the Brillouin zone,  
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Figure 7. The honeycomb structure (similar as in graphene) 
for the Haldane model [30]; e1, e2 are Bravais lattice vectors, 
nonequivalent site positions in the unit cell are indicated by 

1α = ± . 
 

21 d
2π mC k Z= ∈∫ F ,                                  (6) 

C is integer for reasons analogous to the quantization of the Dirac magnetic monopole. The Chern number, C, is 
a topological invariant in the sense that it cannot change when the Hamiltonian varies smoothly and this explains 
the quantization of conductivity in IQHE [8]. Helpful would be here a simple analogy. Rather than maps from 
the Brillouin zone to a Hilbert space, one can consider maps from two to three dimensions, which describe sur-
faces. 2D surfaces can be topologically classified by their genus g, which counts the number of holes. For in-
stance, a sphere has g = 0, while a torus has g = 1. A theorem in mathematics states that the integral of the Gaus-
sian curvature over a closed surface is a quantized topological invariant, and its value is related to g. The Chern 
number is an integral of a related curvature. 

Change of the Chern number requires closing the insulating gap. This happens for the Hamiltonian (5) in the 
Dirac-like points when the locally cone shaped valleys of conduction and valence bands touch together. This al-
lows for the change of the Chern number and for the metallic boundary states protected by still insulating phase 
inside the sample [6] [7]. 

The systems that behave like the one described by Haldane are now called Chern insulators. The time reversal 
symmetry in these systems is broken like in the IQHE, but it is broken by the presence of a net magnetic mo-
ment in each unit cell rather than by an external magnetic field, as it was the case for IQHE. The Chern insula-
tors were never found experimentally as of yet. 

Fractional Chern Insulators 
Recently grew up a new field related to IQHE and its fractional version, namely Chern insulators and fractional 
Chern insulators, respectively. There is linked with development of Haldane model of IQHE effect without 
Landau levels, but with time-braking imaginary part of hopping factors for carries on planar lattice instead of the 
external magnetic field. The quantization of carrier orbit along elementary cell is given in this case by the quan-
tization of the Berry field flux which can be expressed by the Chern numbers. Even though neither Chern insu-
lator nor its fractional state is not observed experimentally, the theoretical studies are currently extensively de-
veloping [31] [32]. From exact diagonalization of corresponding Hamiltonians, provided they give sufficiently 
flat bends, it follows that the interaction causes collective state analogous to FQHE, though without any mag-
netic field and with the dynamics assigned by nontrivial Chern number. What is especially challenging, the frac-  

tional Chern insulator is predicted for fractional ( 1
p

, p—odd integer) fillings of planar crystal lattice, analo-  

gously to ordinary FQHE. Again arises a question of how single particle trajectories ranged by Berry field flux 
quantization to the elementary cell can match every third cell (for 1/3 filling). The concept of CFs with auxiliary 
field flux-tubes is not useful here, due to absence of the magnetic field. The trajectories must be, however, en-
larged somehow to allow organization of the collective state with the determined statistics via particle inter-
changes. 

Again here the multi-looped braid subgroup might be the solution of the problem with too short orbits, espe-
cially in this case which is without any other conceptual competition (composite fermions are associated with 
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magnetic field flux tubes, but here no magnetic field presents). This supports the topological attitude to fraction-
al correlated 2D states which is robust against details of quantized field flux and explains the occurrence of such 
states only at specific fractions for fillings, surprisingly coinciding for FQHE and for fractional Chern insulators. 

To be more specific with this regard, the recent analyzes of FQHE in model systems without Landau levels 
[33] [34] are worth emphasizing also. In the paper [33] there is constructed a class of model Hamiltonians on 2D 
lattice which give nearly-flat bands with nontrivial topology. This property is regarded as a required prerequisite 
for organization of FQHE-like states when interaction would be next included. For flat band the kinetic energy 
is frozen which allows the interaction to dominate and create strongly correlated state of FQHE type. This has 
been theoretically verified in the paper [34] for a checkerboard lattice including nearest and next-nearest interac-
tion in model Hamiltonian of the form,  

0
, ,

i j i j
i j i j

H H U n n V n n= − + +∑ ∑ ,                              (7) 

where H0 is a two-band checkerboard lattice model with nonzero Chern number implemented by complex hop-
ping factors of the type,  

( )0 1
,

e . .iji
i j

i j
H t c c h c Hψ += − + +∑ ,                              (8) 

and H1 describes ordinary real-number-assigned hopping between next and next-next nearest neighbors [33]. 
Some attributes characteristic for FQHE have been indicated within this model for fractional fillings 1/3 and 1/5 
(in the latter case repulsion V was required above a certain threshold value, unless U enhances strongly) [34]. 
This observation supports an idea of multi-looped structure of quasiclassical wave packets which in this way can 
reach equidistantly separated 2D particles (in every third cell for 1 3ν = ) due to repulsion interaction in almost 
flat band with suppressed kinetic energy, quite similarly as in the described above 2DEG system in the magnetic 
field. Though any links can be here drawn toward CF model with auxiliary magnetic field flux quanta attached 
to hypothetical composite particles, the multi-looped requirements in order to enhance orbits still hold. As num-
ber of loops can be only integer, this explains the fractional structure of fillings exactly in the same manner as in 
the case of 2DEG upon strong magnetic field. The role of cyclotron orbit quantization is substituted here by the 
orbit quantization due to Chern number invariant conservation (i.e., the quantization of the Berry field flux in-
stead of the magnetic field flux). 

6. Conclusions 
By means of braid group approach it is possible to select appropriate braid subgroups of the full braid group of 
which one dimensional unitary representations (1DURs) define effective particles in the correlated states re-
ferred to FQHE. The argumentation is linked with the simple observation that at fractional fillings of the LLL 
the cyclotron trajectories which build braids in equidistantly distributed 2D charged system are too short in 
comparison to particle separation when the magnetic field is sufficiently strong. This precludes particle ex-
changes which is, however, necessary for organization of the collective multiparticle state with the determined 
statistics according to 1DURs of related braid group. One can observe that only at these filling fractions at which 
FQHE occurs the multi-looped braid structure recover exchanges along enhanced cyclotron trajectories. This 
enhancement is an exclusive property of 2D system when additional loops of cyclotron trajectory cannot add a 
surface (oppositely to 3D multi-looped trajectory), but must share the same total external magnetic field flux, 
which leads to effective enlargement of cyclotron orbits. For 1 q  fillings of the LLL, the braid trajectories must 
be q-looped and then corresponding cyclotron orbits match neighboring particles without any artificial construc-
tions. This unavoidable property of braids directly gives Laughlin correlations in the natural way and simulta-
neously explains the underlying spirit and structure of composite fermions phenomenologically introduced to il-
lustrate Laughlin correlations. The flux tubes attached to composite fermions do not actually exist and they 
model the result of additional cyclotron loops presence. Recently developed theoretical studies of the fractional 
Chern insulators support correlated states with similar fractional hierarchy as in FQHE but without any magnetic 
field. This apparently goes beyond the explanation ability of the standard CF concept due to absence of the 
magnetic field in such systems, but still admit the multi-looped braid group explanation. Instead of the magnetic 
field quantization in fractional topological Chern insulators one can consider quantization of the Berry field flux 
which selects orbits similarly to magnetic field flux quantization. Multi-looped trajectories are here responsible 
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for the same hierarchy of fillings as in FQHE. This evidences some advantages of the homotopy braid group ap-
proach to correlations in various 2D systems. 

Acknowledgements 
The support from the NCN Project UMO-2011/02/A/ST3/00116 is acknowledged. 

References 
[1] Ryder, L.H. (1996) Quantum Field Theory. 2nd Edition, Cambridge University Press, Cambridge.  

http://dx.doi.org/10.1017/CBO9780511813900 
[2] Spanier, E. (1966) Algebraic Topology. Springer-Verlag, Berlin. 
[3] Hatcher, A. (2002) Algebraic Topology. Cambridge University Press, Cambridge. 
[4] Mermin, N. (1979) The Topological Theory of Defects in Ordered Media. Reviews of Modern Physics, 51, 591.  

http://dx.doi.org/10.1103/RevModPhys.51.591 
[5] Prodan, E. (2011) Disordered Topological Insulators: A Non-Commutative Geometry Perspective. Journal of Physics 

A: Mathematical and Theoretical, 44, Article ID: 113001. http://dx.doi.org/10.1088/1751-8113/44/11/113001 
[6] Hasan, M.Z. and Kane, C.L. (2010) Colloquium: Topological Insulators. Reviews of Modern Physics, 82, 3045-3067. 
[7] Qi, X.L. and Zhang, S.C. (2011) Topological Insulators and Superconductors. Reviews of Modern Physics, 83, 1057.  

http://dx.doi.org/10.1103/RevModPhys.83.1057 
[8] Thouless, D.J., Kohmoto, M., Nightingale, M.P. and den Nijs, M. (1982) Quantized Hall Conductance in a Two- 

Dimensional Periodic Potential. Physical Review Letters, 49, 405. http://dx.doi.org/10.1103/PhysRevLett.49.405 
[9] Berry, M.V. (1984) Quantal Phase Factors Accompanying Adiabatic Changes. Proceedings of the Royal Society of 

London. Series A, Mathematical and Physical Sciences, 392, 45-57. 
[10] Nakahara, M. (1990) Geometry, Topology and Physics. Adam Hilger, Bristol. 
[11] Birman, J.S. (1974) Braids, Links and Mapping Class Groups. Princeton University Press, Princeton.  
[12] Laidlaw, M.G. and DeWitt, C.M. (1971) Feynman Functional Integrals for Systems of Indistinguishable Particles. 

Physical Review D, 3, 1375-1378. http://dx.doi.org/10.1103/PhysRevD.3.1375 
[13] Jacak, J., Jóźwiak, I. and Jacak, L. (2009) New Implementation of Composite Fermions in Terms of Subgroups of a 

Braid Group. Physics Letters A, 374, 346-350. http://dx.doi.org/10.1016/j.physleta.2009.10.075 
[14] Jacak, J., Jóźwiak, I., Jacak, L. and Wieczorek, K. (2010) Cyclotron Braid Group Structure for Composite Fermions. 

Journal of Physics: Condensed Matter, 22, Article ID: 355602. http://dx.doi.org/10.1088/0953-8984/22/35/355602 
[15] Pan, W., Störmer, H.L., Tsui, D.C., Pfeiffer, L.N., Baldwin, K.W. and West, K.W. (2003) Fractional Quantum Hall 

Effect of Composite Fermions. Physical Review Letters, 90, Article ID: 016801.  
http://dx.doi.org/10.1103/PhysRevLett.90.016801 

[16] Laughlin, R.B. (1983) Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged 
Excitations. Physical Review Letters, 50, 1395-1398. http://dx.doi.org/10.1103/PhysRevLett.50.1395 

[17] Haldane, F.D.M. (1983) Fractional Quantization of the Hall Effect: A Hierarchy of Incompressible Quantum Fluid 
States. Physical Review Letters, 51, 605-608. http://dx.doi.org/10.1103/PhysRevLett.51.605 

[18] Prange, R.E. and Girvin, S.M. (1990) The Quantum Hall Effect. Springer-Verlag, New York.  
http://dx.doi.org/10.1007/978-1-4612-3350-3 

[19] Laughlin, R.B. (1983) Quantized Motion of Three Two-Dimensional Electrons in a Strong Magnetic Field. Physical 
Review B, 27, 3383-3389. http://dx.doi.org/10.1103/PhysRevB.27.3383 

[20] Landau, L.D. and Lifshitz, E.M. (1972) Quantum Mechanics: Non-Relativistic Theory. Nauka, Moscow.  
[21] Abrikosov, A.A., Gorkov, L.P. and Dzialoshinskii, I.E. (1975) Methods of Quantum Field Theory in Statistical Physics. 

Dover Publications Inc., Dover.  
[22] Jain, J.K. (1989) Composite-Fermion Approach for the Fractional Quantum Hall Effect. Physical Review Letters, 63, 

199-202. http://dx.doi.org/10.1103/PhysRevLett.63.199 
[23] Wilczek, F. (1990) Fractional Statistics and Anyon Superconductivity. World Scientific, Singapore City.  

http://dx.doi.org/10.1142/0961 
[24] Wu, Y.S. (1984) General Theory for Quantum Statistics in Two Dimensions. Physical Review Letters, 52, 2103-2106.  

http://dx.doi.org/10.1103/PhysRevLett.52.2103 
[25] Sudarshan, E.C.G., Imbo, T.D. and Govindarajan, T.R. (1988) Configuration Space Topology and Quantum Internal 

http://dx.doi.org/10.1017/CBO9780511813900
http://dx.doi.org/10.1103/RevModPhys.51.591
http://dx.doi.org/10.1088/1751-8113/44/11/113001
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/PhysRevD.3.1375
http://dx.doi.org/10.1016/j.physleta.2009.10.075
http://dx.doi.org/10.1088/0953-8984/22/35/355602
http://dx.doi.org/10.1103/PhysRevLett.90.016801
http://dx.doi.org/10.1103/PhysRevLett.50.1395
http://dx.doi.org/10.1103/PhysRevLett.51.605
http://dx.doi.org/10.1007/978-1-4612-3350-3
http://dx.doi.org/10.1103/PhysRevB.27.3383
http://dx.doi.org/10.1103/PhysRevLett.63.199
http://dx.doi.org/10.1142/0961
http://dx.doi.org/10.1103/PhysRevLett.52.2103


J. Jacak et al. 
 

 
358 

Symmetries. Physics Letters B, 213, 471-476. http://dx.doi.org/10.1016/0370-2693(88)91294-4 
[26] Avron, J.E., Osadchy, D. and Seiler, R. (2003) A Topological Look at the Quantum Hall Effect. Physics Today, 56, 38- 

42.  
[27] Qi, X.L. and Zhang, S.C. (2010) The Quantum Spin Hall Effect and Topological Insulators. arXiv:1001.1602v1 

[cond-mat.mtrl-sci]  
[28] Wang, Z., Qi, X.L. and Zhang, S.C. (2010) Topological Order Parameters for Interacting Topological Insulators. Phys-

ical Review Letters, 105, Article ID: 256803. http://dx.doi.org/10.1103/PhysRevLett.105.256803 
[29] Qi, X.L. (2011) Generic Wave-Function Description of Fractional Quantum Anomalous Hall States and Fractional 

Topological Insulators. Physical Review Letters, 107, Article ID: 126803.  
http://dx.doi.org/10.1103/PhysRevLett.107.126803 

[30] Haldane, F.D.M. (1988) Model of Quantum Hall Effect without Landau Levels: Condensed Matter Realization of the 
“Parity Anomaly”. Physical Review Letters, 61, 2015-2018. http://dx.doi.org/10.1103/PhysRevLett.61.2015 

[31] Kourtis, S., Venderbos, J.W.F. and Daghofer, M. (2012) Fractional Chern Insulator on a Triangular Lattice of Strongly 
Correlated t2g Electrons. Physical Review B, 86, Article ID: 235118. http://dx.doi.org/10.1103/PhysRevB.86.235118 

[32] Parameswaran, S.A., Roy, R. and Sondhi, S.L. (2013) Fractional Quantum Hall Physics in Topological Flat Bands. 
Comptes Rendus Physique, 14, 816-839. http://dx.doi.org/10.1016/j.crhy.2013.04.003 

[33] Sun, K., Gu, Z., Katsura, H. and Das Sarma, S. (2011) Nearly Flatbands with Nontrivial Topology. Physical Review 
Letters, 106, Article ID: 236803. http://dx.doi.org/10.1103/PhysRevLett.106.236803 

[34] Sheng, D.N., Gu, Z.C., Sun, K. and Sheng, L. (2011) Fractional Quantum Hall Effect in the Absence of Landau Levels. 
arXiv:1102.2658v1 [cond-mat.str-el]  

http://dx.doi.org/10.1016/0370-2693(88)91294-4
http://dx.doi.org/10.1103/PhysRevLett.105.256803
http://dx.doi.org/10.1103/PhysRevLett.107.126803
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1103/PhysRevB.86.235118
http://dx.doi.org/10.1016/j.crhy.2013.04.003
http://dx.doi.org/10.1103/PhysRevLett.106.236803


Applied Mathematics, 2015, 6, 359-372 
Published Online February 2015 in SciRes. http://www.scirp.org/journal/am 
http://dx.doi.org/10.4236/am.2015.62034   

How to cite this paper: Zheng, J., Okamura, H. and Dohi, T. (2015) Availability Importance Measures for Virtualized System 
with Live Migration. Applied Mathematics, 6, 359-372. http://dx.doi.org/10.4236/am.2015.62034   

 
 

Availability Importance Measures for 
Virtualized System with Live Migration 
Junjun Zheng, Hiroyuki Okamura, Tadashi Dohi 
Department of Information Engineering, Graduate School of Engineering, Hiroshima University, 
Higashi-Hiroshima, Japan 
Email: z1023@s.rel.hiroshima-u.ac.jp, okamu@rel.hiroshima-u.ac.jp, dohi@rel.hiroshima-u.ac.jp  
 
Received 16 January 2015; accepted 6 February 2015; published 10 February 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
This paper presents component importance analysis for virtualized system with live migration. 
The component importance analysis is significant to determine the system design of virtualized 
system from availability and cost points of view. This paper discusses the importance of compo-
nents with respect to system availability. Specifically, we introduce two different component im-
portance analyses for hybrid model (fault trees and continuous-time Markov chains) and conti-
nuous-time Markov chains, and show the analysis for existing probabilistic models for virtualized 
system. In numerical examples, we illustrate the quantitative component importance analysis for 
virtualized system with live migration. 

 
Keywords 
Virtualized System, Live Migration, System Availability, Component Importance Analysis, Fault 
Tree, Continuous-Time Markov Chain 

 
 

1. Introduction 
Virtualization is one of the key technologies to deploy cloud computing, which provides a variety of system re-
sources as a service over the Internet [1]. The virtualization is to create software components that emulate beha-
vior of hardware units and platform, and is to control them in a software platform. The virtualization can be 
classified to several classes. For example, VMware, Xen and KVM can provide virtual machines that emulate 
physical computers as software. Also Docker offers more lightweight virtual machines than VMware, Xen and 
KVM as processes. From the reliability point of view, the virtualization is promising to deploy high-availability 
(HA) system. As is well known, the most popular virtualization is to create virtual machines (VMs) as software 
components that behave actual computers. However, since VMs are essentially software processes on platform, 
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they can be migrated to another physical server running the virtualization platform. In particular, if two physical 
servers have the same platform that can drive virtual machines, we exploit the live migration between them [2]. 
The live migration is a technique that allows a server administrator to move a running virtual machine of appli-
cation between different physical machines without disconnecting the client or application. The live migration 
drastically improves the system availability by migrating a failed virtual machine on a platform to another plat-
form. 

Although the virtualization is a promising way for HA services, the design of system architecture is not so 
easy, compared to non-virtual system. For example, the system availability can easily be improved by increasing 
physical servers which run the virtualization platform. However, from the points of cost and energy consump-
tion, it is not always the best design. That is, towards the best design of virtualized system, we should consider 
the method to evaluate the system performance beforehand. 

On the performance index, Kundu et al. [3] presented statistical models using regression and artificial Neural 
networks. Also, Okamura et al. [4] proposed a queueing model to evaluate energy efficiency of virtualized sys-
tem design. On the system index for reliability and availability, Cully et al. [5] and Farr et al. [6] built and eva-
luated their schemes to enhance the system availability in virtualized system design. Myint and Thein [7] also 
evaluated a system architecture combining virtualization and rejuvenation. Vishwanath and Nagappan [8] col-
lected operation data of virtualized system and performed statistical analysis to reveal a causal relationship be-
tween server failures and hardware repairs. Kim et al. [9] focused on failure modes of virtualized system and 
presented availability evaluation using fault trees and continuous-time Markov chains (CTMCs). Also Matos et 
al. [10] developed the CTMC model representing the dynamic behaviors of live migration in the virtualized 
system. Zheng et al. [11] considered the component importance analysis for non-virtualized and virtualized sys-
tem based on the model by Kim et al. [9]. 

This paper is an extension work of [11]. In [11], we have developed a method to evaluate the importance (the 
effect of a component’s availability on the system availability) of components for hybrid models. The hybrid 
model consists of fault trees (FTs) and CTMCs. The FTs are top level descriptions for the system failure and 
represent causal relationship between component failures and system failures. The disadvantage of FT is not to 
describe the dynamic behaviors. To address this problem, dynamic FT is also proposed in [12]. On the other 
hand, CTMC can well describe the dynamic behaviors of system. In the hybrid model, CTMCs are used for de-
fining the behavior of components. The advantage of hybrid model is to obtain the structure function of system 
failure with respect to component failures from FT and to be able to define the dynamic behaviors of compo-
nents. Based on this feature, we have proposed the component importance analysis for hybrid model in [11]. 
However, the hybrid model had a limitation for the model expression. For example, when two or more compo-
nents have interactions between them, the structure function cannot always be explicitly expressed. In such cases, 
we cannot use the hybrid model. Instead of using the hybrid model, we should use a CTMC describing whole 
the system behavior. In the component analysis of virtualized system, the behavior of live migration is this case. 
In fact, Matos et al. [10] presented only a CTMC for the live migration. Since the structure function cannot be 
obtained from the CTMC, we cannot also apply the component importance analysis by [11] to the live migration 
model. In this paper, we introduce the state-of-art component importance analysis [13] and apply it to the 
CTMC-based live migration model to reveal the component importance in the context of live migration. 

The rest of this paper is organized as follows. Section 2 presents the hybrid model for virtualized system de-
sign in [11], and introduces the component importance analysis for the hybrid model from the availability point 
of view. In Section 3, we explain the CTMC model for live migration presented in [10], and show the compo-
nent importance analysis by using only CTMCs. In Section 4, we illustrate the component importance analysis 
of hybrid model and live migration model for virtualized system. Section 5 concludes this paper with some re-
marks. 

2. Availability Importance Analysis for Hybrid Model  
2.1. Fault Trees  
In this section, we introduce the availability model for virtualized system which was presented in [9]. For exam-
ple, the system under consideration provides two different services such as Web and SQL servers to clients. 
When one of the servers has been stopped, the system also causes a system failure. In [9], they assumed that a 
host equips not only hardware units; CPU, memory (Mem), power subsystem (Pow), network device (Net), 
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cooling subsystem (Cool) but also a software component; virtual machine manager (VMM). 
Figure 1 illustrates the fault tree (FT) for virtualized system when there are two physical hosts. In the system 

design, each host provides a specific service, and is supposed to install the same VMM where the virtual ma-
chines (VMs) run and provide the services. One of the important features provided by the VMM is the live mi-
gration [2]. The live migration is a technique that can enhance the system availability by migrating the VMs 
when system failure occurs. More precisely, when a physical host is stopped, all the VMs running on the host 
can migrate to another physical host without the down time. In fact, most of the VMM products such as Xen, 
VMware and Hyper-V provide the live migration. However, in order to use the live migration, the two hosts are 
required to share a common storage area network (SAN) which is a service to provide hard disk drives through a 
high-speed network using Fiber Channel or iSCSI technologies. In Figure 1, the top event means the system 
failure and the leaf nodes correspond to the events that respective components are failed. The nodes, H1 (H2) 
and HW1 (HW2) represent the events that the host 1 (host 2) is failed and the hardware failure occurs in the host 
1 (host 2), respectively. The failure of the system is given by an AND gate because of the live migration. In ad-
dition, the VM failure (VM1 or VM2) is connected to the failure of another host (H2 or H1) with an AND gate. 
This is because even if the VM is failed on one VMM, it can be migrated to another VMM. On the other hand, 
the failure of SAN causes the system failure directly, and therefore the top event is given by an OR gate con-
nected to these events. 

2.2. Continuous-Time Markov Chain (CTMC) Models  
In [9], Kim et al. defined the continuous-time Markov chain (CTMC) models to represent behavior of hardware 
and software components. This section briefly introduces the CTMC models presented in [9]. 

In the availability modeling, the state of system can be classified into two sets:  , the set of up (operational) 
states in which the system is available; and  , the set of down (or failure ) states in which the system is un-
available. Figure 2 shows the 3-state CTMC availability models of CPU and Mem components proposed in [9]. 
In the figure, the states UP, DN and RP mean that the component is available, the component is failed, and the 
component is under repair, respectively. Hence the states DN and RP are classified into   set in the availabil-
ity model. Moreover, λ  and µ  denote failure and repair rates of the component. For example, if the host 
equips 2-way CPUs, the failure rate is given by CPU2λ λ=  by using the failure rate of a single CPU because 
both processors are needed for the operation. Also, the transition from DN to RP corresponds to the event that a 
repair person is summoned and its mean time is given by 1 α  using the rate of summoning inherent in the 
component. 
 

 
Figure 1. The FT diagram of virtualized system. 
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As seen in Figure 3, Kim et al. [9] applied the 5-state availability model to describe the dynamic behaviors of 
components Pow and Net which are described as 2-unit redundant (parallel) subsystems. In the figure, white and 
gray nodes represent up and down states respectively. The main difference from the 3-state availability model is 
to add the state U1 representing that only one unit is failed, since the component failure is caused when both of 
two units are failed. Moreover, the model adds a repair state RP2 where two units are failed. For the components, 
Cool and SAN, the CTMC models are extended from the 5-state availability model. Concretely, in the CTMC 
for Cool as shown in Figure 4, they added a transition from RP to RP2, namely, the Cool availability model al-
lows the event occurrence that one unit fails while another unit is under repair. In the CTMC for SAN as shown 
in Figure 5, a state CP is put to the transition between the states UP and RP, which means the mirrored data is 
copied from a working disk unit to the repaired disk unit under RAID1 design. The transition rate from CP to 
UP is given by SANχ . Additionally, since the working disk unit may fail in the CP state, they added a transition 
from CP to RP2 with the failure rate of a disk unit SANλ . 

The CTMC model for VMM is given by Figure 6. As seen in this figure, since the software failure cannot be 
detected immediately, the state DT is added, which means the failure is detected. In [9], after the failure detec-
tion, the system takes an action to reboot VMM with mean time 1 β . It is empirically known that most of tran-
sient failures in software can be recovered by the system reboot [14]. In this CTMC model, the reboot will be 
unsuccessful with probability ( )1 b− . Hence the state DW indicates that the failure is not recovered by a failed 
system reboot, and a repair person is summoned. 

In [9], based on the CTMC model in Figure 6, they built the CTMC model for VM which takes account of 
the dynamic behaviors of the live migration. Thus the CTMC model for VM was quite complicated so that the  
 

     
Figure 2. State transition diagram of the CPU and memory availability models. 

 

 
Figure 3. State transition diagram of the power (or network card) 
availability model. 

 

 
Figure 4. State transition diagram of the cooling system availa-
bility model. 
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Figure 5. State transition diagram of the SAN availability model. 

 

 
Figure 6. State transition diagram of the VMM/VM availability 
model. 

 
system failure in the virtualized system cannot be represented by the FT. Since this paper describes the correla-
tion between the failures of VM and host by the AND gate in the FT representation, the CTMC model simply 
becomes the same model as VMM, i.e., the model of Figure 6 can also represent the availability for VM. 

Based on these CTMC models, the steady-state availability for component x can be calculated as follows. 

[ )the cumulative available time during 0,
limx kt k

t
A

t
π

→∞ ∈

= = ∑


                   (1) 

where kπ  is the steady-state probability of state k in the availability model and   is the set of up states. The 
steady-state probability kπ  is computed by numerical methods given in [15].  

2.3. Importance Measures  
Let Ai be the steady-state availability of component i. Then we have the following steady-state availability for a 
host in the virtualized system according to the FT analysis:  

VMM
HW

,H i
i

A A A
∈

= ∏                                      (2) 

where HW is the set of { }CPU,Mem, Net,Pow,Cool . Then the system availability can be obtained  

( )( )( )H1 H2 H1 VM2 H2 VM1 H1 H2 VM2 VM1 SAN1 1 ,SA A A A A A A A A A A A= − + + − + −               (3) 

where 1i iA A= − . The above equation is often called the structure function which represents the effect of com-
ponent availability on the system availability. 

In [15], Cassady et al. proposed the importance measures of components in terms of availability. They as-
sumed the FT model with the events that are described by the 2-state availability model. The 2-state availability 
model is a CTMC model with only two states: up and down. In such modeling, Cassady et al. [16] defined two 
importance measures as the derivatives of the system availability:  
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1 1,     ,S S

i i
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I I

A Aλ µλ µ
∂ ∂

= =
∂ ∂

                                (4) 

where iλ  and iµ  are the failure and repair rates of component i, i.e., the transition rates from up to down and 
from down to up in the 2-state availability model, respectively. These measures come from the idea behind the 
Birnbaum measure [17]. 

In this paper, since we do not treat the 2-state availability model to represent the component availability, the 
importance measures proposed in [16] cannot directly be applied to evaluating the virtualized system. This paper 
proposes a preprocessing based on the aggregation of CTMC-based availability model [18] before applying the 
availability importance measures. 

The aggregation is a technique to transform CTMC-based availability models into a equivalent 2-state, 
2-transition availability model which has the same availability as the original model. As mentioned before, the 
states of CTMC-based availability models can be classified into   (up states) and   (down states) sets. The 
aggregation technique converts the   and   sets to the up and down states of the equivalent 2-state, 
2-transition availability model. The essential problem of the aggregation is to find the transition rates; failure 
and repair rates that ensure the steady-state probability of the up (down) set in the original model equals that of 
the up (down) state in the equivalent 2-state, 2-transition model. From the argument of CTMC, such failure and 
repair rates can be computed as follows.  

( ) ( ), ,, ,,     ,
i i j i i ji j i j

i ii i

t tπ π
λ µ

π π
∈ × ∈ ×

∈ ∈

= =
∑ ∑
∑ ∑





   

 

                          (5) 

where the set ×   indicates the transitions from up to down state in the original model. Also, ,i jt  denotes 
the transition rate from state i to state j in the original model. For simplification, , 0i jt =  if there is no transition 
from state i to state j. The calculated failure and repair rates λ  and µ  in the equivalent 2-state, 2-transition 
availability model are called the equivalent failure and repair rates [18]. In this paper, we call the equivalent 
failure and repair rates as the effective failure and repair rates. 

By applying the aggregation to the component availability models as preprocessing, the availability impor-
tance measures of the component i can be rewritten by  

,,

1 1,     ,S S
ii

S S ii

A A
I I

A Aµλ µλ
∂ ∂

= =
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







                               (6) 

where iλ  and iµ  are the effective failure and repair rates of component i.  

3. Component Importance for Live Migration  
In the previous section, we have introduced the component importance for the structure function given by the FT 
model. The model considered the live migration as a static structure. However, since the live migration is essen-
tially described by a dynamic behavior, the previous method cannot analyze how effect of components on the 
dynamic behaviors of live migration. Thus in this section, we consider the component importance on live migra-
tion from the viewpoint of dynamic behaviors, that is, we apply the component importance analysis for a CTMC 
representing the dynamic behaviors of live migration presented in [10]. 

3.1. Model Description  
Matos et al. [10] presented the CTMC for live migration in the virtualized system. This availability model does 
not consider the detailed behavior of hardware components (e.g., CPU, Mem, Pow) and the VMM, but only the 
components of VMs (VM1 and VM2), hosts (H1 and H2) and applications (App1 and App2).  

Table 1 shows notations for the state of system which are based on the current conditions of components. 
Concretely, each state is indicated by six characters. The first character means the state of H1. The notations “U”, 
“F” and “D” correspond to the conditions where H1 is up, H1 fails and the failure is detected, respectively. The 
second character represents the state of VM1 and its application (App1). When both are up, the character is giv-
en by “U”. If VM1 fails, it is “Fv”. When the failure is detected, the character becomes “Dv”. Also, when a ma-
nual repair is applied, the character is “Pv”. If App1 fails, it is “Fa”. When the failure of App1 is detected, the  
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Table 1. The states of system. 

State Description 

UUXUUX VM1 is running on H1, VM2 is running on H2. 

FXXUUX H1 is failed, VM1 is failed due to the failure of H1. 
VM2 is running on H2. 

DXXUUR H1 failure is detected, VM1 is restarting on H2. 

DXXUUU H1 is down, VM1 and VM2 are running on H2. 

UXXUUU H1 is up, VM1 and VM2 are running on H2. 

UXXFXX H1 is up, H2 is failed. 
VM1 and VM2 are failed due to the failure of H2. 

URXDXX H2 failure is detected. 
VM1 is restarting on H1. 

DXXFXX H1 is down, H2 is failed. 

DXXDXX H1 is down, H2 failure is detected. 

DXXURX H1 is down, H2 is up, VM2 is restarting on H2. 

UXXURX H1 is up, H2 is up, VM2 is restarting on H2. 

UXXUUR H1 is up, VM2 is running on H2. 
VM1 is restarting on H2. 

UFaXUUX App1 is failed, both VMs and Hosts are up. 

UDaXUUX App1 failure is detected. 

UPaXUUX App1 failure is not covered. 
Additional recovery step is started. 

UFvXUUX H1 is up, VM1 is failed, VM2 is running on H2. 

UDvXUUX VM1 failure is detected. 

UPvXUUX VM1 failure is not covered. 

 Manual repair is started. 

 
state of system is represented by “Da”. If App1 requires an additional repair in the case where the application 
restart cannot solve the problem, the character is given by “Pa”. Also, when VM1 and App1 are restarting, the 
state is given by “R”. If VM1 and App1 are not running on the H1, then the character is “X”. The third character 
represents whether or not VM2 and App2 are running on H1. If VM2 and App2 run on H1, the character is giv-
en by “U”. If they are restarting on H1, the character is “R”. Otherwise, if they are not running on H1, the cha-
racter is “X”. The fourth through sixth characters represent the state of H2 in the same manner as the first 
through third characters. Figure 7 shows the state transition diagram for live migration in the virtualized system 
which is described by the CTMC model in [10]. Also, Table 2 presents the parameters of the CTMC model. For 
example, 1 hλ  is MTTF (mean time to failure) of host H1 and H2, and then hλ  is a failure rate which is a 
transition rate in the CTMC. 

3.2. Importance Analysis  
Dissimilar to the case of FT model, we do not know the structure function in the CTMC. We consider the com-
ponent importance analysis by only using the parameter sensitivity analysis. 

Let Q be the infinitesimal generator of CTMC described in Figure 7. Then the steady-state probability vector 
πs is given by the linear equations;  

,     1,s s= =π Q π0 1                                      (7) 
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Figure 7. CTMC availability model for live migration. 

 
Table 2. Model parameters. 

Params Description 

1 hλ  Mean time to host failure 

1 vλ  Mean time to VM failure 

1 aλ  Mean time to Application failure 

1 hδ  Mean time for host failure detection 

1 vδ  Mean time for VM failure detection 

1 aδ  Mean time for App failure detection 

1 vm  Mean time to migrate a VM 

1 vr  Mean time to restart a VM 

1 hµ  Mean time to repair a host 

1 vµ  Mean time to repair a VM 

1 1aµ  Mean time to App first repair (covered case) 

1 2aµ  Mean time to App second repair (not covered case) 

vc  coverage factor for VM repair 

ac  coverage factor for application repair 

 
where 1 is a column vector whose elements are 1. Also we define the following vectors:  
• { }, 1,2hi i∈ξ : a 0 - 1 vector whose elements are 1 in the state where H1 or H2 is up.  
• { }, 1,2vi i∈ξ : a 0 - 1 vector whose elements are 1 in the state where VM1 or VM2 is up.  
• { }, 1,2ai i∈ξ : a 0 - 1 vector whose elements are 1 in the state where App1 or App2 is up.  
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• sysξ : a 0 - 1 vector whose elements are 1 in the state where the system is up.  
Then the component availability is given by a inner product of πs and ⋅ξ ; for example, the component availa-

bility of H1 becomes  

1 1.h s hA = π ξ                                         (8) 

On the other hand, the system availability can be obtained by  
.S s sysA = π ξ                                         (9) 

Similar to the case of FT model, we define the importance measures of component i as follows.  

,,

1 1,     ,S S
ii

S S ii
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I I
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∂ ∂

= =
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







                              (10) 

where iλ  and iµ  are the effective failure and repair rates of component i. They can be computed by the ag-
gregation technique introduced in Section 2.3. Also, we have  

( ), 2
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Similarly, the importance measure with respect to repair rate is given by  
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                                (12) 

Thus the problem is to estimate the sensitivity S iA A∂ ∂  without the structure function. 
To estimate the sensitivities for all the component availabilities, we consider the sensitivities of system and 

component availabilities with respect to model parameters. Suppose that 1, , mθ θ  are model parameters of the 
underlying CTMC. Here we define a matrix J and a column vector z whose elements are the sensitivities for all 
the component availabilities and the system availability with respect to the model parameters, i.e.,  
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1 1 1 1
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2 2 2 2
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where 1, , nA A  represent component availabilities for all the components. These sensitivities can be obtained 
by solving the following linear equations:  

( ) ( ) ( ),     ,     0.j s j s j
j j

θ θ θ
θ θ
∂ ∂

= = − =
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s π s Q π Q s 1                      (14) 

By using the vector ( )jθs , the sensitivities are given by  

( ) ( ),     .i S
j i j sys

j j

A A
θ θ

θ θ
∂ ∂

= =
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s ξ s ξ                             (15) 

According to [19], the estimates of S iA A∂ ∂  can be obtained by  

( )
T

1T T

1 2

= ,S S S

n

A A A
A A A

− ∂ ∂ ∂
 ∂ ∂ ∂ 

J J J z                           (16) 

where T is the transpose operator. By substituting the estimates of the sensitivities into Equations (11) and (12), 
we have the component importance measures for live migration.  
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4. Numerical Illustration  
4.1. Hybrid Model  
In this section, we illustrate the quantitative component importance analysis of hybrid model for virtualized sys-
tem. Table 3 presents the parameters of the CTMC models for all components. For example, CPU1 λ  is mean 
time for CPU failure, and Mem1 µ  is mean time to repair one memory (i.e., MTTR of one memory). Also we 
give other model parameters in Table 4. 

Using the aggregation technique, we first transform the availability models for all components into the equiv-
alent 2-state, 2-transition models, then compute the effective failure and repair rates for components based on 
the model parameters. We also compute the component availabilities, and these results are shown in Table 5. 
From this table, we can see the availabilities of hardware units are relatively high by the comparison to the 
availabilities of software components, especially for SAN, the availability is quite high. 

We then compute the system availabilities based on the structure functions and the component availabilities. 
The availabilities of a hardware unit and a host, and the system availability are presented in Table 6. From this 
table, the sufficiently high availability of the virtualized system implies that the live migration is considerably 
effective to enhance the system availability. 

Next we derive the importance measures of components in the virtualized system by using Equation (6), and 
the effective failure and repair rates shown in Table 5. The importance measures of components in terms of the 
system availability are shown in Table 7. Note that this table presents the importance measures of components 
only in a host, because the components of the host 1 and 2 are assumed to be the same in the system design, and 
the importance measures of same components in the host 1 and 2 are identical. 
 

Table 3. MTTF/MTTR of components. 

Params Description Value (hours) 

CPU1 λ  MTTF of CPU 2,500,000 

Mem1 λ  MTTF of Mem 480,000 

Pow1 λ  MTTF of Pow 670,000 

Net1 λ  MTTF of Net 120,000 

Cool1 λ  MTTF of Cool 3,100,000 

SAN1 λ  MTTF of SAN 20,000,000 

VMM1 λ  MTTF of VMM 2880 

VM1 λ  MTTF of VM 2880 

CPU1 µ  MTTR of CPU 0.5 

Mem1 µ  MTTR of Mem 0.5 

Pow1 1µ  MTTR of one power module 0.5 

Pow1 2µ  MTTR of two power modules 1 

Net1 1µ  MTTR of one network device 0.5 

Net1 2µ  MTTR of two network devices 1 

Cool1 1µ  MTTR of one cooler module 0.5 

Cool1 2µ  MTTR of two cooler modules 1 

SAN1 1µ  MTTR of one disk unit 0.5 

SAN1 2µ  MTTR of two disk units 1 

VMM1 µ  MTTR of VMM 1 

VM1 µ  MTTR of VM 0.5 



J. Zheng et al. 
 

 
369 

Table 4. Other model parameters. 

Params Description Value 

SP1 α  Mean time to repair person summoned 30 minutes 

SAN1 χ  Mean time to copy data 20 minutes 

VMM1 δ  Mean time for VMM failure detection 30 seconds 

VM1 δ  Mean time for VM failure detection 30 seconds 

VMM1 β  Mean time to reboot VMM 10 minutes 

VM1 β  Mean time to reboot VM 5 minutes 

VMMb  Coverage factor for VMM reboot 0.9 

VMb  Coverage factor for VM reboot 0.95 

 
Table 5. Effective failure and repair rates and component availabili-
ties. 

Component iλ  iµ  iA  

CPU 8.0000000e−7 1.0000000 0.99999920 

Mem 8.3333333e−6 1.0000000 0.99999167 

Net 1.6666528e−5 1.9999833 0.99999167 

Pow 2.9850702e−6 1.9999970 0.99999851 

Cool 6.4516108e−7 1.9999990 0.99999968 

VMM 3.4722222e−4 3.0769231 0.99988717 

VM 3.4722222e−4 7.0588235 0.99995081 

SAN 9.9999992e−8 1.9999999 0.99999995 

 
Table 6. Availabilities of hardware units, host and system. 

System Availability 

HW1 and HW2 0.99998072 

H1 and H2 0.99986789 

System availability 0.99999992 

 
Table 7. Component importance measures in the virtualized system. 

Component ,i
I
λ

 ,iIµ  

CPU 1.8126415e−4 1.4501132e−10 

Mem 1.8126278e−4 1.5105232e−09 

Net 9.0632147e−5 7.5526790e−10 

Pow 9.0632147e−5 1.3527186e−10 

Cool 9.0632162e−5 2.9236186e−11 

VMM 5.8904249e−5 6.6471808e−09 

VM 1.8711815e−5 9.2043069e−10 

SAN 0.5000000000 2.4999999e−08 
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Table 7 shows that the importance measure with respect to failure rate is higher than that with respect to re-
pair rate for any component. The importance measure regarding failure rate, ,iIλ , indicates the relative im-
provement in system availability resulting from a decrease to the component failure rate. Similarly, the impor-
tance measure regarding repair rate, ,iIµ , indicates the relative improvement in system availability resulting 
from an increase to the component repair rate. Thus, to improve the system availability, the more efficient way 
is to decrease the failure rates of components. Also, as seen in this table, it is easy to find that the importance 
measures of SAN are much higher than those of the other components, especially the importance measure with 
respect to failure rate, ,SANIλ . The highest importance of SAN indicates that the improvement of failure rate of 
SAN is the most efficient way to improve the system availability. In other words, SAN is a bottleneck of availa-
bility, though its availability seems to be high. Besides, from Table 5, we find the repair rates of CPU and Mem 
are not so high. This implies that the failures of CPU and Mem cause long down time. Hence their importance 
measures with respect to failure rate are relatively higher than the others except SAN. Moreover, we find that 
the importance measures of VM and VMM are not high in Table 7. This is caused by the fact that VM and 
VMM can be migrated when a failure of a host occurs. Therefore, VM and VMM are not critical components, 
compared to SAN. 

4.2. Dynamic Model for Live Migration  
This section illustrates the quantitative component importance analysis of the CTMC for live migration in the 
virtualized system. Based on these parameters shown in Table 8, we first compute the availabilities for all 
components and system which are shown in Table 9. From this table, we find that the availability of VM is the 
highest among those of the other components because of the live migration. 

Next we compute the effective failure and repair rates for all components based on the aggregation of CTMC 
model, and the results are shown in Table 10. From this table, it is found that the repair rate of VM are much 
higher than that in Table 5. As mentioned before, the FT model considered the live migration as a static struc-
ture which cannot represent the dynamic behaviors of system. However, since the live migration is essentially 
described by a dynamic behavior, the dynamic behaviors have been taken into account in the CTMC model for 
live migration. The higher repair rate of VM confirms the effectiveness of live migration in the virtualized system. 
Table 11 presents the importance measures for components in the virtualized system. As observed in Table 10  
 

Table 8. Model parameters. 

Params Description Value 

1 hλ  Mean time for host failure 2654 hr 

1 vλ  Mean time for VM failure 2893 hr 

1 aλ  Mean time to Application failure 175 hr 

1 hδ  Mean time for host failure detection 30 sec 

1 vδ  Mean time for VM failure detection 30 sec 

1 aδ  Mean time for App failure detection 30 sec 

1 vm  Mean time to migrate a VM 330 sec 

1 vr  Mean time to restart a VM 50 sec 

1 hµ  Mean time to repair a host 100 min 

1 vµ  Mean time to repair a VM 30 min 

1 1aµ  Mean time to App first repair  
(covered case) 1 min 

1 2aµ  Mean time to App second repair  
(not covered case) 20 min 

vc  Coverage factor for VM repair 0.95 

ac  Coverage factor for application repair 0.8 
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Table 9. Availabilities of host, VM, application components and 
system. 

System Availability 

H1 and H2 0.9993644 

VM1 and VM2 0.9999746 

App1 and App2 0.9994520 

System availability 0.9999992 

 
Table 10. Effective failure and repair rates. 

Component iλ  iµ  

H1 and H2 3.763673e−4 0.5917368 

VM1 and VM2 7.212219e−4 28.351750 

App1 and App2 6.425198e−3 11.718790 

 
Table 11. Component importance measures in the dynamic model for 
live migration. 

Component ,i
I
λ

 ,iIµ  

H1 and H2 2.118715e−03 1.347584e−06 

VM1 and VM2 1.675414e−12 4.261977e−17 

App1 and App2 9.438502e−13 5.174957e−16 

 
and Table 11, we find that, although the failure rate of VM is higher than that of host, the importance measures 
of VM are much lower than those of host. This is because the repair rate of VM is very high. Also, comparing 
Table 9 with Table 10, we can see that the availability of host is the lowest among those of others, because the 
repair rate of host is also the lowest. This indicates that, the component host is important, and any change in its 
associated parameters will have a large effect on the system availability. And this conclusion also can be con-
firmed from Table 11. 

Table 11 shows that the importance measures of host is the most highest. Moreover, by comparing between 
the importance measure with respect to failure and repair rates for each component, it is found that the impor-
tance measure with respect to failure rate is higher than that with respect to repair rate. Therefore, it indicates 
that the improvement of failure rate of host is more efficient to enhance the system availability. 

5. Conclusions  
In this paper, we have dealt with quantitative component importance analysis of virtualized system with live 
migration in terms of availability. In [11], we have developed a method to evaluate the importance of compo-
nents for hybrid model which consists of fault trees (FTs) and CTMCs. However, the hybrid model had a limita-
tion for the model expression in the situation where two or more components have interactions between them. 
Instead of using the hybrid model, we considered a CTMC model for live migration presented in [10]. This pa-
per introduced the state-of-art component importance analysis [13] and applied it to the CTMC-based live mi-
gration model to reveal the component importance in the context of live migration. More precisely, our method 
is based on the aggregation techniques of CTMC-based availability models [18] and the importance measures 
with respect to failure and repair rates [16]. Also, we proposed a method to estimate the sensitivities of system 
availability with respect to component availabilities. In numerical examples, we illustrated the quantitative 
component importance analysis of hybrid model and live migration model for virtualized system, and compared 
the importance of components. In future, we intend to improve our method so that it can be applied to more 
complicated event models. Also, we will focus on the component importance analysis for Markov chain in terms 
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of reliability. 
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Abstract 
In this paper we take { }Q T T T T T T T T7 6 5 4 3 2 1 0= , , , , , , ,  subsemilattice of X-semilattice of unions D 
which satisfies the following conditions: 

T T T T T⊂ ⊂ ⊂ ⊂7 5 3 1 0 , T T T T T⊂ ⊂ ⊂ ⊂7 6 4 2 0 , T T T T T⊂ ⊂ ⊂ ⊂7 5 4 1 0 , T T T T T⊂ ⊂ ⊂ ⊂7 5 4 2 0 , 
T T T T T⊂ ⊂ ⊂ ⊂7 6 4 1 0 , \T T ≠ ∅5 6 , \T T ≠ ∅6 5 , \T T ≠ ∅4 3 , \T T ≠ ∅3 4 , \T T ≠ ∅2 1 ,  

\T T ≠ ∅1 2 , T T T∪6 5 4= , T T T∪4 3 1= , T T T∪2 1 0= . 

We will investigate the properties of regular elements of the complete semigroup of binary rela-
tions ( )XB D  satisfying ( )V D α Q, = . For the case where X is a finite set we derive formulas by 
means of which we can calculate the numbers of regular elements and right units of the respective 
semigroup. 

 
Keywords 
Semilattice, Semigroup, Regular Element, Right Unit, Binary Relation 

 
 

1. Introduction 
Let X be an arbitrary nonempty set and D be an X-semilattice of unions, which means a nonempty set of subsets 
of the set X that is closed with respect to the set-theoretic operations of unification of elements from D. Let’s 
denote an arbitrary mapping from X into D by f. For each f there exists a binary relation fα  on the set X that  
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satisfies the condition { } ( )( )f
x X

x f xα
∈

= ×


. Let denote the set of all such fα  ( ):f X D→  by ( )XB D . It  

is not hard to prove that ( )XB D  is a semigroup with respect to the operation of multiplication of binary rela-
tions. ( )XB D  is called a complete semigroup of binary relations defined by a X-semilattice of unions D (see 
[1], Item 2.1), ([2], Item 2.1]). 

An empty binary relation or an empty subset of the set X is denoted by ∅ . The form x yα  is used to ex-
press that ( ),x y α∈ . Also, in this paper following conditions are used ,x y X∈ , Y X⊆ , ( )XB Dα ∈ ,  
T D∈ , D D′∅ ≠ ⊆  and 

Y D
t D Y

∈

∈ =




. Moreover, following sets are denoted by given symbols:  

{ } ( ) { }

{ } { } { }
{ } ( ) ( ) { }

,   ,   , ,

,   ,   .

,   , \ ,   .

y Y

t T

T T T

y x X y x Y y V D Y Y D

X T T X D Z D t Z D Z D T Z

D Z D Z T l D T D D Y x X x Tα

α α α α α α

α

∈

∗

= ∈ = = ∈

′ ′ ′ ′ ′ ′ ′ ′= ∅ ≠ ⊆ = ∈ ∈ = ∈ ⊆

′ ′ ′ ′ ′ ′ ′= ∈ ⊆ = ∪ = ∈ =



 

And ( ), tD D∧  is an exact lower bound of the set tD  in the semilattice D. 
Definition 1.1. Let ( )XB Dε ∈ . If ε ε ε=  or α ε α=  for any ( )XB Dα ∈ , then ε  is called an idem-

potent element or called right unit of the semigroup ( )XB D  respectively (see [1]-[3]). 
Definition 1.2. An element α  taken from the semigroup ( )XB D called a regular element of the semigroup 
( )XB D  if in ( )XB D  there exists an element β  such that α β α α=   (see [1]-[4]). 

Definition 1.3. We say that a complete X-semilattice of unions D is an XI-semilattice of unions if it satisfies 
the following two conditions: 

1) ( ), tD D D∧ ∈  for any t D∈


;  
2) ( ), t

t Z
Z D D

∈

= ∧


 for any nonempty element Z of D (see [1], definition 1.14.2), ([2] definition 1.14.2), [5] 

or [6]. 
Definition 1.4. Let D be an arbitrary complete X-semilattice of unions, ( )XB Dα ∈  and  

{ }TY x X x Tα α= ∈ = . If  

[ ]
( )
( ) ( )
( ) { } ( )

, , if  ,

, , if  , ,

, , if  ,  and ,

V X D

V V X V X

V X V X D

α

α α α

α α

∗

∗ ∗

∗ ∗

 ∅∉

= ∅∈


∪ ∅ ∅∉ ∅∈

 

then it is obvious that any binary relation α  of a semigroup ( )XB D  can always be written in the form  
( )

[ ]
T

T V
Y Tα

α
α

∈

= ×


 the sequel, such a representation of a binary relation α  will be called quasinormal. 

Note that for a quasinormal representation of a binary relation α , not all sets TYα  [ ]( )T V α∈  can be dif-
ferent from an empty set. But for this representation the following conditions are always fulfilled:  

1) T TY Yα α
′∩ = ∅ , for any ,  T T D′∈  and T T ′≠ ; 

2) 
[ ]

T
T V

X Yα

α∈

=


 
(see [1], definition 1.11.1), ([2], definition 1.11.1). 

Definition 1.5. We say that a nonempty element T is a nonlimiting element of the set D' if ( )\ ,T l D T′ ≠ ∅  
and a nonempty element T is a limiting element of the set D' if ( )\ ,T l D T′ = ∅  (see [1], definition 1.13.1 and 
definition 1.13.2), ([2], definition 1.13.1 and definition 1.13.2). 

Definition 1.6. The one-to-one mapping ϕ  between the complete X-semilattices of unions ( ),Q Qφ  and 
D′′  is called a complete isomorphism if the condition 

( ) ( )
1

1
T D

D Tϕ ϕ
=

′∪ =


 

is fulfilled for each nonempty subset D1 of the semilattice D' (see [1], definition 6.3.2), ([2] definition 6.3.2) or 
[5]). 

Definition 1.7. Let α  be some binary relation of the semigroup ( )XB D . We say that the complete iso-
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morphism ϕ  between the complete semilattices of unions Q and D' is a complete α -isomorphism if  
1) ( ),Q V D α= ; 
2) ( )ϕ ∅ = ∅  for ( ),V D α∅∈  and ( )T Tϕ α =  for eny ( ),T V D α∈  (see [1], definition 6.3.3), ([2], 

definition 6.3.3). 
Lemma 1.1. Let { }1 2, , , kY y y y=   and { }1, ,j jD T T=   be any two sets. Then the number ( ),s k j  of all 

possible mappings of Y into any subset jD′  of the set that Dj such that j jT D′∈  can be calculated by the for-
mula ( ) ( ), 1 kks k j j j= − −  (see [1], Corollary 1.18.1), ([2], Corollary 1.18.1). 

Lemma 1.2. Let D by a complete X-semilattice of unions. If a binary relation ε  of the form  
{ } ( )( ) ( )( ), \t

t D
t D D X D Dε

∈

= ×∧ ∪ ×


 



 is right unit of the semigroup ( )XB D , then ε  is the greatest right  

unit of that semigroup (see [1], Lemma 12.1.2), ([2], Lemma 12.1.2). 
Theorem 1.1. Let { }1 2, , ,j jD T T T=  , X and Y- be three such sets, that Y X∅ ≠ ⊆ . If f is such mapping of 

the set X, in the set Dj, for which ( ) jf y T=  for some y Y∈ , then the number s of all those mappings f of the  
set X in the set Dj is equal to ( )( )\ 1 YX Y Ys j j j= ⋅ − −  (see [1], Theorem 1.18.2), ([2], Theorem 1.18.2). 

Theorem 1.2. Let { }1 2 1, , , , mD D Z Z Z −=


  be some finite X-semilattice of unions and  
( ) { }0 1 2 1, , , , mC D P P P P −=   be the family of sets of pairwise nonintersecting subsets of the set X. If ϕ  is a 

mapping of the semilattice D on the family of sets ( )C D  which satisfies the condition ( ) 0D Pϕ =


 and 
( )i iZ Pϕ =  for any 1,2, , 1i m= −  and { }ˆ \ZD D T D Z T= ∈ ⊆ , then the following equalities are valid:  

( )0 1 2 1 0
ˆ

,     .
Zi

m i
T D

D P P P P Z P Tϕ−
∈

= ∪ ∪ ∪ ∪ = ∪






                         (*) 

In the sequel these equalities will be called formal. 
It is proved that if the elements of the semilattice D are represented in the form (*), then among the parame-

ters Pi ( )0,1,2, , 1i m= −  there exist such parameters that cannot be empty sets for D. Such sets Pi 
( )0 1i m< ≤ −  are called basis sources, whereas sets Pi ( )0 1j m≤ ≤ −  which can be empty sets too are called 
completeness sources. 

It is proved that under the mapping ϕ  the number of covering elements of the pre-image of a basis source is 
always equal to one, while under the mapping ϕ  the number of covering elements of the pre-image of a com-
pleteness source either does not exist or is always greater than one (see [1], Item 11.4), ([2], Item 11.4) or [4]). 

Theorem 1.3. Let D be a complete X-semilattice of unions. The semigroup ( )XB D  possesses a right unit iff 
D is an XI-semilattice of unions (see [1], Theorem 6.1.3, [2], Theorem 6.1.3, [7] or [8]). 

Theorem 1.4. Let ( )XB Dβ ∈ . A binary relation β  is a regular element of the semigroup ( )XB D  iff the 
complete X-semilattice of unions ( ),D V D β′ =  satisfies the following two conditions: 

1) ( ),V X Dβ∗ ′⊆ ; 
2) D′  is a complete XI-semilattice of unions (see [1] Theorem 6.3.1), ([2], Theorem 6.3.1). 
Theorem 1.5. Let D be a finite X-semilattice of unions and α σ α α=   for some α  and σ  of the se-

migroup ( )XB D ; ( )D α  be the set of those elements T of the semilattice ( ) { }, \Q V D α= ∅  which are non-
limiting elements of the set TQ . Then a binary relation α  having a quasinormal representation of the form  

( )
( ),

T
T V D

Y Tα

α
α

∈

= ×


 is a regular element of the semigroup ( )XB D  iff the set ( ),V D α  is a XI-semilattice of  

unions and for α -isomorphism ϕ  of the semilattice ( ),V D α  on some X-subsemilattice D' of the semilat-
tice D the following conditions are fulfilled: 

1) ( )T Tϕ σ=  for any ( ),T V D α∈ ; 
2) 

( )
( )

T

T
T D

Y Tα

α
ϕ

∈

⊇




 for any ( )T D α∈ ; 

3) ( )TY Tα ϕ∩ ≠ ∅  for any element T of the set ( )TD α  (see [1], Theorem 6.3.3), ([2], Theorem 6.3.3) or 
[5]). 

2. Results 
Let D be arbitrary X-semilattice of unions and { }7 6 5 4 3 2 1 0, , , , , , ,Q T T T T T T T T D= ⊆ , which satisfies the following 
conditions: 
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7 5 3 1 0 7 6 4 2 0

7 5 4 1 0 7 5 4 2 0

7 6 4 1 0 5 6 6 5

4 3 3 4 2 1 1 2

6 5 4 4 3 1 2 1 0

,   ,
,   ,
,   \ ,   \ ,

\ ,   \ ,   \ ,   \ ,
,   ,   .

T T T T T T T T T T
T T T T T T T T T T
T T T T T T T T T
T T T Z T T T T
T T T T T T T T T

⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂

⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂

⊂ ⊂ ⊂ ⊂ ≠ ∅ ≠ ∅

≠ ∅ ≠ ∅ ≠ ∅ ≠ ∅

∪ = ∪ = ∪ =

                       (1) 

Figure 1 is a graph of semilattice Q, where the semilattice Q satisfies the conditions (1). The symbol 
( )3 ,8XΣ  is used to denote the set of all X-semilattices of unions, whose every element is isomorphic to Q. 

P7, P6, P5, P4, P3, P2, P1, P0 are pairwise disjoint subsets of the set X and let  
( ) { }7 6 5 4 3 2 1 0, , , , , , ,C Q P P P P P P P P=  be a family sets, also 

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

T T T T T T T T
P P P P P P P P

ψ
 

=  
 

 

is a mapping from the semilattice Q into the family sets ( )C Q . Then we have following formal equalities of 
the semilattice Q: 

0 0 1 2 3 4 5 6 7

1 0 2 3 4 5 6 7

2 0 1 3 4 5 6 7

3 0 2 4 5 6 7

4 0 3 5 6 7

5 0 6 7

6 0 3 5 7

7 0

,
,
,

,
,

,
,

.

T P P P P P P P P
T P P P P P P P
T P P P P P P P
T P P P P P P
T P P P P P
T P P P
T P P P P
T P

= ∪ ∪ ∪ ∪ ∪ ∪ ∪

= ∪ ∪ ∪ ∪ ∪ ∪

= ∪ ∪ ∪ ∪ ∪ ∪

= ∪ ∪ ∪ ∪ ∪

= ∪ ∪ ∪ ∪

= ∪ ∪

= ∪ ∪ ∪

=

                          (2) 

Note that the elements P1, P2, P3, P6 are basis sources, the element P0, P4, P5, P7 is sources of completenes of 
the semilattice Q. Therefore 4X ≥  and 4δ =  (see Theorem 1.2). 

Theorem 2.1. Let { } ( )7 6 5 4 3 2 1 0 3, , , , , , , ,8Q T T T T T T T T X= ∈∑ . Then Q is XI-semilattice 
Proof. Let 0t T∈ , { }tQ T Q t T= ∈ ∈  and ( ), tQ Q∧  is the exact lower bound of the set Qt in Q. Then from 

the formal equalities (2) we get that 

{ }
{ }
{ }
{ }
{ }
{ }
{ }

( )

0 0

2 0 1

3 1 0 2

6 4 2 1 0 3

3 2 1 0 4

6 4 3 2 1 0 5

5 4 3 2 1 0 6

6 5 4 3 2 1 0 7

, if  ,
, , if  ,
, , , if  ,
, , , , , if  ,

   ,
, , , , if  ,
, , , , , , if  ,
, , , , , , if  ,
, , , , , , , if  ,

t t

T t P T
T T t P
T T T t P
T T T T T t P

Q Q Q
T T T T t P
T T T T T T t P
T T T T T T t P
T T T T T T T t P

∈
 ∈
 ∈


∈= ∧ = ∈
 ∈


∈
 ∈

7 0

2 1

3 2

6 3

5 4

7 5

5 6

7 7

, if  ,
, if  ,
, if  ,
, if  ,
, if  ,
, if  ,
, if  ,
, if  ,

t P
T t P
T t P
T t P
T t P
T t P
T t P
T t P

∈
 ∈
 ∈


∈
 ∈
 ∈


∈
 ∈

 

We have { }7 6 5 3 2, , , ,Q T T T T T∧ = , ( ), tQ Q Q∧ ∈  for all t and 4 6 5T T T= ∪ , 1 6 3T T T= ∪ , 0 3 2T T T= ∪ . The 
semilattice Q, which has diagram of Figure 1, is XI-semilattice, which follows from the Definition 1.3. 

Theorem is proved. 
 

 
Figure 1. Diagram of Q. 
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Lemma 2.1. Let { } ( )7 6 5 4 3 2 1 0 3, , , , , , , ,8Q T T T T T T T T X= ∈∑ . Then following equalities are true: 

( )( )
( ) ( )

0 5 7 6 3 3 6 3 4 6 3 2 6

2 3 2 1 2 1

,   \ ,   \ ,

\ ,   \ .

P P P T T P T T P P T T T

P T T P T T

∪ ∪ = ∩ = ∪ = ∩

= =
 

Proof. This Lemma follows directly from the formal equalities (2) of the semilattice Q. 
Lemma is proved. 
Lemma 2.2. Let { } ( )7 6 5 4 3 2 1 0 3, , , , , , , ,8Q T T T T T T T T X= ∈∑ . Then the binary relation  

( )( ) ( )( ) ( )( )( )
( )( ) ( )( ) ( )( )
6 3 7 6 3 6 3 2 6 5

3 2 3 2 1 2 0 0

\ \

\ \ \

T T T T T T T T T T

T T T T T T X T T

ε = ∩ × ∪ × ∪ ∩ ×

∪ × ∪ × ∪ ×
 

is the largest right unit of the semigroup ( )XB D . 
Proof. From preposition and from Theorem 2.1 we get that Q is XI-semilattice. To prove this Lemma we will 

use Lemma 1.2, lemma 2.1, and Theorem 1.3, from where we have that the following binary relation 

{ } ( )( ) ( )( )

( )( ) ( ) ( )( ) ( ) ( ) ( )( )
( )( ) ( )( ) ( )( )( ) ( )( )
( )( ) ( )( )

0 0

0 5 7 7 3 6 4 6 5 2 3 1 2 0 0

6 3 7 6 3 6 3 2 6 5 3 2 3

2 1 2 0 0

, \

\

\ \ \

\ \ .

t
t D

t Q Q X T T

P P P T P T P P T P T P T X T T

T T T T T T T T T T T T T

T T T X T T

ε
∈

= ×∧ ∪ ×

= ∪ ∪ × ∪ × ∪ ∪ × ∪ × ∪ × ∪ ×

= ∩ × ∪ × ∪ ∩ × ∪ ×

∪ × ∪ ×





 

is the largest right unit of the semigroup ( )XB D . 
Lemma is proved.  
Lemma 2.3. Let { } ( )7 6 5 4 3 2 1 0 3, , , , , , , ,8Q T T T T T T T T X= ∈∑ . Binary relation α  having quazinormal repre-

sentation of the form 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0Y T Y T Y T Y T Y T Y T Y T Y Tα α α α α α α αα = × ∪ × ∪ × ∪ × ∪ × ∪ × ∪ × ∪ ×  

where { }7 6 5 3 2,  ,  ,  ,  Y Y Y Y Yα α α α α ∉ ∅  and ( ) ( )3, ,8V D Q Xα = ∈∑  is a regular element of the semigroup  

( )XB D  iff for some complete α -isomorphism 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

T T T T T T T T
T T T T T T T T

ϕ
 

=  
 

 of the semilattice Q  

on some X-subsemilattice { }7 6 5 4 3 2 1 0, , , , , , ,Q T T T T T T T T′ =  of the semilattice Q satisfies the following conditions: 

7 7 7 6 6 7 5 5 7 5 3 3

7 6 5 4 2 2 6 6 5 5

3 3 2 2

,   ,   ,   ,

,   ,   ,

,   .

Y T Y Y T Y Y T Y Y Y T

Y Y Y Y Y T Y T Y T

Y T Y T

α α α α α α α α

α α α α α α α

α α

⊇ ∪ ⊇ ∪ ⊇ ∪ ∪ ⊇

∪ ∪ ∪ ∪ ⊇ ∩ ≠ ∅ ∩ ≠ ∅

∩ ≠ ∅ ∩ ≠ ∅

  

Proof. It is easy to see, that the set ( ) { }7 6 5 4 3 2 1, , , , , ,Q T T T T T T Tα =  is a generating set of the semilattice Q. 
Then the following equalities are hold: 

( ) { } ( ) { } ( ) { } ( ) { }
( ) { } ( ) { } ( ) { }

7 6 5 4

3 2 1

7 7 6 7 5 7 6 5 4

7 5 3 7 6 5 4 2 7 6 5 4 3 1

,   , ,   , ,   , , , ,

, , ,   , , , , ,   , , , , , .
T T T T

T T T

Q T Q T T Q T T Q T T T T

Q T T T Q T T T T T Q T T T T T T

α α α α

α α α

= = = =

= = =

   

  

 

If we follow statement b) of the Theorem 1.5 we get that followings are true: 

7 7 7 6 6 7 5 5 7 6 5 4 4

7 5 3 3 7 6 5 4 2 2

7 6 5 4 3 1 1

,   ,   ,   

,   ,

,

Y T Y Y T Y Y T Y Y Y Y T

Y Y Y T Y Y Y Y Y T

Y Y Y Y Y Y T

α α α α α α α α α

α α α α α α α α

α α α α α α

⊇ ∪ ⊇ ∪ ⊇ ∪ ∪ ∪ ⊇

∪ ∪ ⊇ ∪ ∪ ∪ ∪ ⊇

∪ ∪ ∪ ∪ ∪ ⊇

 

From the last conditions we have that following is true:  

( ) ( )7 6 5 4 7 6 7 5 4 6 5 4 4 4 4 ,Y Y Y Y Y Y Y Y Y T T Y T Y Tα α α α α α α α α α α∪ ∪ ∪ = ∪ ∪ ∪ ∪ ⊇ ∪ ∪ = ∪ ⊇  
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( ) ( )7 6 5 4 3 1 7 5 3 7 6 4 1

3 6 4 1 1 4 1 1.

Y Y Y Y Y Y Y Y Y Y Y Y Y

T T Y Y T Y Y T

α α α α α α α α α α α α α

α α α α

∪ ∪ ∪ ∪ ∪ = ∪ ∪ ∪ ∪ ∪ ∪

⊇ ∪ ∪ ∪ = ∪ ∪ ⊇
 

Moreover, the following conditions are true:  

( ) { }( ) ( )6 6 66 6 7 6 6 6 7, \ ,   \ , \ ;T T Tl Q T Q T T T l Q T T T= ∪ = = ≠ ∅    

( ) { }( ) ( )5 5 55 5 7 5 5 5 7, \ ,   \ , \ ;T T Tl Q T Q T T T l Q T T T= ∪ = = ≠ ∅    

( ) { }( ) { } ( )4 4 44 4 7 6 5 4 4 4 4 4, \ , , ,   \ , \ ;T T Tl Q T Q T T T T T T l Q T T T= ∪ = ∪ = = =∅    

( ) { }( ) { } ( )3 3 33 3 7 5 5 3 3 3 5, \ , ,   \ , \ ;T T Tl Q T Q T T T T T l Q T T T= ∪ = ∪ = = ≠ ∅    

( ) { }( ) { } ( )2 2 22 2 7 6 5 4 4 2 2 2 4, \ , , , ,   \ , \ ;T T Tl Q T Q T T T T T T T l Q T T T= ∪ = ∪ = = ≠ ∅    

( ) { }( ) { } ( )1 1 11 1 7 6 5 4 3 1 1 1 1 1, \ , , , , ,   \ , \ ;T T Tl Q T Q T T T T T T T T l Q T T T= ∪ = ∪ = = =∅    

The elements 6 5 3 2,  ,  ,  T T T T  are nonlimiting elements of the sets ( )
6TQ α , ( )

5TQ α , ( )
3TQ α  and ( )

2TQ α   

respectively. The proof of condition 6 6Y Tα ∩ ≠ ∅ , 5 5Y Tα ∩ ≠ ∅ , 3 3Y Tα ∩ ≠ ∅  and 2 2Y Tα ∩ ≠ ∅  comes 
from the statement c) of the Theorem 1.5  

Therefore the following conditions are hold: 

7 7 7 6 6 7 5 5 7 5 3 3

7 6 5 4 2 2 6 6 5 5

3 3 2 2

,   ,   ,   ,

,   ,   ,

,   .

Y T Y Y T Y Y T Y Y Y T

Y Y Y Y Y T Y T Y T

Y T Y T

α α α α α α α α

α α α α α α α

α α

⊇ ∪ ⊇ ∪ ⊇ ∪ ∪ ⊇

∪ ∪ ∪ ∪ ⊇ ∩ ≠ ∅ ∩ ≠ ∅

∩ ≠ ∅ ∩ ≠ ∅

 

Lemma is proved. 
Definition 2.1. Assume that ( )3 ,8Q X′∈Σ . Denote by the symbol ( )R Q′  the set of all regular elements α  

of the semigroup ( )XB D , for which the semilattices Q' and Q are mutually α -isomorphic and ( ),V D Qα ′= . 
Note that, 1q = , where q is the number of automorphism of the semilattice Q. 
Theorem 2.2. Let { } ( )7 6 5 4 3 2 1 0 3, , , , , , , ,8Q T T T T T T T T X= ∈∑  and ( )3 0,8X mΣ = . If X be finite set, and the  

XI-semilattice Q and { }7 6 5 4 3 2 1 0, , , , , , ,Q T T T T T T T T′ =  (see Figure 2) are α -isomorphic, then 

( ) ( ) ( ) ( ) ( ) ( )3 2 46 3 5 6 3 2 3 2 2 1 2 1 0\\ \ \ \ \ \ \
0 2 1 2 2 1 3 2 5 4 8T T TT T T T T T T T T T T T X TR Q m ∩′ = ⋅ − ⋅ ⋅ − ⋅ − ⋅ − ⋅  

Proof. Assume that ( )R Qα ′∈ . Then a quasinormal representation of a regular binary relation α  has the 
form  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0Y T Y T Y T Y T Y T Y T Y T Y Tα α α α α α α αα = × ∪ × ∪ × ∪ × ∪ × ∪ × ∪ × ∪ ×  

where { }7 6 5 3 2,  ,  ,  ,  Y Y Y Y Yα α α α α ∉ ∅  and by Lemma 2.2 satisfies the conditions:  

7 7 7 6 6 7 5 5 7 5 3 3

7 6 5 4 2 2 6 6 5 5

3 3 2 2

,   ,   ,   ,

,   ,   ,

,   .

Y T Y Y T Y Y T Y Y Y T

Y Y Y Y Y T Y T Y T

Y T Y T

α α α α α α α α

α α α α α α α

α α

⊇ ∪ ⊇ ∪ ⊇ ∪ ∪ ⊇

∪ ∪ ∪ ∪ ⊇ ∩ ≠ ∅ ∩ ≠ ∅

∩ ≠ ∅ ∩ ≠ ∅

                 (3) 

 

 
Figure 2. Diagram of Q'.  
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Father, let fα  is a mapping the set X in the semilattice Q satisfying the conditions ( )f t tα α=  for all 
t X∈ . 0f α , 1f α , 2f α , 3f α , 4f α  and 5f α  are the restrictions of the mapping fα  on the sets 6 3T T∩ ,  

6 3\T T , ( )3 2 6\T T T∩ , 3 2\T T , 2 1\T T , 0\X T  respectively. It is clear, that the intersection disjoint elements of  

the set ( ){ }6 3 6 3 3 2 6 3 2 2 1 0, \ , \ , \ , \ , \T T T T T T T T T T T X T∩ ∩  are empty set and  

( )6 3 6 3 3 2 6 3 2 2 1 0\ \ \ \ \T T T T T T T T T T T X T X∩ ∪ ∪ ∩ ∪ ∪ ∪ = . 
We are going to find properties of the maps 1f α , 2f α , 3f α , 4f α , 5f α , 6f α .  
1) 6 3t T T∈ ∩ . Then by properties (3) we have ( ) ( )6 3 7 6 7 5 3 7t T T Y Y Y Y Y Yα α α α α α∈ ∩ ⊆ ∪ ∩ ∪ ∪ = , i.e., 7t Yα∈   

and 7t Tα =  by definition of the set 7Yα . Therefore ( )1 7f t Tα =  for all 6 3t T T∈ ∩ . 
2) 6 3\t T T∈ . Then by properties (3) we have 6 3 7 6\t T T Y Yα α∈ ⊆ ∪ , i.e., 7 6t Y Yα α∈ ∪  and { }7 6,t T Tα =  by  

definition of the set 7Yα  and 6Yα . Therefore ( ) { }2 7 6,f t T Tα =  for all 6 3\t T T∈ . 
By suppose we have that 6 6Y Tα ∩ ≠ ∅ , i.e. 1 6t Tα =  for some 1 6t T∈ . If 1 3t T∈ . Then 1 7 5 3t Y Y Yα α α∈ ∪ ∪ .  

Therefore { }1 7 5 3, ,t T T Tα ∈ . That is contradict of the equality 1 6t Tα = , while 6 7T T≠ , 6 5T T≠  and 6 3T T≠  
by definition of the semilattice Q. Therefore ( )1 1 6f t Tα =  for some 6 3\t T T∈ . 

3) ( )3 2 6\t T T T∈ ∩ . Then by properties (3) we have  

( ) ( ) ( )3 2 6 3 2 7 5 3 7 6 5 4 2 7 5\T T T T T Y Y Y Y Y Y Y Y Y Yα α α α α α α α α α∩ ⊆ ∩ ⊆ ∪ ∪ ∩ ∪ ∪ ∪ ∪ = ∪  

i.e., 7 5t Y Yα α∈ ∪  and { }7 5,t T Tα ∈  by definition of the sets 7Yα  and 5Yα . Therefore ( ) { }3 7 5,f t T Tα ∈  for all  
( )3 2 6\t T T T∈ ∩ . 

By suppose we have, that 5 5Y Tα ∩ ≠ ∅ , i.e. 3 5t Tα =  for some 3 5t T∈ . If 3 6t T∈  then 2 6 7 6 t T Y Yα α∈ ⊆ ∪ . 
Therefore { }3 7 6,t T Tα ∈ . We have contradict of the equality 2 5t Tα = , since { }5 7 6,T T T∉ . 

Therefore ( )3 3 5f t Tα =  for some 3 5 6\t T T∈ . 
4) 3 2\t T T∈ . Then by properties (3) we have 3 2 3 7 5 3\T T T Y Y Yα α α⊆ ⊆ ∪ ∪ , i.e., 7 5 3t Y Y Yα α α∈ ∪ ∪  and  
{ }7 5 3, ,t T T Tα ∈  by definition of the sets 7Yα , 5Yα , and 3Yα . Therefore ( ) { }4 7 5 3, ,f t T T Tα ∈  for all 3 2\t T T∈ . 

By suppose we have, that 3 3Y Tα ∩ ≠ ∅ , i.e. 4 3t Tα =  for some 4 3t T∈ . If 4 2t T∈ . Then  
4 2 7 6 5 4 2t T Y Y Y Y Yα α α α α∈ ⊆ ∪ ∪ ∪ ∪ . Therefore { }4 7 6 5 4 2, , , ,t T T T T Tα ∈ . We have contradict of the equality 
4 3t Tα = , since { }3 7 6 5 4 2, , , ,T T T T T T∉ . 

Therefore ( )4 4 3f t Tα =  for some 3 2\t T T∈ . 
5) 2 1\t T T∈ . Then by properties (3) we have 2 1 2 7 6 5 4 2\T T T Y Y Y Y Yα α α α α⊆ ⊆ ∪ ∪ ∪ ∪ , i.e.,  

7 6 5 4 2t Y Y Y Y Yα α α α α∈ ∪ ∪ ∪ ∪  and { }7 6 5 4 2, , , ,t T T T T Tα ∈  by definition of the sets 7Yα , 6Yα , 5Yα , 4Yα  and  

2Yα . Therefore ( ) { }5 7 6 5 4 2, , , ,f t T T T T Tα ∈  for all 2 1\t T T∈ . 
By suppose we have, that 2 2Y Tα ∩ ≠ ∅ , i.e. 5 2t Tα =  for some 5 2t T∈ . If 5 1t T∈ . Then  

5 1 7 6 5 4 3 1t T Y Y Y Y Y Yα α α α α α∈ ⊆ ∪ ∪ ∪ ∪ ∪ . Therefore { }5 7 6 5 4 3 1, , , , ,t T T T T T Tα ∈ . We have contradict of the equal- 
ity 5 2t Tα = , since { }2 7 6 5 4 3 1, , , , ,T T T T T T T∉ . 

Therefore ( )5 5 2f t Tα =  for some 2 1\t T T∈ . 
6) 0\t X T∈ . Then by definition quasinormal representation binary relation α  and by property (3) we have  

0 7 6 5 4 3 2 1 0\t X T X Y Y Y Y Y Y Y Yα α α α α α α α∈ ⊆ = ∪ ∪ ∪ ∪ ∪ ∪ ∪ , i.e. { }7 6 5 4 3 2 1 0, , , , , , ,t T T T T T T T Tα ∈  by definition of  

the sets 7 6 5 4 3 2 1,  ,  ,  ,  ,  ,  Y Y Y Y Y Y Yα α α α α α α , 0Yα . Therefore ( ) { }6 7 6 5 4 3 2 1 0, , , , , , ,f t T T T T T T T Tα ∈  for all \t X D∈


. 
Therefore for every binary relation α  exist ordered system ( )1 2 3 4 5 6, , , , ,f f f f f fα α α α α α . It is obvious that 

for disjoint binary relations exist disjoint ordered systems.  
Father, let  

{ }
( ) { } { }

{ } { }

1 6 3 7 2 6 3 7 6

3 3 2 6 7 5 4 3 2 7 5 3

5 2 1 7 6 5 4 2 6 0 7 6 5 4 3 2 1 0

: , : \ , ,

: \ , , : \ , , ,

: \ , , , , , : \ , , , , , , , .

f T T T f T T T T

f T T T T T f T T T T T

f T T T T T T T f X T T T T T T T T T

∩ → →

∩ → →

→ →

 

are such mappings, which satisfying the conditions:  
7) ( )1 7f t T=  for all 6 3t T T∈ ∩ ; 
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8) ( ) { }2 7 6,f t T T∈  for all 6 3\t T T∈  and ( )2 1 6f t T=  for some 1 6 3\t T T∈ ; 

9) ( ) { }3 7 5,f t T T∈  for all ( )3 2 6\t T T T∈ ∩  and ( )3 2 5f t T=  for some 2 5 6\t T T∈ ; 

10) ( ) { }4 7 5 3, ,f t T T T∈  for all 3 2\t T T∈  and ( )4 3 3f t T=  for some 3 3 2\t T T∈ ; 

11) ( ) { }5 7 6 5 4 2, , , ,f t T T T T T∈  for all 2 1\t T T∈  and ( )5 4 2f t T=  for some 4 2 1\t T T∈ ; 

12) ( ) { }6 6 5 4 3 2 1 0, , , , , ,f t T T T T T T T∈  for all 0\t X T∈ . 
Now we define a map f of a set X in the semilattice D, which satisfies the condition: 

( )

( )
( )
( ) ( )
( )
( )
( )

1 6 3

2 6 3

3 3 2 6

4 3 2

5 2 1

6 0

, if  ,
, if  \ ,

, if  \ ,

, if  \ ,
, if  \ ,
, if  \ .

f t t T T
f t t T T

f t t T T T
f t

f t t T T
f t T T
f t X T

 ∈ ∩
 ∈
 ∈ ∩= 

∈




 

Father, let { } ( )( )
x X

x f xβ
∈

= ×


, { }i iY t t Tβ β= =  ( )1, 2, ,6i =  . Then binary relation β  my be repre-
sentation by form 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0Y T Y T Y T Y T Y T Y T Y T Y Tβ β β β β β β ββ = × ∪ × ∪ × ∪ × ∪ × ∪ × ∪ × ∪ ×  

and satisfying the conditions: 

7 7 7 6 6 7 5 5 7 5 3 3

7 6 5 4 2 2 6 6 5 5

3 3 2 2

,   ,   ,   ,

,   ,   ,

,   .

Y T Y Y T Y Y T Y Y Y T

Y Y Y Y Y T Y T Y T

Y T Y T

β β β β β β β β

β β β β β β β

β β

⊇ ∪ ⊇ ∪ ⊇ ∪ ∪ ⊇

∪ ∪ ∪ ∪ ⊇ ∩ ≠ ∅ ∩ ≠ ∅

∩ ≠ ∅ ∩ ≠ ∅

 

(By suppose ( )2 1 6f t T=  for some 1 6 3\t T T∈ ; ( )3 2 5f t T=  for some 2 5 6\t T T∈ ; ( )4 3 3f t T=  for some 
3 3 2\t T T∈ ; ( )5 4 2f t T=  for some 4 2 1\t T T∈ . From this and by lemma 2.3 we have that ( )R Qβ ′∈ . 

Therefore for every binary relation ( )R Qα ′∈  and ordered system ( )1 2 3 4 5 6, , , , ,f f f f f fα α α α α α  exist one to 
one mapping. 

By Theorem 1.1 the number of the mappings 0 1 2 3 4 5,  ,  ,  ,  ,  f f f f f fα α α α α α  are respectively: 
( ) ( ) ( )3 2 5 66 3 5 6 3 2 3 2 2 1 2 1 0\\ \ \ \ \ \ \1,  2 1,  2 2 1 ,  3 2 ,  5 4 ,  8T T T TT T T T T T T T T T T T X T∩ ∪− ⋅ − − −   

(see Lemma 1.1). The number of ordered system ( )1 2 3 4 5 6, , , , ,f f f f f fα α α α α α  or number idempotent elements 
of this case we my be calculated by formula 

( ) ( ) ( ) ( ) ( ) ( )3 2 46 3 5 6 3 2 3 2 2 1 2 1 0\\ \ \ \ \ \ \
0 2 1 2 2 1 3 2 5 4 8T T TT T T T T T T T T T T T X TR Q m ∩′ = ⋅ − ⋅ ⋅ − ⋅ − ⋅ − ⋅  

Theorem is proved. 
Corollary 2.1. Let { } ( )7 6 5 4 3 2 1 0 3, , , , , , , ,8Q T T T T T T T T X= ∈∑ , If X be a finite set and ( ) ( )r

XE Q  be the set of 
all right units of the semigroup ( )XB Q , then the following formula is true 

( ) ( ) ( ) ( ) ( ) ( ) ( )3 2 46 3 5 6 3 2 3 2 02 1 2 1\\ \ \ \ \\ \2 1 2 2 1 3 2 5 4 8T T TT T T T T T T T X TT T T Tr
XE Q ∩= − ⋅ ⋅ − ⋅ − ⋅ − ⋅  

Proof: This Corollary directly follows from the Theorem 2.2 and from the [2, 3 Theorem 6.3.7]. 
Corollary is proved. 
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Abstract 
This paper presents a method to solve the American option pricing problem in the Black Scholes 
framework that generalizes the Barone-Adesi, Whaley method [1]. An auxiliary parameter is in-
troduced in the American option pricing problem. Power series expansions in this parameter of 
the option price and of the corresponding free boundary are derived. These series expansions 
have the Baroni-Adesi, Whaley solution of the American option pricing problem as zero-th order 
term. The coefficients of the option price series are explicit formulae. The partial sums of the free 
boundary series are determined solving numerically nonlinear equations that depend from the 
time variable as a parameter. Numerical experiments suggest that the series expansions derived 
are convergent. The evaluation of the truncated series expansions on a grid of values of the inde-
pendent variables is easily parallelizable. The cost of computing the n-th order truncated series 
expansions is approximately proportional to n as n goes to infinity. The results obtained on a set of 
test problems with the first and second order approximations deduced from the previous series 
expansions outperform in accuracy and/or in computational cost the results obtained with several 
alternative methods to solve the American option pricing problem [1]-[3]. For example when we 
consider options with maturity time between three and ten years and positive cost of carrying pa-
rameter (i.e. when the continuous dividend yield is smaller than the risk free interest rate) the 
second order approximation of the free boundary obtained truncating the series expansions im-
proves substantially the Barone-Adesi, Whaley free boundary [1]. The website:  
http://www.econ.univpm.it/recchioni/finance/w20 contains material including animations, an 
interactive application and an app that helps the understanding of the paper. A general reference 
to the work of the authors and of their coauthors in mathematical finance is the website:  
http://www.econ.univpm.it/recchioni/finance.  
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1. Introduction 
American call and put options are one of the most traded products in financial markets. They are traded either 
standing alone or embedded in a variety of financial contracts such as, for example, convertible bonds, mort-
gages or life insurance policies. The fast and accurate evaluation of American option prices and of the corres-
ponding free boundaries is an important problem in mathematical finance. Let us restrict our attention to the 
American option pricing problem in the Black Scholes framework. Many methods have been suggested to solve 
this problem. In particular several hybrid methods have been suggested. These methods combine analytical and 
numerical approximations. For example let us mention the hybrid methods proposed by Geske, Johnson (1984) 
[4], Barone-Adesi, Whaley (1987) [1], Kim (1990) [5], Bunch, Johnson, (1992) [6], Bjerksund, Stensland (1993) 
[7], Ju, Zhong (1999) [2], Barone-Adesi (2005) [8] and Zhu (2006) [9]. 

In [1] Barone-Adesi and Whaley write the American option price as the sum of the price of the corresponding 
European option and of a quantity called early exercise premium. The European option price is given by the 
Black Scholes formula and the early exercise premium is approximated with the solution of a free boundary 
value problem for an ordinary differential equation. This ordinary differential equation is obtained dropping the 
time derivative term in the partial differential equation satisfied by the early exercise premium. Barone-Adesi 
and Whaley [1] give a simple formula for the solution of this free boundary value problem for an ordinary diffe-
rential equation. Moreover they determine an approximation of the free boundary solving numerically a nonli-
near equation that depends from the time variable as a parameter. This approximate solution of the American 
option pricing problem is called Barone-Adesi, Whaley formula and is widely used in the financial markets by 
practitioners. An exhaustive review of the methods used to solve the American option pricing problem and of 
the developments of the Barone-Adesi, Whaley method during the period 1987-2005 can be found in Barone- 
Adesi (2005) [8]. For example in 1999 Ju, Zhong [2] reconsidered the Barone-Adesi, Whaley formula of the 
early exercise premium. The Ju, Zhong formula [2] introduces a correction to the Barone-Adesi, Whaley ap-
proximation of the early exercise premium. This correction consists in writing the early exercise premium as the 
product of the Barone-Adesi, Whaley early exercise premium times a time-independent function determined 
solving an ordinary differential equation. When long dated options are considered, the Ju, Zhong formula im-
proves the approximate option price obtained with the Barone-Adesi, Whaley formula. 

Given a positive integer n, Geske and Johnson [4] approximate the price of an American put option using an 
n-fold compound option. They assume that exercise decisions are taken only at some known time values. These 
time values are a set of n points. In [4] Geske and Johnson deduce a formula to approximate the American put 
option price with a piecewise solution of the Black Scholes partial differential equation subject to boundary 
conditions imposed at the decision times. Moreover, using Richardson extrapolation, they show how to ap-
proximate the Geske, Johnson formula with a simple polynomial expression. Bunch and Johnson [6] refine the 
results obtained in [4] determining the n exercise times that maximize the accuracy of the option prices obtained. 

In [7] Bjerksund and Stensland approximate the solution of the American option pricing problem assuming a 
flat early exercise boundary and using a trigger price. Bjerksund and Stensland reduce the evaluation of an 
American call option with exercise price E and maturity time T to the evaluation of a European call up-and-out 
barrier option with knock-out barrier X, strike price E and maturity time T. A rebate given by X E−  is re-
ceived by the holder of the option at the knock-out time when the option is exercised prior to maturity time. The 
barrier X is the flat boundary that approximates the free boundary of the American option pricing problem. In [7] 
the problem of choosing X is studied. In [10] the approximation of the free boundary used in [7] is refined. In 
fact in [10] the time interval where the problem is studied is divided in two disjoint subintervals and a flat early 
exercise boundary is used in each subinterval. 

Zhu (2006) [9] considers the American put option pricing problem and derives an explicit formula of the 
American put option price associated to a numerically approximated free boundary. This formula is a Taylor’s 
series expansion with infinitely many terms. Each term of this Taylor’s expansion considered contains several 
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integrals that must be evaluated numerically. In [11] I. J. Kim, Jang, K. T. Kim show that the numerical evalua-
tion of Zhu’s formula is cumbersome and suggest a method to approximate the free boundary of the American 
option pricing problem. This method consists in the numerical solution of the integral equation satisfied by the 
free boundary deduced in [3] by Little, Pant, Hou. The solution of the American put option pricing problem 
suggested in [11] combines the integral formula of the option price obtained by I. J. Kim [5] with the approxi-
mation of the corresponding free boundary obtained solving numerically the integral equation presented in [3]. 
Note that in the option price formula contained in [5] there are several integrals that must be evaluated numeri-
cally. 

To solve the American option pricing problem instead of using hybrid methods it is possible to use only nu-
merical methods. For example the finite differences method (see [12]), the Monte Carlo method (see [13]-[18]), 
and the regression method (see [19] [20]) can be used to solve the American option pricing problem. 

Usually hybrid methods are computationally cheaper than numerical methods. However in many circums-
tances numerical methods provide approximate solutions of the American option pricing problem that are more 
accurate than those obtained with hybrid methods. In fact, at least in principle, the solutions provided by numer-
ical methods can be made arbitrarily accurate choosing appropriately the values of the parameters that define the 
approximation computed. Instead many hybrid methods have a certain accuracy that depends from the problem 
under consideration and this accuracy cannot be changed choosing parameter values. That is most of the solu-
tions found with hybrid methods do not converge to the exact solution of the American option pricing problem 
when a suitable limit is taken. Moreover most hybrid methods give satisfactory results when pricing problems 
with short maturity times are considered. The results obtained with these methods deteriorate when problems 
with medium or long maturity times are considered. 

This paper presents a hybrid method to solve the American option pricing problem. We introduce an auxiliary 
parameter in the American option pricing problem and we deduce power series expansions in this parameter of 
the option price and of the corresponding free boundary. Explicit formulae (depending from the free boundary) 
are given for the coefficients of the option price series. The partial sums of the free boundary series are deter-
mined solving numerically nonlinear equations that depend from the time variable as a parameter. These series 
expansions are a formal solution of the American option pricing problem. Numerical experiments suggest that 
the series obtained are convergent. The zero-th order term of the series expansions is the Barone-Adesi, Whaley 
solution of the American option pricing problem [1] (i.e. the Barone-Adesi, Whaley formula). The first order 
approximation of the option price deduced from the expansions developed here has some similarities with the 
early exercise premium formula suggested by Ju, Zhong [2]. 

Test problems taken from [1] [2] and [3] are studied. The behaviour of the truncated series expansions on 
these test problems is studied. In particular in the numerical experiments presented we use the n-th order ap-
proximate solutions deduced from the expansions when n = 0, 1, 2 to solve the test problems considered. These 
experiments show that each approximation order of the solution deduced from the expansions adds roughly one 
correct significant digit to the results obtained. Moreover for n = 0, 1, ∙∙∙ the computation of the n-th order ap-
proximation deduced from the expansions of the solution of the American option pricing problem on a grid of 
values of the independent variables is easily parallelizable and its computational cost is “substantially” linear in 
n as n goes to infinity. In particular the numerical experiments show that when we consider options with inter-
mediate maturity times (i.e.: maturity times ranging in the interval 3 - 10 years) the first and the second order 
approximations of the solution obtained from the series expansions improve substantially the approximate solu-
tion obtained using the Barone-Adesi, Whaley formula (see in Section 4, Table 1, Table 3, Table 4 and Figure 
2). For example the improvement obtained with the higher order terms of the expansions is significant when we 
compare the approximations of the free boundary of the American option pricing problem obtained using the 
Barone-Adesi, Whaley formula with those obtained using the n-th order truncated power series expansions, n = 
1, 2 (see Section 4, Table 1, Table 4 and Figure 2). Note that the Barone-Adesi, Whaley formula gives excel-
lent results when we consider options with short or with long maturity times and that in these circumstances 
there is no room for improvements of practical value (see [1]). 

The website: http://www.econ.univpm.it/recchioni/finance/w20 contains material including animations, an 
interactive application and an app that helps the understanding of the paper. More general references to the work 
of the authors and of their coauthors in mathematical finance are available in the website:  
http://www.econ.univpm.it/recchioni/finance.  

The paper is organized as follows. In Section 2 we formulate the American call option pricing problem in the 

http://www.econ.univpm.it/recchioni/finance/w20
http://www.econ.univpm.it/recchioni/finance
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Black Scholes framework and we introduce the auxiliary parameter that is used to solve it. In Section 3 we de-
duce the perturbation expansions in this auxiliary parameter of the American call option price and of the corres-
ponding free boundary. The analysis of Sections 2 and 3 can be easily extended from the case of the American 
call option pricing problem to the case of the American put option pricing problem. This extension is omitted for 
simplicity. In Section 4 we present the results obtained with the method developed in Sections 2 and 3 on a set 
of test problems involving American call and put options. These results are compared with those discussed in 
the scientific literature obtained with some alternative methods to solve the American option pricing problem. 

2. The American Option Pricing Problem in the Black Scholes Framework 
We follow Barone-Adesi and Whaley [1] and we consider the problem of pricing American call and put options 
on commodities in the Black Scholes framework. 

Let t be a real variable that denotes time and St, t > 0, be a real stochastic process that models the commodity 
price, that is for t > 0 the random variable St represents the commodity price at time t. We assume that under the 
risk neutral measure the commodity price satisfies the following stochastic differential equation:  

d d d ,  0,t t t tS bS t S z tσ= + >                                  (1) 

where b, σ  are real parameters, zt, t > 0, is the standard Wiener process such that 0 0z =  and dzt is its sto-
chastic differential. Equation (1) is known as Black Scholes asset price equation. The parameter 0σ >  is the 
volatility or instantaneous standard deviation and b is the cost of carrying parameter. In the most common situa-
tions we have b r d= −  where r > 0 is the risk free interest rate and d > 0 is the continuous dividend yield, see  
[1]. When needed Equation (1) is equipped with an initial condition. 

To keep the exposition simple we study only the American call option pricing problem. The American put op-
tion pricing problem can be studied analogously. However in the test problems presented in Section 4 the me-
thod developed here to solve the American option pricing problem is used to evaluate both call and put options. 

Let t = 0 be the current time, consider the problem of pricing an American call option having exercise price  
E > 0 and maturity time T > 0 written on a commodity whose price St, t > 0, satisfies (1). The price ( ),AV S t , 

( )0 fS S t< < , 0 t T< < , of this option and the corresponding free boundary ( )fS t , 0 t T< < , solve the 
following problem [21]:  

( )
22

2
2 0, 0 , 0 ,

2
A A A

A f
V V VS bS rV S S t t T
t SS

σ∂ ∂ ∂
+ + − = < < < <

∂ ∂∂
                 (2) 

with boundary conditions:  

( )0, 0, 0 ,AV t t T= < <                                    (3) 

( )( ) ( ), , 0 ,A f fV S t t S t E t T= − < <                              (4) 

( )( ), 1, 0 ,A
f

V S t t t T
S

∂
= < <

∂
                                (5) 

and final condition:  

( ) ( ) ( ), max ,0 , 0 .A fV S T S E S S T= − < <                           (6) 

Problem (2), (3), (4), (5), (6) is the American call option pricing problem in the Black Scholes framework. It 
is a free boundary value problem for the partial differential Equation (2) whose unknowns are: the option price 

( ),AV S t , ( )0 fS S t< < , 0 t T< < , and the free boundary ( )fS t , 0 t T< < , see [22]. Note that the boundary 
condition (3) can be omitted. In fact condition (3) follows from the degeneracy in 0S =  of (2) and from the 
fact that in mathematical finance only bounded solutions of (2) are meaningful (see [21] Chapter 3, p. 48-49). 
However to make easier the understanding of some choices made later (see Section 3) we prefer to state (3) ex-
plicitly. 

Let us consider the change of variable: T tτ = − , 0 t T≤ ≤ , the variable τ  is called time to maturity, and 
let us define: ( ) ( ), ,A AC S V S Tτ τ= − , ( )0 S S τ∗< < , 0 Tτ≤ ≤ , ( ) ( )fS S Tτ τ∗ = − , 0 Tτ≤ ≤ . Problem 
(2), (3), (4), (5), (6) rewritten in the variables S, τ  for the unknowns CA, S* becomes: 
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( )
22

2
2 0, 0 , 0 ,

2
A A A

A
C C CS bS rC S S T

SS
σ τ τ

τ
∗∂ ∂ ∂

− + + − = < < < <
∂ ∂∂

                  (7) 

with boundary conditions:  

( )0, 0, 0 ,AC Tτ τ= < <                                    (8) 

( )( ) ( ), , 0 ,AC S S E Tτ τ τ τ∗ ∗= − < <                               (9) 

( )( ), 1, 0 ,AC S T
S

τ τ τ∗∂
= < <

∂
                               (10) 

and initial condition:  

( ) ( ) ( ),0 max ,0 , 0 0 .AC S S E S S∗= − < <                           (11) 

Let ( ),EC S τ , 0S > , 0 Tτ< < , be the Black Scholes price of the European call option having strike price 
E, maturity time T and parameters r, b, σ . The price ( ),EC S τ , 0S > , 0 Tτ< < , has a simple expression 
given by the Black Scholes formula [21]. Note that CE is defined for 0S > , 0 Tτ< < . As done in [1] we seek 
a solution of problem (7), (8), (9), (10), (11) given by the sum of ( ),EC S τ , ( )0 S S τ∗< < , 0 Tτ< < , and of 
a quantity called early exercise premium denoted with ( ),e S τ , ( )0 S S τ∗< < , 0 Tτ< < . That is we assume 
that:  

( ) ( ) ( ) ( ), , , , 0 , 0 ,A EC S C S e S S S Tτ τ τ τ τ∗= + < < < <                     (12) 

Substituting (12) in (7), (8), (9), (10), (11) and using the fact that CE satisfies the Black Scholes partial diffe-
rential Equation (7), the boundary condition (8) and the initial condition (11) we obtain the following problem:  

( )
2 2

2
2 0, 0 , 0 ,

2
e e eS bS re S S T

SS
σ τ τ

τ
∗∂ ∂ ∂

− + + − = < < < <
∂ ∂∂

                  (13) 

with boundary conditions:  

( )0, 0, 0 ,e Tτ τ= < <                                   (14) 

( )( ) ( ) ( )( ), , , 0 ,Ee S S E C S Tτ τ τ τ τ τ∗ ∗ ∗= − − < <                      (15) 

( )( ) ( )( ), 1 , , 0 ,ECe S S T
S S

τ τ τ τ τ∗ ∗∂∂
= − < <

∂ ∂
                       (16) 

and initial condition:  

( ) ( ),0 0, 0 0 .e S S S∗= < <                                 (17) 

Problem (13), (14), (15), (16), (17) is a free boundary value problem for the partial differential Equation (13) 
in the unknowns ( ),e S τ , ( )0 S S τ∗< < , 0 Tτ< < , and ( )S τ∗ , 0 Tτ< < . 

We assume that the early exercise premium e has the following form (see [1]):  

( ) ( ) ( )( ) ( ), , , 0 , 0 ,e S K f S K S S Tτ τ τ τ τ∗= < < ≤ ≤                   (18) 

where ( )K τ , 0 Tτ< < , is a sufficiently regular function that will be chosen later and ( )( ),f S K τ , 
( )0 S S τ∗< < , 0 Tτ< < , is an auxiliary unknown that must be determined solving (13), (14), (15), (16), (17), 

(18). Substituting (18) in (13) we have: 

( ) ( )
2

2
2

11 1 0, 0 , , 0 ,f f K K fS NS Mf S S K K T
S rK f KS

τ τ τ
τ

∗  ∂ ∂ ∂ ∂
+ − + + = < < = < <  ∂ ∂ ∂∂   

     (19) 

where 22M r σ=  and 22N b σ= . Choosing ( ) 1 e rK ττ −= − , 0 Tτ≤ ≤ , (see [1]), Equation (19) becomes:  

( ) ( ) ( )
2

2
2 1 0, 0 , , 0 ,f f M fS NS f K M S S K K T

S K KS
τ τ τ∗∂ ∂ ∂ + − − − = < < = < < ∂ ∂∂  

       (20) 
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Equation (18) and the previous choice of K imply that the boundary conditions (14), (15), (16) can be rewritten 
respectively as:  

( )( )0, 0, 0 ,f K Tτ τ= < <                                 (21) 

( ) ( )( ) ( ) ( )( )( ) ( )
1, , , 0 ,Ef S K S E C S T

K
τ τ τ τ τ τ

τ
∗ ∗ ∗= − − < <                  (22) 

( ) ( )( ) ( )( ) ( )
1, 1 , , 0 .ECf S K S T

S S K
τ τ τ τ τ

τ
∗ ∗∂∂  = − < < ∂ ∂ 

                   (23) 

Note that in the formulation of problem (20), (21), (22), (23) we use the two variables τ  and K, and recall 
that these two variables are linked by the condition ( ) 1 e rK K ττ −= = − , 0 Tτ< < . Moreover from the choice 

( ) 1 e rK ττ −= − , 0 Tτ≤ ≤ , it follows that ( )0 0K = . This implies that when the function f is well behaved in 
0τ =  the function e defined in (18) satisfies the initial condition (17). 

In [1] Barone-Adesi and Whaley dropped the term ( ) ( )1 K M f K− ∂ ∂  in Equation (20) and solved the 
problem that remains. This is an ingenious and fruitful idea. In fact after dropping the term ( ) ( )1 K M f K− ∂ ∂  
in (20) the problem that remains is easy to solve, see [1], moreover the term dropped tends to zero when τ  
goes to zero and when τ  goes to T and T goes to infinity. Let f0, 0S∗  be the solution of the problem obtained 
from (20), (21), (22), (23) dropping the term ( ) ( )1 K M f K− ∂ ∂  in (20) determined by Barone-Adesi and 
Whaley in [1]. The function f0 has a closed form expression that contains the free boundary ( )0S τ∗ , 0 Tτ< < . 
The free boundary ( )0S τ∗  is defined implicitly as solution of the nonlinear Equation (23) when we have 

0f f= , 0 Tτ< < . The approximation of the free boundary of Barone-Adesi and Whaley [1] is obtained solv-
ing numerically the nonlinear equation (23) when 0f f= , 0 Tτ< < . Note that the nonlinear Equation (23) that 
defines 0S∗  depends from f0. The approximate solution of the American option pricing problem given by the 
functions f0, 0S∗  is called Barone-Adesi, Whaley formula. With abuse of notation in this paper ( )0S τ∗ , 
0 Tτ< < , denotes both the Barone-Adesi, Whaley free boundary defined implicitly by the nonlinear equation 
(23) when 0f f= , 0 Tτ< < , and its numerical approximation. 

In problem (20), (21), (22), (23) we introduce a real parameter  , 0 1≤ ≤ . The parameter   is the aux-
iliary parameter mentioned in the introduction that is used to solve the American call option pricing problem. 
That is instead of problem (20), (21), (22), (23) we consider problem:  

( ) ( ) ( )
2

2
2 1 0, 0 , , 0 , 0 1,
f f fMS NS f K M S S K K T

S K KS
τ τ τ∗∂ ∂ ∂ + − − − = < < = < < ≤ ≤ ∂ ∂∂  

  
       (24) 

( )( )0, 0, 0 , 0 1,f K Tτ τ= < < ≤ ≤                              (25) 

( ) ( )( ) ( ) ( )( )( ) ( )
1, , , 0 , 0 1,Ef S K S E C S T

K
τ τ τ τ τ τ

τ
∗ ∗ ∗= − − < < ≤ ≤                (26) 

( ) ( )( ) ( )( ) ( )
1, 1 , , 0 , 0 1,Ef CS K S T

S S K
τ τ τ τ τ

τ
∗ ∗∂ ∂ = − < < ≤ ≤ ∂ ∂ 


                 (27) 

in the unknowns f , S∗
 , 0 1≤ ≤ . The initial condition (17) and Equation (18) rewritten for the functions 

f , S∗
  become respectively:  

( ) ( ),0 0, 0 0 , 0 1,e S S S∗= < < ≤ ≤                             (28) 

and  

( ) ( ) ( )( ) ( ), , , 0 , 0 , 0 1.e S K f S K S S Tτ τ τ τ τ∗= < < ≤ ≤ ≤ ≤                   (29) 

Note that when 1=  Equation (24) reduces to Equation (20), that is when 1=  problem (24), (25), (26), 
(27), (28), (29) reduces to the American call option pricing problem (20), (21), (22), (23), (17), (18). Moreover 
when 0=  problem (24), (25), (26), (27) reduces to the problem obtained from (20), (21), (22), (23) dropping  

the term ( )1 fK M
K
∂

−
∂
  in (20), that is when 0=  problem (24), (25), (26), (27) reduces to the problem con-  
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sidered by Barone-Adesi and Whaley in [1]. Note that the solution determined in [1] of (24), (25), (26), (27) 
when 0=  satisfies the conditions (28), (29) with 0= . 

Moreover problem (24), (25), (26), (27), (28), (29) when 0+→  is a singular perturbation problem. In fact 
when 0=  in Equation (24) the term containing the higher order derivative with respect to K is multiplied by 
zero. This fact suggests that when 0+→  an expansion of f , S∗

  in powers of   with base point 0=  
cannot hold uniformly in K and S when 0 1 e rTK −< < − , ( )0 S S τ∗< <  , 0 Tτ≤ ≤ , due to the presence of a 
boundary layer in K = 0. In singular perturbation theory this kind of problems is approached using the method of 
matched asymptotic expansions [23]. The matched asymptotic expansion method builds a uniform approxima-
tion of the solution of problem (24), (25), (26), (27), (28), (29) when 0 1 e rTK −< < − , ( )0 S S τ∗< <  , 
0 Tτ< < , and 0+→  matching two series (called inner and outer expansions). Let ( )O ⋅  be the Landau 
symbol, roughly speaking in the K variable the inner expansion of the option price holds when [ ]10,K η∈ , 

( )1 Oη =  , 0+→ , and the outer expansion of the option price holds when 2K η> , ( )2 Oη =  , 0+→ , and 
only the matched expansion holds uniformly in the entire solution domain (see [23] for further details). However 
it is important to point out that in problem (24), (25), (26), (27), (28), (29)   is not a parameter of the model, 
  is only an auxiliary parameter added to the model and that in finance only the solution of the previous prob-
lem when 1=  is meaningful. The behaviour of the solution of problem (24), (25), (26), (27), (28), (29) when 

0+→  is of no interest in finance. This observation suggests that in the solution of the problem (24), (25), (26), 
(27), (28), (29) it should be possible to avoid the study of the boundary layer in K = 0 that appears when 0+→ . 
That is it should be possible to solve problem (24), (25), (26), (27), (28), (29) when 1=  with an ad hoc pro-
cedure avoiding the matched asymptotic expansions of singular perturbation theory needed to study the problem 
when 0+→ . In fact in Section 3 we build a kind of outer series expansion of the solution of problem (24), 
(25), (26), (27), (28), (29). More specifically in Section 3 we neglect the initial condition (28) and we impose 
Equation (24) and the boundary conditions (25), (26), (27) in 1=  order by order in perturbation theory to a 
series expansion of the solution of problem (4), (25), (26), (27), (28), (29). This procedure is a straightforward 
generalization of the procedure followed by Barone-Adesi and Whaley in [1] to solve problem (24), (25), (26), 
(27), (28), (29) when 0= . 

The zero-th order term of the expansions in powers of   of f , S∗
  obtained in Section 3 when 1=  are 

the functions f0, 0S∗  determined by Barone-Adesi and Whaley in [1]. Moreover the expansions developed in 
Section 3 rewritten in the variables S, τ  evaluated in 1=  and (29) are a formal series expansion of the solu-
tion of the American option pricing problem (13), (14), (15), (16), (17). 

Let us recall that in [24] a similar approach has been used in the study of barrier options. In fact in [24] it is 
considered the problem of pricing (put up-and-out) barrier options with time-dependent parameters in the Black 
Scholes framework. An auxiliary parameter is introduced in the barrier option pricing problem and a perturba-
tion expansion in this parameter of the barrier option price is deduced. Note that the perturbation problem stu-
died in [24] is a regular perturbation problem, while the perturbation problem considered here when 0+→  is 
a singular perturbation problem. 

3. A Series Expansion of the Solution of the American Option Pricing Problem 
Let us drop the initial condition (28) from problem (24), (25), (26), (27), (28), (29). That is let us consider the 
equation:  

( ) ( ) ( )
2

2
2 1 , 0 , , 0 , 0 1,
f f fMS NS f K M S S K K T

S K KS
τ τ τ∗∂ ∂ ∂ + − = − < < = < < ≤ ≤ ∂ ∂∂  

  
         (30) 

with the boundary conditions:  

( )( )0, 0, 0 , 0 1,f K Tτ τ= < < ≤ ≤                              (31) 

( ) ( )( ) ( ) ( )( )( ) ( )
1, , , 0 , 0 1,Ef S K S E C S T

K
τ τ τ τ τ τ

τ
∗ ∗ ∗= − − < < ≤ ≤                  (32) 

( ) ( )( ) ( )( ) ( )
1, 1 , , 0 , 0 1.Ef CS K S T

S S K
τ τ τ τ τ

τ
∗ ∗∂ ∂ = − < < ≤ ≤ ∂ ∂ 


                  (33) 
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Recall that once determined f , S∗
  as solution of (30), (31), (32), (33) we will recover the function e using 

(29) and that when f  is well behaved in 0τ =  the function e determined in this way will satisfy the initial 
condition (28) as a consequence of the choice ( ) 1 e rK ττ −= − , 0 Tτ< < , that implies ( )0 0K = . Let us as-
sume that the following expansions in powers of   of the functions f , S∗

 , 0 1≤ ≤ , hold:  

( )( ) ( )( ) ( )
0

ˆ, , , 0 , 0 , 0 1,j
j

j
f S K f S K S S Tτ τ τ τ

+∞
∗

=

= < < ≤ ≤ ≤ ≤∑                  (34) 

( ) ( )
0

ˆ , 0 , 0 1,j
j

j
S S Tτ τ τ

+∞
∗ ∗

=

= ≤ ≤ ≤ ≤∑                             (35) 

where the functions ˆ
jf , ˆ

jS∗ , 0,1,j =   are independent of  . 
For later convenience we define the partial sums ,nb  , ,nS∗

 , 0 1≤ ≤ , 0,1,n =  , of the series (34), (35), 
that is: 

( ) ( )( ) ( )*
, ,

0

ˆ, , , 0 , 0 , 0 1, 0,1, ,
n

j
n j n

j
b S f S K S S T nτ τ τ τ

=

= < < ≤ ≤ ≤ ≤ =∑               (36) 

( ) ( ),
0

ˆ , 0 , 0 1, 0,1, .
n

j
n j

j
S S T nτ τ τ∗ ∗

=

= ≤ ≤ ≤ ≤ =∑                         (37) 

Note that for 0,1,j =   the problems that follow define the function ˆ
jf  for ( ), 10 jS S τ∗

=< <  , 0 Tτ< < . 
To give a meaning to the sums contained in (34) and (36) we extend with zero the function ˆ

jf  when 
( ), 1jS S τ∗

=>  , 0 Tτ< < , 0,1,j =  . With abuse of notation ˆ
jf  denotes both the original function and the 

extended function 0,1,j =  . 
We impose (30), (31), (32), (33) to the series expansions (34), (35), order by order in powers of  . For n = 0, 

1, ∙∙∙ the unknowns of the n-th order problem are the functions n̂f , , 1nS∗
= . Note that as unknown of the n-th or-

der problem, we use , 1nS∗
=  instead of ˆ

nS∗ , n = 0, 1, ∙∙∙. This is due to the fact that since we are interested only 
in the solution of problem (30), (31), (32), (33) when 1=  we impose the boundary conditions (32), (33) in 

1=  instead of imposing them in 0= . This is what has been done by Barone-Adesi and Whaley [1] in the 
solution of the zero-th order problem. We simply extend the idea of Barone-Adesi and Whaley from the zero-th 
order problem to the n-th order problem, n = 1, 2, ∙∙∙. Proceeding in this way we obtain: 

For n = 0 the zero-th order problem is: 

( ) ( )
2

2 0 0
0 0, 12

ˆ ˆ
ˆ 0, 0 , , 0 ,

f f MS NS f S S K K T
S KS

τ τ τ∗
=

∂ ∂  + − = < < = < < ∂∂  
               (38) 

with boundary conditions: 

( )( )0̂ 0, 0, 0 ,f K Tτ τ= < <                                  (39) 

( ) ( )( ) ( ) ( )( )( ) ( )0 0, 1 0, 1 0, 1
1ˆ , , , 0 ,Ef S K S E C S T

K
τ τ τ τ τ τ

τ
∗ ∗ ∗

= = == − − < <                  (40) 

( ) ( )( ) ( )( ) ( )
0

0, 1 0, 1

ˆ 1, 1 , , 0 ,Ef CS K S T
S S K

τ τ τ τ τ
τ

∗ ∗
= =

∂ ∂ = − < < ∂ ∂ 
                    (41) 

for n = 1, 2, ∙∙∙ the n-th order problem is: 

( ) ( ) ( )
2

2 1
, 12

ˆ ˆ ˆ
ˆ 1 0, 0 , , 0 ,n n n
n n

f f fMS NS f K M S S K K T
S K KS

τ τ τ∗−
=

∂ ∂ ∂
+ − − − = < < = < <

∂ ∂∂          (42) 

with boundary conditions: 

( )( )ˆ 0, 0, 0 ,nf K Tτ τ= < <                                 (43) 

( ) ( )( ) ( ) ( )( )( ) ( ) ( )( ) ( ), 1 , 1 , 1 1, 1 , 1
1 1ˆ , , , , 0 ,n n n E n n nf S K S E C S b S T

K K
τ τ τ τ τ τ τ τ

τ τ
∗ ∗ ∗ ∗

= = = − = == − − − < <        (44) 
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( ) ( )( ) ( )( ) ( )( ) ( )
1, 1

, 1 , 1 , 1

ˆ 1, 1 , , , 0 .nn E
n n n

bf CS K S S T
S S S K

τ τ τ τ τ τ τ
τ

− =∗ ∗ ∗
= = =

∂ ∂ ∂
= − − < < ∂ ∂ ∂ 


           (45) 

The problems (38), (39), (40), (41) and (42), (43), (44), (45) are respectively free boundary value problems 
for the ordinary differential Equations (38) and (42). These problems depend from the parameter τ , 0 Tτ< < . 
The boundary conditions (40), (41) and (44), (45) are the boundary conditions imposed in 1=  derived from 
(32), (33). Note that we have: 0 0̂f f= , 0 0 0, 1

ˆS S S∗ ∗ ∗
== =   where f0, 0S∗  is the Barone-Adesi, Whaley solution of 

the American option pricing problem deduced in [1]. Numerical experiments have shown that the approxima-
tions of the first few orders of f and S∗  deduced from the series expansions (34), (35) with the boundary con-
ditions (40), (41) and (44), (45) imposed to the partial sums (37) evaluated in 1=  are of higher quality than 
the corresponding approximations of the same order in   obtained imposing the boundary conditions (32), (33) 
order by order in powers of   in 0= . In particular these numerical experiments show that the approxima-
tions of , 1nS∗

= , 1, 2n = , obtained solving problem (42), (43), (44), (45) are more accurate than the correspond-
ing approximations obtained evaluating in 1=  the partial sums 0

ˆn i
ii S∗

=∑  , 0 1≤ ≤ , 1, 2n = , where ˆ
iS∗ , 

1, 2i =  are the terms obtained imposing in 0=  the boundary conditions (32), (33) at the first and at the 
second order in powers of  . 

Let us consider the zero-th order problem (38), (39), (40), (41). 
From now on instead of using the notation 0̂f , 0, 1S∗

=  introduced previously we denote the solution of the 
zero-th order problem (38), (39), (40), (41) with the notation f0, 0S∗ . This choice emphasizes the fact that the 
zero-th order term of the expansions (34), (35) determined solving the previous problems is the Barone-Adesi, 
Whaley solution of the American option pricing problem. As done in [1] we seek a solution f0 of (38), (39), (40), 
(41) of the following form:  

( )( ) ( )( ) ( )( ) ( )0 0,0 0, , 0 , 0 ,q Kf S K A K S S S Tττ τ τ τ∗= < < ≤ ≤                    (46) 

where in (46) the functions 0,0A  and q are auxiliary unknowns that must be determined. Substituting (46) in 
(38) we have:  

( )( )( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )2
0,0 01 0, 0 , 0 .q K MA K S q K N q K S S T

K
ττ τ τ τ τ

τ
∗ 

+ − − = < < ≤ ≤  
 

      (47) 

Equation (47) is satisfied if we impose that:  

( )( ) ( ) ( )( ) ( )
2 1 0, 0 ,Mq K N q K T

K
τ τ τ

τ
+ − − = < <                       (48) 

the quadratic Equation (48) in the unknown q is easily solved, and one of its solutions is:  

( )( ) ( ) ( )( )21 1 1 4 , 0 .
2

q K N N M K Tτ τ τ= − + − + < <                     (49) 

From (49) it follows that ( )q K  is positive when K is positive. This means that when ( )q k  is given by (49) 
the function ( )( )0 ,f S K τ , ( )00 S S τ∗< < , 0 Tτ< < , given by (46) satisfies (39). The second solution of (48) 
is negative when K  is positive and must be discarded since the corresponding function f0 given by (46) does 
not satisfy (39). 

Substituting the formulae (46), (49) in the Equations (40), (41) we obtain respectively:  

( )( ) ( ) ( )( )( ) ( )( ) ( ) ( )( )
1

0,0 0 0
11 , , 0 ,q K ECA K S S T

S K q K
ττ τ τ τ τ

τ τ
−∗ ∗∂ = − < < ∂ 

             (50) 

and  

( )( )( ) ( ) ( )( ) ( )( )( ) ( )( )0 0 0 01 , , , 0 .E
E

Cq K S q K E C S S S T
S

τ τ τ τ τ τ τ τ∗ ∗ ∗ ∗∂
− = + − < <

∂
            (51) 

For 0 Tτ< <  Equation (50) defines 0,0A  as a function of ( )0S τ∗  and Equation (51) is a nonlinear equa-
tion in the unknown ( )0S τ∗  that depends from the parameter τ . Given τ  this last equation is easily trans-
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formed in a fixed point problem and solved numerically using Banach iteration, 0 Tτ≤ ≤ . The approximate 
solution of (51) determined in this way is substituted in (50) to obtain 0,0A . The zero-th order term f0 given by 
(46), (49), (50) with the numerical approximation of 0S∗  substituted in 0,0A  multiplied by K (see (18)) is the 
Baroni-Adesi, Whaley formula of the early exercise premium (see [1] formula (20)). The numerical approxima-
tion of 0S∗  obtained solving numerically (51) is the Barone-Adesi, Whaley approximation of the free boundary 
(see [1], formula (19)). Note that as already said with abuse of notation in the previous formulae ( )0S τ∗ , 
0 Tτ< < , denotes both the unknown of the nonlinear Equation (51) and its numerical approximation. This am-
biguity is reflected in the functions 0,0A  and f0. 

Let 1, 2,n =   we seek a solution n̂f  of the n-th order problem (42), (43), (44), (45) of the following form:  

( )( ) ( )( ) ( )( )( ) ( )( ) ( )
2

,0 , , 1
1

ˆ , ln , 0 , 0 , 1, 2, ,
n j q K

n n n j n
j

f S K A K A K S S S S T nττ τ τ τ τ∗
=

=

 
= + < < ≤ ≤ = 
 

∑    (52) 

where the functions ,j nA , 0,1, , 2j n=  , 1, 2,n =  , are auxiliary unknowns that must be determined impos-
ing (42), (43), (44), (45). Substituting formula (52) in Equation (42) it is easy to see that in order to satisfy (42) 
it is sufficient to impose that the functions ,n jA , 1, 2, , 2j n=  , 1, 2,n =  , satisfy the following systems of 
linear equations:  

( ) ( ) ( ),2 1,2 12 2 1 1 , 1, 2, ,n n n n
qn q N A K M A n
K − −

∂
− + = − =

∂
                      (53) 

( ) ( ) ( ) 1, 1
, , 1 1, 22 1 1 1 , 2,3, , 2 1, 1,2, ,n j

n j n j n j

Aqq N jA j j A K M A j n n
K K

− −
+ − −

∂ ∂
− + + + = − + = − = ∂ ∂ 

 
   (54) 

( ) ( ) 1,0
,1 ,22 1 2 1 , 1,2, .n

n n

A
q N A A K M n

K
−∂

− + + = − =
∂

                       (55) 

To keep the notation simple in (53), (54), (55) we have omitted the dependence from K of the functions ,n jA , 
1, 2, , 2j n=  , 1, 2,n =  . For 1, 2,n =   the unknowns ,n jA , 1, 2, , 2j n=  , are determined solving the 

n-th linear system of linear equations contained in (53), (54), (55). In fact for 1, 2,n =   the n-th system of li-
near equations contained in (53), (54), (55) is a system of 2n linear equations in the 2n unknowns ,n jA , 

1, 2, , 2j n=  , that can be solved by backward substitution starting from the n-th Equation (53). Note that due 
to its special form the computational cost of solving these linear systems obtained in (53), (54), (55) grows li-
nearly in n when n goes to infinity. Finally for 1, 2,n =   the coefficient ,0nA  and the unknown , 1nS∗

=  are 
determined imposing the boundary conditions (44), (45), that is imposing respectively:  

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

2
1, 1

,0 , 1 , 1 , , 11
1

, 1

2 1

, , 1
1

1 1 1 , , ln

1                ln , 0 , 1, 2, ,

n jnE
n n n n j nq

j
n

n j

n j n
j

bCA K S S A S
Kq K S SS

jA S T n
q K

∫

∫

τ τ

τ

− =∗ ∗ ∗
= = =−∗ =

=

−∗
=

=

∂ ∂
= − − − ∂ ∂ 

− < < =

∑

∑ 


 

         (56) 

and  

( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( )

, 1 1, 1
, 1 , 1 1, 1 , 1 , 1 , 1

2 1, 1
, , 1

1

11 , , , ,

                       ln , 0 , 1, 2, .

n nE
n E n n n n n

q
n jn

n j n
j

S bCS E C S b S S S
q K q K S S

S K
jA S T n

q K ∫

τ τ τ τ

τ

∗
= − =∗ ∗ ∗ ∗ ∗

= = − = = = =

∗
−= ∗

=
=

  ∂ ∂
− = + + + − −     ∂ ∂  

− < < =∑ 

 
     



     (57) 

To keep the notation simple in (56), (57) we have omitted the dependence from τ  of , 1nS = , 1, 2,n =  . 
For 1, 2,n =   Equation (56) defines ,0nA  as a function of , 1nS∗

=  and of the solution of the n-th linear system 
contained in (53), (54), (55), 0 Tτ< < . Equation (57) is a nonlinear equation in the unknown ( ), 1nS τ∗

= , 
0 Tτ< < , depending from the parameter τ , that defines implicitly ( ), 1nS τ∗

= , 0 Tτ< < , 1, 2,n =  . In the 
numerical experiments of Section 4 this equation is transformed in a fixed point problem and solved numerically 
using Banach iteration. The numerical approximation of ( ), 1nS τ∗

= , 1, 2,n =  , obtained from the solution of 
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(57) is substituted in (56) and together with the solution of the n-th linear system contained in (53), (54), (55) 
determines (56). Note that when 1,2,n =  , for simplicity with abuse of notation we denote with ( ), 1nS τ∗

= , 
0 Tτ< < , both the unknown of (57) and its numerical approximation. 

A careful inspection of formulae (46), (51) and (52), (57) shows that for 0,1,n =   the numerical evaluation 
on a grid of values of the S and τ  variables of the n-th order approximations n̂f , , 1nS∗

=  of the solution of the 
American call option pricing problem is easily parallelized. 

4. Numerical Results 
Let us discuss the numerical results obtained on a set of test problems with the solution method of the American 
option pricing problem developed in Sections 2 and 3. 

We use the trinomial tree method [17] with nT = 1000 time steps to compute the “true value” of the option 
prices considered in our experiments. The choice nT = 1000 guarantees four correct significant digits in the op-
tion prices computed in this Section. The “true value” of the corresponding free boundaries of the American call 
options considered in our experiments is computed solving numerically the following integral equation (see [25], 
[3] and the reference therein):  

( ) ( ) ( ) ( )( )( ) ( )( )( )
( ) ( ) ( ) ( ) ( )( )( ) ( ) ( )( )( )0

e , e ,

            e , e , d ,

            0 .

r b r

r b r

S E S N d S E N d S

r b S N d S S rE N d S S

T

τ τ

τ ξ ξ
ξ ξ

τ τ τ τ τ τ σ τ

τ τ τ ξ τ τ ξ σ ξ ξ

τ

− −∗ ∗ ∗ − ∗

− −∗ ∗ ∗ − ∗ ∗

= + − −

+ − − − − −

< ≤

∫  (58) 

The free boundary ( )S τ∗ , 0 Tτ< < , is the unknown of the integral Equation (58), moreover in (58) the  

function ( ) 2 21 e d
2π

x ux u−

−∞
= ∫  is the standard normal cumulative distribution and the functions d and dξ  

are given by:  

( )( ) ( )1, ln 2 , 0 , 0,
2

S bd S T
E
τ στ τ τ τ σ

σσ τ

∗
∗    = + − < ≤ >       

               (59) 

( ) ( )( ) ( )
( )

1, ln 2 , 0 , 0,
2

S bd S S T
Sξ

τ στ τ ξ ξ τ σ
στ ξσ ξ

∗
∗ ∗

∗

   − = + − < ≤ >    −   
          (60) 

where in (58), (59), (60) T is the maturity time and E is the strike price of the American call option considered. 
The integral operator contained in (58) is approximated with the composite rectangular rule with time step 

0τ∆ >  and ( )S τ∗ , 0 Tτ< < , is approximated on the set of evenly spaced nodes of step 0τ∆ >  used to 
discretize the integral operator. This discretized version of the integral Equation (58) is solved as a fixed point 
problem using Banach iteration. Let     denote the integer part of ∙, for 0τ∆ >  let ντ ν τ= ∆  and ( )aS τ ντ∆  
be the solution of the discretized version of the integral Equation (58) at the node ντ , 1, 2, , Tν τ= ∆   . For 
0 Tτ< <  let ( )S τ∗  be the solution of (58) it is easy to see that we have: ( ) ( )0lim lim aS Sτ ν τ ν τ τ∗

∆ → →+∞ ∆ ∆ = , 
when τ ν τ= ∆  is fixed. When we consider an American call option and we have b r<  the algorithm that 
solves the discretized version of (58) starts from 0τ =  choosing ( ) ( )0 0aS S Eτ

∗
∆ = =  when 0 r r b< ≤ −  or 

choosing ( ) ( ) ( )0 0aS S rE r bτ
∗

∆ = = −  when r r b> − . Recall that when b r≥  (i.e. when the continuous 
dividend yield d is smaller or equal to zero) in [1] page 307 it is shown that the American call option price re-
duces to the corresponding European call option price. In fact in this case the free boundary is “at infinity” and 
the American call option must be exercised at maturity time, that is the value of the early exercise premium is 
identically zero. 

The integral Equation (58) must be modified to deal with American put options (see [3]). Moreover in the 
case of put options the algorithm that solves the corresponding discretized integral equation starts from 0τ =  
choosing ( ) ( )0 0aS S Eτ

∗
∆ = =  when r r b≤ −  or choosing ( ) ( ) ( )0 0aS S rE r bτ

∗
∆ = = −  when r r b> − . 

In the numerical experiments discussed below the discretized versions of Equation (58) for call options and of 
the analogous equation for put options (see [3]) are solved iteratively at the points ντ τ ν τ= = ∆ , 1, 2, , mν =  , 
when m T τ= ∆    and 0.001τ∆ = . That is we consider the unknowns ( ),

a aS Sν τ τ ντ∆ ∆= , 1, 2, , mν =  ,  
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implicitly defined as solution of the following set of equations (see [25] for further details):  

( ), , , 1, 2, , ,a aS F S mν τ ν τ ν∆ ∆= =                                 (61) 

where in the case of call options from Equation (58) we have:  

( ) ( ) ( )( ) ( )( )
( ) ( )

( )( )( ) ( )( )
, , , ,

1

, , , ,,
0

e , e ,

                e , e , ,

                 1, 2, , ,

r ba a a r a

r b ia a a ri a a
i i ii

i

F S E S N d S E N d S

r b S N d S S rE N d S S i

m

ν τ ν τ
ν τ ν τ ν τ ν τ

ν
τ τ

ν τ τ ν τ τ ν τ ν τν τ

ν τ ν τ σ ν τ

τ σ τ

ν

− − ∆ − ∆
∆ ∆ ∆ ∆

−
− − ∆ − ∆

∆ ∆ ∆ ∆ ∆ − ∆− ∆
=

= + ∆ − ∆ − ∆

 + ∆ − − − ∆  
=

∑


 (62) 

and 0,
aS τ∆  is assigned as specified above. Of course when we consider put options Equation (58) must be subs-

tituted with a different integral equation, see [3], and as a consequence Equation (62) must be modified cohe-
rently. Equations (61), (62) (and their analogous for put options) are solved using Banach iteration. For 

1, 2, , mν =   and 0,1,j =   let ,
,

a jSν τ∆  be the j-th element of the sequence generated by Banach iteration ap-
plied to (61), (62), 1, 2, , mν =  . The Banach iteration associated to (61) is stopped at the smallest value of the 
index j that satisfies the condition:  

( ), 1 ,
, ,

0.001, 1,2, , .
a j a jS F S

m
E

ν τ ν τ
ν

+
∆ ∆−

< = 
                          (63) 

Note that in general the stopping value of the index j defined by (63) depends from ν , 1, 2, , mν =  . The 
“true values” of the option prices and of the corresponding free boundaries defined previously are used as 
benchmarks to test the approximate solutions of the American option pricing problem computed with the me-
thod developed in Sections 2 and 3 and with some alternative methods taken from the scientific literature. 

We begin our numerical experiments studying some test problems taken from [1] Section C.4. These test 
problems consider options on long-term U.S. Treasury bonds (time to maturity up to three years) and long term 
care insurance inflation options (time to maturity up to ten years and beyond). 

In the first experiment we use the values of the Black Scholes parameters of Table V in [1]. That is we consider 
the following three sets of parameter values: 0.08r = , 0.2σ = , and 0.04b = − , or 0.0b =  or 0.04b = . For 
each set of Black Scholes parameters we consider three call options with strike price 100E =  and maturity 
time 3T = , or 5T = , or 10T = . The maturity time T is expressed in years. 

Table 1 shows several free boundary approximations of the American call option pricing problems specified 
above when 3Tτ = = , 5, 10. From left to right Table 1 shows the free boundary ( )S T∗  computed solving 
iteratively the discretized version of the integral Equation (58) (i.e. ( )S T∗  is the “true free boundary” used as 
benchmark) and the approximations ( ), 1nS T∗

= , when 0,1,2n = , discussed in Sections 2 and 3. Recall that 
0, 1 0S S∗ ∗

= =  is the Barone-Adesi Whaley approximation of the free boundary. Table 1 shows that for 0,1n =  
going from the n-th order approximation to ( )1n + -th order approximation of the free boundary roughly adds 
one correct significant digit to the approximation of the free boundary found. This effect is particularly evident 
when 0b > , in fact in this case the Barone-Adesi, Whaley approximation of the free boundary is poor and has 
no correct significant digits. Note that positive values of b correspond to values of the continuous dividend yield 
d r b= −  smaller than the risk free interest rate r. Recall that for American call options when 0b >  and 

0r b− >  the integral Equation (58) becomes singular as 0τ +→ , see [25]. 
When Tτ =  (i.e. when 0t = ) Table 2 shows the asset price S, the European call option price CE obtained 

evaluating the Black Scholes formula, the approximations of the American call option price obtained using the 
trinomial tree method CT (i.e. CT is the “true value” of the option price used as benchmark), the Barone-Adesi, 
Whaley option price CBW obtained from (12), (18) when 0f f= , 0S S∗ ∗=  and the n-th order approximation 

, , 1A nC = , derived from (12), (18) and the series expansions presented in Sections 2 and 3 truncated after 1n +  
terms, 1, 2n = . Furthermore Table 2 shows the relative errors: ( ) ( ) ( ) ( )BW BW, , , ,T Tre S T C S T C S T C S T= −  
and ( ) ( ) ( ) ( ), 1 , , 1, , , ,C

n A n T Tre S T C S T C S T C S T= == −  , 1, 2n = . 
Table 1 and Table 2 suggest that increasing the approximation order of the solution of the American call op-

tion pricing problem that has been deduced from the expansions in powers of   developed in Sections 2 and 3 
(that is increasing n) it is possible to improve substantially the results obtained with the Barone-Adesi, Whaley 
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formula (i.e. the result obtained when 0n = ). 
Figure 1 shows the “true” free boundaries of the American call option pricing problem as a function of τ  

that have been obtained solving numerically the discretized version of the integral Equation (58) when E = 100,  
 

Table 1. Approximations of the free boundary of an American call option 
with intermediate maturity T and strike price E = 100. 

0.08r = , 0.2σ = , 0.04b = −  

T ( )S T∗  ( )0, 1S T∗
=  ( )1, 1S T∗

=  ( )2, 1S T∗
=  

3 129.065 128.588 129.036 128.951 

5 131.064 130.701 131.154 130.973 

10 132.687 132.207 132.862 132.705 

0.08r = , 0.2σ = , 0.00b =  

T ( )S T∗  ( )0, 1S T∗
=  ( )1, 1S T∗

=  ( )2, 1S T∗
=  

3 149.676 150.206 149.017 149.617 

5 155.051 156.917 154.473 154.823 

10 160.505 164.206 160.463 160.129 

0.08r = , 0.2σ = , 0.04b =  

T ( )S T∗  ( )0, 1S T∗
=  ( )1, 1S T∗

=  ( )2, 1S T∗
=  

3 241.191 255.316 236.006 242.394 

5 251.915 273.499 246.402 252.762 

10 265.960 304.187 260.422 265.212 

 

 
Figure 1. American call option “true” free boundary S* as a function of the 
time to maturity τ when E = 100, T = 10, r = 0.08, σ = 0.2 and b = −0.04 (solid 
line ( )0S E∗ = , r ≤ r − b), b = 0.0 (dotted line ( )0S E∗ = , r ≤ r − b), b = 

0.04 (dash-dotted line ( ) ( )0S rE r b∗ = − , r > r − b). 
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Table 2. Approximations of the price of an American call option with intermediate maturity T, strike price E = 100 and 
negative cost of carrying. 

0.08r = , 0.2σ = , 0.04b = −  

maturity 3T =  

S ( ),EC S T  ( ),TC S T  ( )BW ,C S T  ( ),1, 1 ,AC S T=  ( ),2, 1 ,AC S T=  ( )BW ,Cre S T  ( )1, 1 ,Cre S T=  ( )2, 1 ,Cre S T=  

70 0.8211 0.9587 1.0861 0.9258 0.9617 11.33 10−×  23.38 10−×  33.58 10−×  

80 1.9285 2.3414 2.5258 2.3068 2.3334 27.87 10−×  21.47 10−×  33.41 10−×  

90 3.7480 4.7585 4.9706 4.7193 4.7336 24.45 10−×  38.24 10−×  35.23 10−×  

100 6.3571 8.4921 8.6777 8.4453 8.4504 22.18 10−×  35.49 10−×  34.91 10−×  

110 9.7526 13.792 13.896 13.746 13.748 37.52 10−×  33.34 10−×  33.18 10−×  

120 13.872 20.886 20.906 20.878 20.882 31.04 10−×  42.88 10−×  41.11 10−×  

maturity 5T =  

S ( ),EC S T  ( ),TC S T  ( )BW ,C S T  ( ),1, 1 ,AC S T=  ( ),2, 1 ,AC S T=  ( )BW ,Cre S T  ( )1, 1 ,Cre S T=  ( )2, 1 ,Cre S T=  

70 1.1410 1.5349 1.7261 1.5612 1.4912 11.24 10−×  21.71 10−×  22.84 10−×  

80 2.2026 3.1467 3.3887 3.1927 3.1021 27.68 10−×  21.46 10−×  21.14 10−×  

90 3.7323 5.6921 5.9446 5.7503 5.6506 24.43 10−×  21.02 10−×  37.28 10−×  

100 5.7491 9.4043 9.6129 9.4629 9.3695 22.21 10−×  36.22 10−×  33.70 10−×  

110 8.2416 14.523 14.640 14.570 14.498 38.05 10−×  33.27 10−×  31.71 10−×  

120 11.178 21.302 21.319 21.330 21.288 48.13 10−×  31.32 10−×  46.15 10−×  

maturity 10T =  

S ( ),EC S T  ( ),TC S T  ( )BW ,C S T  ( ),1, 1 ,AC S T=  ( ),2, 1 ,AC S T=  ( )BW ,Cre S T  ( )1, 1 ,Cre S T=  ( )2, 1 ,Cre S T=  

70 1.0638 2.1845 2.3679 2.2715 2.1878 28.39 10−×  23.98 10−×  31.47 10−×  

80 1.7276 3.9387 4.1329 4.0428 3.9483 24.93 10−×  22.64 10−×  32.43 10−×  

90 2.5807 6.5377 6.7081 6.6482 6.5526 22.60 10−×  21.68 10−×  32.26 10−×  

100 3.6212 10.201 10.312 10.302 10.216 21.08 10−×  39.94 10−×  31.51 10−×  

110 4.8422 15.166 15.198 15.246 15.179 22.11 10−×  35.29 10−×  48.71 10−×  

120 6.2334 21.690 21.666 21.746 21.705 31.11 10−×  32.59 10−×  47.02 10−×  

 
T = 10, r = 0.08, 0.2σ = , and b = −0.04, or b = 0.0, or b = 0.04, and 0 Tτ< < . Figure 2 shows the “true” free 
boundary, the Barone-Adesi, Whaley free boundary, the first and the second order approximations of the free 
boundary obtained from the expansions of Sections 2 and 3 as a function of the time to maturity τ , 0 Tτ< < , 
when E = 100, T = 10, r = 0.08, 0.2σ = , b = 0.04. In particular Figure 2 shows that the first order approxima-
tion of the free boundary improves significantly the zero-th order approximation of the free boundary (i.e. the 
Barone-Adesi, Whaley free boundary) and that the second order approximation of the free boundary refines the 
result obtained with the first order approximation. Figure 3(a) and Figure 3(b) show the “true” and the approx-
imated prices of the American call option corresponding to the free boundaries shown in Figure 2 as a function 
of the time to maturity τ , 0 Tτ< < , T = 10, when the asset price S takes the values S = 90 (Figure 3(a)) and S 
= 110 (Figure 3(b)). The approximated option prices are obtained using (12), (18) and the zero-th, first and 
second order approximations of the sum the series expansions developed in Sections 2 and 3. Figure 2 and Fig-
ure 3 suggest that the second order corrections of the option price and of the free boundary are necessary to ob-
tain satisfactory approximations of the solution of the American call option pricing problem when we consider  
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Figure 2. American call option free boundary S* as a function of the time to 
maturity τ when E = 100, T = 10, r = 0.08, σ = 0.2, b = 0.04: “true” free 
boundary (solid line), Barone-Adesi, Whaley free boundary (dotted line), first 
order approximation of the free boundary (dashed line), second order ap-
proximation of the free boundary (dash-dotted line). 

 

   
(a)                                                        (b) 

Figure 3. American call option price C as a function of the time to maturity τ for two values of the asset price S = 90 (a), S 
= 110 (b), when E = 100, T = 10, r = 0.08, σ = 0.2, b = 0.04. “True” price CT (solid line), Barone-Adesi, Whaley price CBW 
(dotted line), first order approximation ,1, 1AC =  of the price (dashed line), second order approximation ,2, 1AC =  of the price 
(dash-dotted line). 

 
options with intermediate maturity times (i.e. when 3 10T≤ ≤ ) at time t = 0 (i.e. Tτ = ) or at time t close to 
zero. 

Figure 4 shows the American call option price C when Tτ =  (i.e. when t = 0), T = 10, E = 100, r = 0.08, 
0.2σ = , b = 0.04 as a function of the asset price S. Note that the option price approximation obtained using the 

zero-th order term (i.e. the Barone-Adesi, Whaley price) is not accurate (see Figure 4 dotted line). This is a 
consequence of the fact that the zero-th order approximation of the free boundary is unsatisfactory (see Figure 2, 
Figure 4). Note that in Figure 4 the payoff function (solid line) is a lower bound for the “true” American call  
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Figure 4. American call option price C as a function of the asset price S when 
τ = T = 10, E = 100, r = 0.08, σ = 0.2, b = 0.04. “True” price CT (square-solid 
line), Barone-Adesi, Whaley price CBW (dotted line), first order approxima-
tion ,1, 1AC =  of the price (dashed line), second order approximation ,2, 1AC =  
of the price (dash-dotted line), and payoff function (solid line). The abscissae 
of the four marked points show the location of the free boundary: square 
mark—true free boundary, star mark Barone-Adesi, Whaley free boundary, 
circle mark—first order approximation of the free boundary, triangle mark— 
second order approximation of the free boundary. 

 
option price CT and that the first order (dashed line) and the second order (dash-dotted line) approximations ob-
tained using (12), (18) and the series expansions developed in Sections 2 and 3 and the “true” option price CT 
(square-solid line) overlap while the zero-th order approximation (i.e. the Barone-Adesi, Whaley solution) (dot-
ted line) is not accurate. The abscissae of the four points marked in Figure 4 are the location of the free bounda-
ries: square mark—“true” free boundary, star mark—zero-th order approximation of the free boundary (i.e. Ba-
rone-Adesi, Whaley free boundary), circle mark—first order approximation of the free boundary, triangle mark— 
second order approximation of the free boundary. Note that in Figure 4 the true free boundary and its second 
order approximation overlap. In Figure 5 we present the relative errors with respect to the “true” option price of 
the approximated option prices shown in Figure 4 as a function of the asset price. That is Figure 5 shows as a 
function of the asset price S the relative errors with respect to the “true” option price of the Barone-Adesi, Wha-
ley option price (dotted line), of the first order approximation of the option price (dashed line) and of the second 
order approximation of the option price (dashed-dotted line) obtained from (12), (18) and the series expansions 
introduced in Sections 2 and 3. Recall that in Figure 4 and Figure 5 the parameters of the American call option 
problem considered are: 10Tτ = = , E = 100, r = 0.08, 0.2σ = , b = 0.04. 

Let us consider the American put option pricing problem. We study a set of test problems similar to those 
discussed in [2] [3]. 

The first test problem involving American put options is taken from Table 5 of [2] and consists in evaluating 
at time t = 0 the prices of the American put options having E = 100, T = 3 when the underlying asset price 
ranges from S = 80 to S = 120, that is when ( )80 1 10jS S j= = + − ∗ , 1, 2, ,5j =  , and the Black Scholes pa-
rameters have the following values: 0.2σ = , r = 0.05, ( )0.04 1 0.04jb b j= = − + − ∗ , 1, 2,3, 4j = . 

In analogy with the notation introduced previously in the study of the American call option pricing problem 
we denote with ( ),TP S T , ( )BW ,P S T , ( ), , 1 ,A nP S T= , n = 1, 2, respectively the values of the American put op-
tion prices obtained using the trinomial tree method (i.e. the “true value” of the option price used as benchmark), 
the Barone-Adesi, Whaley formula (for put options) and the n-th order approximation, n = 1, 2, obtained from  
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Figure 5. Relative errors of the approximations of an American call option 
price with respect to the “true value” of the price as a function of the asset 
price S when τ = T = 10, E = 100, r = 0.08, σ = 0.2, b = 0.04: relative error of 
the Barone-Adesi, Whaley price (dotted line), relative error of the first order 
approximation of the price (dashed line), relative error of the second order 
approximation of the price (dashed-dotted line). 

 
the analogous (for put options) of (12), (18) and of the series expansions introduced in Sections 2, 3. For later 
convenience to emphasize the dependence from the parameter b = bj, 1, 2, , 4j =  , of the put option prices and 
we write b as an argument of the put option price, that is we write ( ), ,TP S T b , ( )BW , ,P S T b , ( ), , 1 , ,A nP S T b= , 
instead of writing respectively ( ),TP S T , ( )BW ,P S T , ( ), , 1 ,A nP S T= , n = 1, 2. Moreover let BW

Pre  and , , 1
P
A nre = , 

n = 1, 2, be the following relative errors:  

( ) ( ) ( ) ( )BW BW, , , , , , , , ,P
T Tre S T b P S T b P S T b P S T b= −                      (64) 

( ) ( ) ( ) ( ), 1 , , 1, , , , , , , , , 1, 2.P
n T A n Tre S T b P S T b P S T b P S T b n= == − =                  (65) 

Table 3 shows the results obtained in this experiment. In the attempt of making Table 3 comparable with 
Table 5 of [2] we show in Table 3 the values of the following Root Mean Square Errors (RMSE):  

( ) ( )( )
5 4 2

BW
1 1

1RMSE BW , , , , ,
20 T i j i j

i j
P S T b P S T b

= =

− = −∑∑                     (66) 

( ) ( )( )
5 4 2

, 1 , , 1
1 1

1RMSE , , , , , 1, 2,
20n T i j A n i j

i j
E P S T b P S T b n= =

= =

− = − =∑∑                 (67) 

and the values of the following Maximum Absolute Errors (MAE):  

( ) ( )BW,
MAE BW max , , , , ,T i j i ji j

P S T b P S T b− = −                        (68) 

( ) ( ), 1 , , 1,
MAE max , , , , , 1, 2,n T i j A n i ji j

E P S T b P S T b n= =− = − =                    (69) 

where in (68), (69) i takes the values 1,2, ,5  and j takes values 1,2, , 4 . 
Table 5 of [2] compares on the test problems considered the accuracy of the put option prices computed with 

some well known methods used to solve the American put option pricing problem including the methods of 
Geske and Johnson [4], Bunch and Johnson [6], Brodie and Detemple [19] (see [2] for further details). Table 3  
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Table 3. Approximations of the price of an American put option with T = 3, E = 100, r = 0.08, σ = 0.2 and relative and ab-
solute errors committed. 

b  S  TP  BWP  ,1, 1AP =  ,2, 1AP =  BW
Pre  1, 1

Pre =  2, 1
Pre =  

−0.04 80 25.658 26.245 25.462 25.648 22.289 10−×  37.628 10−×  43.973 10−×  

−0.04 90 20.083 20.641 19.833 20.079 22.778 10−×  21.244 10−×  41.809 10−×  

−0.04 100 15.497 15.990 15.208 15.509 23.183 10−×  21.866 10−×  47.861 10−×  

−0.04 110 11.803 12.221 11.486 11.834 23.545 10−×  22.679 10−×  32.683 10−×  

−0.04 120 8.8854 9.2345 8.5561 8.9411 23.928 10−×  23.707 10−×  36.265 10−×  

0.0 80 22.205 22.395 22.127 22.196 38.575 10−×  33.502 10−×  43.767 10−×  

0.0 90 16.207 16.498 16.099 16.194 21.795 10−×  36.601 10−×  47.556 10−×  

0.0 100 11.702 12.030 11.578 11.692 22.801 10−×  21.065 10−×  48.832 10−×  

0.0 110 8.3667 8.6871 8.2272 8.3597 23.829 10−×  21.667 10−×  48.393 10−×  

0.0 120 5.9299 6.2222 5.7804 5.9293 24.928 10−×  22.522 10−×  41.166 10−×  

0.04 80 20.347 20.325 20.337 20.342 31.062 10−×  44.765 10−×  42.613 10−×  

0.04 90 13.495 13.563 13.469 13.473 35.021 10−×  31.972 10−×  31.659 10−×  

0.04 100 8.9423 9.1076 8.9138 8.9116 21.847 10−×  33.187 10−×  33.436 10−×  

0.04 110 5.9111 6.1225 5.8799 5.8757 23.576 10−×  35.262 10−×  35.982 10−×  

0.04 120 3.8972 4.1153 3.8612 3.8604 25.595 10−×  39.251 10−×  39.448 10−×  

0.08 80 20.000 20.000 20.000 20.000 0.000 0.000 0.000 

0.08 90 11.696 11.634 11.709 11.687 35.300 10−×  31.066 10−×  48.073 10−×  

0.08 100 6.9298 6.9621 6.9581 6.9137 34.672 10−×  34.083 10−×  42.324 10−×  

0.08 110 4.1536 4.2574 4.1881 4.1319 22.499 10−×  38.311 10−×  35.230 10−×  

0.08 120 2.5096 2.6402 2.5414 2.4840 25.205 10−×  21.266 10−×  21.018 10−×  

RMSE BW 0.2971− = , 1, 1RMSE 0.1541E =− = , 2, 1RMSE 0.0227E =− =  

MAE BW 0.5875− = , 1, 1MAE 0.3294E =− = , 2, 1MAE 0.0557E =− =  

 
shows that the root mean square errors and the maximum absolute errors of the put option prices obtained using 
the second order approximation of the solution of the American put option pricing problem deduced from the 
analogous for put options of (12), (18) and of the expansions introduced in Sections 2 and 3 outperform those 
shown in Table 5 of [2]. In particular note that the second order approximation of the put option price obtained 
with the method developed in Sections 2 and 3 outperforms in accuracy the best approximation of the American 
put option price obtained with the Brodie and Detemple method shown in Table 5 of [2]. 

Moreover Table 3 shows that the behaviour of the series expansions developed in Sections 2 and 3 applied to 
the put option pricing problem is similar to their behaviour in the case of the call option pricing problem shown 
in Table 2. In fact in Table 3 when n = 0, 1 going from the n-th order approximation to the ( )1n + -th order ap-
proximation of the American put option price we gain roughly one correct significant digit in the approximate 
solution found. A similar behaviour has already been observed in the call option case in Table 2. 

The last test problem studied is taken from Little, Pant, Hou [3]. We consider the American put option pricing 
problem when T = 1, E = 100, r = 0.07, 0.25σ = , 0.0d r b= − =  (i.e. b = 0.07) or 0.03d r b= − =  (i.e. b = 
0.04). We compare the free boundaries obtained using the approximations shown in Table 5 and Table 6 of [3] 
and the first three order approximations, 0, 1 0S S∗ ∗

= = , 1, 1S∗
= , 2, 1S∗

=  of the free boundary obtained with the me-
thod developed in Sections 2 and 3 (adapted for put options) shown in Table 4. In Table 4 ( )S τ∗ , 0 Tτ< < , 
denotes the “true” free boundary of the American put option pricing problem obtained solving numerically the 
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integral equation for the put free boundary presented in [3]. Note that the second order approximation of the free 
boundary obtained with the method developed in Sections 2 and 3 (adapted for put options) (shown in Table 4) 
is roughly of the same quality of the numerically computed free boundary obtained in [3] solving the integral 
equation analogous to (58) satisfied by the free boundary of the American put option pricing problem (see Table 
4, Table 5 of [3]). 

Finally let us compare the computational times needed to obtain the approximations of the solution of the 
American option pricing problem that have been considered in this Section. Let us consider the American call 
option pricing problem defined by S = 70, 10Tτ = = , E = 100, b = −0.04, 0.02σ = , r = 0.08, Table 5 shows 
the time (in seconds) required to compute for n = 0, 1, 2 the coefficients ,n jA , 0,1, , 2j n=  , the option price 
approximation , , 1A nC =  and the corresponding free boundary approximation , 1nS∗

= , and the time (in seconds) 
required to compute the same option price and the corresponding free boundary with the trinomial tree method 
when nT = 1000 steps and solving numerically the integral equation satisfied by the free boundary. These com-
putational times have been obtained using an Intel CORE 3i processor. Table 5 shows that the time required to 
compute the first three order approximations of the solution of the American call option pricing problem (n = 0, 
1, 2) deduced from (12), (18) and the series expansions of Sections 2, 3 is negligible when compared to the time 
required to compute the same quantities (price and free boundary) with the trinomial tree method and the nu-
merical solution of the integral equation. Furthermore, as already said, it is easy to see that for 0,1,n =   the 
computation on a grid of values of the S and τ  variables of the n-th order approximation of the option price 
and of the corresponding free boundary derived from (12), (18) and the series expansions introduced in Sections 
2, 3 can be easily parallelized. In fact the computation of the free boundary at a given order on a grid of maturity 
times can be done in parallel since at each order in   the condition that defines the free boundary in the method 
developed Sections 2 and 3 is a local condition. Furthermore for any fixed maturity time the evaluation of the  
 

Table 4. Approximations of the free boundary of an American put option 
with maturity T = 1 and strike price E = 100. 

0.07r = , 0.25σ = , 0.04b =  

τ  ( )S τ∗  ( )0, 1S τ∗
=  ( )1, 1S τ∗

=  ( )2, 1S τ∗
=  

0.04 90.3991 90.9985 90.0245 90.3994 

0.4 79.5573 80.5337 79.7225 79.5589 

0.6 77.2021 78.1801 77.2351 77.2055 

1 74.1860 74.1027 74.2529 74.1801 

0.07r = , 0.25σ = , 0.07b =  

τ  ( )S τ∗  ( )0, 1S τ∗
=  ( )1, 1S τ∗

=  ( )2, 1S τ∗
=  

0.04 91.3962 91.9431 91.1940 91.3925 

0.4 82.2619 83.1359 82.2465 82.2614 

0.6 80.3417 81.2235 80.3608 80.3414 

1 77.9201 78.7683 77.9707 77.9202 

 
Table 5. Computational times (Intel Core i3 processor). 

American call option 100E = , 10T = , 0.08r = , 0.2σ =  

b zero-th order  
appr. (sec) 

first order  
appr. (sec) 

second order  
appr: (sec) 

trinomial  
appr. (sec) 

−0.04 42.12 10−×  47.85 10−×  31.79 10−×  6.302 

0.00 42.08 10−×  48.40 10−×  31.82 10−×  6.318 

0.04 42.08 10−×  48.03 10−×  31.89 10−×  6.303 
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option price at a given order on a grid of asset prices can be done in parallel, in fact this is simply the evaluation 
of a closed form formula on a set of points. 

A rough comparison of the computing times of the iterative method of [11] to solve the American option 
pricing problem (see Tables 3-5 of [11]) and of our approximated solutions (see Table 5), that takes into account 
the difference between the two CPU employed in the computations (i.e. the Intel Core i3 in our numerical expe-
riments and the 3.0-GHz Pentium in the numerical experiments of [11]), shows that these computing times are 
similar and are (on both CPUs) of the order of 2 - 3 milliseconds for the evaluation of the option price and of the 
corresponding free boundary given the values of the independent variables S, τ . However it must be noted that 
when the American option pricing problem must be solved on a grid in the S and τ  variables the method de-
veloped in Sections 2 and 3 can be fully parallelized while the method developed in [11] due to the nonlocal 
character of the integral equation used to determine the free boundary cannot be fully parallelized. 

The experiments presented in this Section show that the approximate solutions of the American option pricing 
problem obtained using the method introduced in Sections 2 and 3 are a natural and useful extension of the Ba-
rone-Adesi, Whaley formula and that these approximate solutions can be used fruitfully to obtain at a very 
competitive computational cost accurate solutions of the American option pricing problem. 

The website: http://www.econ.univpm.it/recchioni/finance/w20 contains material including animations, an 
interactive application and an app that helps the understanding of the paper. A general reference to the work of 
the authors and of their coauthors in mathematical finance is the website:  
http://www.econ.univpm.it/recchioni/finance.  
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Abstract 
Wave Iterative Method (WIM) is a numerical modeling for electromagnetic field analysis of mi-
crowave circuits. Theories of transmission line, four terminal network and boundary condition 
are applied to developing WIM simulation that the physical electromagnetic wave is described to a 
mathematical model using GUI function of MATLAB. In applying, the microstrip patch antenna was 
analyzed and implemented. The research result shows that the WIM simulation can be used cor-
rectly to analyze the electric field, magnetic field theory and return lose of sample patch antenna. 
The comparison of the WIM calculation agrees well with the measurement and the classical simu-
lation. 

 
Keywords 
Wave Iterative Method, Electromagnetic Field Analysis, Patch Antenna 

 
 

1. Introduction 
Presently, numerical methods are important for scientists, engineers and researchers. The development and re-
search are necessary for technical problem solving [1]-[4]. The basic Wave Iterative Method (WIM) is a full 
wave analysis that has been developed since 2001, and is suitable for microwave circuit analysis [5]-[9]. Evolu-
tion of the WIM was developed to support microwave circuits such as waveguides [10] [11], filter circuits [7] 
and applied in telecommunication engineering education [8] [12]. The advantages of WIM algorithm are the in-
tegration of theories of transmission line, two ports network and boundary conditions and iterative method that 
are weak definition to study. 

2. Wave Iterative Method 
The WIM concept based on iterative method is to calculate amplitude and direction of incident wave, reflected 
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wave and transmitted wave in the multi-layers planar structure. The electric field, magnetic field and network 
parameters of equivalent circuit are results that we want to solve and display. 

2.1. Wave Equations 
Transmission line is represented by equivalent circuit, as shown in Figure 1, where Vin and Iin are the voltage 
and current variables at the input ports, inV +  and inI +  are incident voltage and current wave, inV −  and inI −  are 
reflected voltage and current wave, respectively. The relationship between incident wave and reflected wave is 
defined as [13] 

in in inV V V+ −= + ,                                       (1) 

in in inI I I+ −= − .                                       (2) 

Considering the input port, as shown in Figure 1, normalized waves in Equations (1) and (2) are divided by 
0Z , thus we have 

in in in

0 0 0

V V V
Z Z Z

+ −

= + ,                                    (3) 

0 in 0 in 0 inZ I Z I Z I+ −= − .                                 (4) 

The relation equation base on the incident wave (A) and reflected wave (B) is presented by 

in

0

V A B
Z

= + ,                                      (5) 

and 

0 inZ I A B= −                                       (6) 

where in
0 in

0

VA Z I
Z

+
+= =  and in

0 in
0

VB Z I
Z

−
−= = . 

Then, the input voltage and current equation can be written as  

( )in 0V Z A B= + ,                                    (7) 

( )in
0

1I A B
Z

= − .                                    (8) 

Rewrite the equations in the form of an electric field and current density that are as 

( )0E Z A B= + ,                                    (9) 

( )
0

1J A B
Z

= − .                                   (10) 

Equation (9) and (10) are the electric field and current density (or magnetic field) in following the wave equa-
tion. The variable A (incident wave) and B (reflected wave) are the key parameters used in the WIM algorithm. 
 

 
Figure 1. Transmission line circuit. 

 

LZinV

inI

0Z
gV

iI +

iI −
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Considering, the scattering parameter (S) of a two ports network as shown in Figure 2, is defined in terms of 
wave variables as [14] 

1 11 1 12 2B S A S A= + ,                                   (11) 

2 21 1 22 2B S A S A= + .                                   (12) 

The S parameters defined by the incident and reflected wave are expressed as 

1 1
11 2 12 1

1 2

2 2
21 2 22 1

1 2

  when  0,     when  0 

  when  0,     when  0,

B BS A S A
A A
B BS A S A
A A

= = = =

= = = =
                        (13) 

where An, Bn are the wave variables and 0nA =  that implies a perfect impedance match at port n. The wave 
definition is written as 

1 11 12 1

2 21 22 2

B S S A
B S S A
     

=     
     

.                                 (14) 

The parameters variable Sii is called the reflection coefficients at port 1, 2i = , whereas Sij is the transmission 
coefficients of two ports network, where i j≠  and 1,2j = . 

2.2. Wave Iterative Method (WIM) 
Wave propagation described by incident, reflected and transmitted waves is represented in the planar structure. 
We see that the waves will be reflected continuously, as shown in Figure 3. 

In iterative procedure, the excited wave ( )( ),x yB  in the real domain (Pixel) of planar source is converted to 
the wave ( ),

i
m nB  in the spectrum domain (Modes) by using the Fast Fourier Transform (FFT). Considering the 

upper and bottom side of metallic box, we obtain the wave ( ),
i
m nA  form reflection of the wave ( ),

i
m nB  by the 

reflection coefficient ( )iΓ . The wave ( ),
i
m nA  in the spectrum domain will be transformed to the wave ( ),

i
x yA  in 

the real domain by using the Invert Fast Fourier Transform (IFFT). At the planar structure situated between  
 

inV
1A 2A

1B 2B

[ ]S

 
Figure 2. Two ports network. 

 

 
Figure 3. Wave propagation in planar circuit. 
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dielectric region (i) 1 and 2, the wave ( ),
i
x yA  will reflect to the wave ( ),

i
x yB  by the scattering parameter (S) of 

two ports equivalent network. Finally, the process of wave propagation will be repeated until the convergence of 
waves is solved. 

The WIM procedure, as shown in Figure 4, is summarized by the following steps: 
1) Define the excited wave ( ),x yB  of planar source. 
2) Convert the waves in the real domain to the spectrum domain by the FFT: ( ) [ ] ( )( ), ,FFTi i

m n x yB B= . 

3) Apply the reflection coefficient ( )nΓ  for reflected waves to obtain incident waves: ( )
( ) [ ] ( )

( )( ), ,
i i

im n m nA B= Γ . 

4) Transform the waves in the spectrum domain to the real domain by the IFFT: ( )
( )

( )
( )( )1

, ,FFTi i
x y m nA A− =   . 

5) Calculate the reflected waves using the scattering parameters of planar circuit: ( )
( ) [ ] ( )

( )( ), ,
i i
x y x yB S A= . 

6) Repeat step 2 to step 5 until the convergence of the network parameters are obtained. 
After testing the convergence at the k iterations, the tangential electric field and current density in the discon-

tinuity using Equations (9) and (10), can be written as 

( ) ( )0,
k k k

i i ix yE Z A B= + ,                                (15) 

( ) ( ) 0,
k k k

i i ix yJ A B Z= + .                                (16) 

Thus, the admittance parameter of two ports network are obtained as 

( )

( )

,

, ,

x y

x y x y

J
Y

E

 
 =
 
 

∑ ,                                    (17) 

also, the impedance parameter can be written as  

( )

( )

,

, ,

x y

x y x y

E
Z

J

 
 =
 
 

∑ .                                    (18) 

Finally, the scattering parameter of planar circuit is given by 

[ ][ ] 1
0 0S Z Z Z Z −= − + .                                 (19) 

The detail of mathematical operator in the WIM procedure, as shown in Figure 4 is represented as following. 

2.2.1. Source Excitation Definition 
The excited wave ( )( ),x yB  in the real domain of planar source can be written as 

01
,

1 2 02

11
1 1

x y

Z
B

n n Z

 
=  

+ +   
,                               (20) 

 

 
Figure 4. Iterative procedure. 
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where 0
1

01

Z
n

Z
= , 0

2
02

Z
n

Z
= , 0

0
0

ri
i

ri

Z
µ µ
ε ε

=  that is the characteristic impedance of dielectric layer i = 1, 2. 

2.2.2. The Modal FFT and Modal IFFT Transform 
For simplify the calculation of the generalized TEm,n, TMm,n mode wave description, the Modal FFT pair permits 
movement the transverse filed components from the real domain to the spectrum domain, the modal wave equa-
tion in x direction can be defined as 

( ) ( ),,
1 1

π π
cos sin

M N
jTE TM k

x j kx m n
j k

m x n y
B B

a b= =

   =    
  

∑∑ ,                        (21) 

And also, the equation in y direction is defined as 

( ) ( ),,
1 1

π π
sin cos

M N
TE TM k k

y j ky m n
j k

m x n y
B B

a b= =

   =    
   

∑∑ .                         (22) 

Thus, the modal transform matrix using WIM algorithm can be represented as  

( )

( )

,
,

,

FFT
TE
m n x

m nTM
ym n

B Bn b m a
Q

Bm a n bB

  −     =         
.                           (23) 

Similar, the Modal IFFT pair permits movement the modal filed components from the spectrum domain 
comeback to the real domain, the spatial wave equation in x direction can be defined as  

( ),
1 1

π πcos sin
m n

M N
TE TM

x x
m n

m x n yA A
M N= =

   =    
   

∑∑ ,                           (24) 

And also, the wave equation in y direction is defined as 

( ),
1 1

π πsin cos
y m n

M N
TE TM

y
m n

m x n yA A
M N= =

   =    
   

∑∑ .                           (25) 

Thus, the spatial wave matrix using WIM algorithm can be represented as  

( )

( )

1
,1

, ,

1FFT
TE
m nx

TM
y m n m n

AA n b m a
A m a n bQ A

−
−
    −   =             

,                        (26) 

where 
( ) ( )

, 2 2
,

1
2m n

m n

abQ
m a n b

=
Φ +

, ,

2, if  , 0;
1, if  , 0.m n

m n
m n

≠
Φ =  ≠

 M, N refer the pixel or modes number, a, b 

refer the metallic box dimension. 

2.2.3. Reflection Coefficient (Γi) in the Spectrum Domain 
The expression of reflection coefficient at the upper and bottom side of box in the spectrum domain is given by 

0 ,

0 ,

1
1

TE TM
i m nTE TM

i TE TM
i m n

Z Y
Z Y

−
Γ =

+
,                                  (27) 

where the TEm,n, TMm,n mode admittances in the metallic box are ,
0

TE
m n

r

Y
j
γ

ωµ µ
= , 0

,
TM r

m n
j

Y
ωε ε
γ

=  respectively, 

( ) ( )2 2 2
0π π rm a n b kγ ε= + − , and 0 0 0k ω µ ε= . 

2.2.4. Scattering Parameter (S) in the Real Domain 
At the printed surface of the discontinuity, the boundary conditions of fields, as shown in Figure 5, are ex-
pressed in terms of waves that consist of 3 conditions as 
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1I 2I

1E 2E

0d =

1 2E E= 1I 2I

1E 2E
1 2E E=

1 2 0J J+ =

1r
ε

2r
ε

1I 2I

1E 2E

0d =

1 2E E=

0Z
0E1Z 2Z

 
(a)                 (b)                (c) 

Figure 5. Equivalent circuit of discontinuity. (a) Metal region; 
(b) Dielectric region; (c) Source region. 

 
Case 1, on the metal regions (M), we have the condition; 1 2 0E E= = , thus the wave relation in the region 1 

and 2 can be represented as  

1 1

2 2

1 0
0 1M M

B A
B A

−    
=    −    

.                               (28) 

Case 2, on the dielectric regions (D), we have the conditions; 1 2E E=  and 1 2 0J J+ = , the wave relation 
can be represented as  

2

2 2
1 1

2
2 2

2 2

1 2
1 1

2 1
1 1

D D

n n
B An n
B An n

n n

 −
    + + =    −   
 + + 

.                            (29) 

Case 3, on the planar source regions (P), we have the condition; ( )1 2 0 0 1 2E E E Z J J= = − + , the wave rela-
tion can be represented as  

1 2 12

1 1 2 1 2 1

22 12 1 2

1 2 1 2

1 2
1 1

2 1
1 1

PP

n n n
B n n n n A

AB n n n
n n n n

− + − 
 + + + +    =    − − +   
 + + + + 

,                        (30) 

where E0 refers the excited electric field and the Z0 refers the source internal impedance, and 01

02

Z
n

Z
= ,

0
1

01

z
n

Z
= , 0

2
02

z
n

Z
= , and 0

12
01 02

z
n

Z Z
= . 

Finally, at the planar circuit in the real domain, the scattering parameters of wave equation are summarized on 
each printed surface region using Equations (23)-(25). The wave relation equation can be expressed as  

1 1

2 2

B AT U
B AV W
    

=    
    

.                                 (31) 

where 

( ) ( )2
1 2

2
1 2

1 1
11

n D n n P
T M

n nn
+

− − + −
= − +

+ ++
, 

( ) ( )12
2

21

2 2
11

n D n P
U V M

n nn
+= = +

+ ++
, 

( ) ( )2
1 2

2
1 2

1 1
11

n D n n P
W M

n nn
+

− − − +
= − +

+ ++
. 

When considering the condition of each region, on the dielectric region: 1D = , metal region: 1M =  and 
source region: 1P = , and 0D M P= = =  when elsewhere. 
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3. WIM Simulation Design 
Computer aided design based on a graphical user interface (GUI) function of MATLAB® is developed using the 
Wave Iterative Method (WIM) algorithm. The WIM scheme consists of four parts as 1) setup the initial values, 
2) design the patch antenna structures, 3) calculate the waves propagated in the spectrum (Modes) and real do-
main (Pixel) using WIM algorithm, and 4) analysis the network parameters and electromagnetic distributions. 
The WIM simulation process can be presented in Figure 6. 

The WIM simulation applied to simple patch antenna works in the following steps. 
1) Start the WIM simulation program base on GUI function of the MATLAB, as shown in Figure 7. 
2) Setup the usable values of calculation by using the “Setup” menu such as; operating frequency, desired 

printed circuit, dielectric constant value, characteristic impedance, etc. 
3) Select the “Analysis” menu to design the microstrip patch antenna parameters using conventional antenna 

theories approach [14] [15]. 
 

Start

Calculate the reflected 
wave  (Real)

Convergence

Stop

Calculate the incident wave  
(Spectrum)

Transform Spectrum to 
Real domain (IFFT)  

No

Yes

Result , , , ,E H S Y Z

Convert  the Real 
to Spectrum domain (FFT)

Antenna Design 

Setup the Initial values

 
Figure 6. Flowchart of the WIM simulation. 

 

 
Figure 7. WIM simulation program. 
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4) Select the “Scattering” or “Impedance” or “Admittance” menu to calculate the scattering parameters of two 
ports network using the WIM algorithm for designed antenna analysis, an example is shown in Figure 8(a). 

5) Select the “E- Field” menu to represent the electric field distributions using the WIM algorithm on the 
printed interface of planar circuit, as shown in Figure 8(b). 

6) Select the “H- Field” menu to represent the magnetic field or current density distributions using the WIM 
algorithm on the printed interface of planar circuit, as illustrated in Figure 8(c). 

7) Select the “Exit” menu to quit form the program. 

4. Simulated and Experimented Results 
An example of simple microstrip patch antenna is presented using the electromagnetic simulation base on the 
proposed Wave Iterative Method (WIM) algorithm. In this topic, we will introduce an antenna design tool, an 
efficiently WIM simulated results to compare to the IE3D software and measurement.  

4.1. Microstrip Antenna Design 
The optimal parameters of the simple microstrip patch antenna are designed at 1.8 GHz operating frequency. 
The FR4 printed board was implemented with the relative permittivity ( )rε  equal to 4.6, and the thickness of  
 

 
(a) 

  
(c)                                                       (d) 

Figure 8. Display windows. (a) Scattering parameter (S11) window; (b) E-Field display; (c) H-Field display. 
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dielectric layer is1.6 mm., The analyzed results using the WIM simulation program can be obtained correctly to 
compare the conventional antenna theories approaches [14] [15]. The printed circuit dimension of designed an-
tenna is 49.8 × 38.58 mm2, as shown in Figure 9. 

4.2. Electromagnetic Field Distributions 
The simulation program has been developed using the WIM algorithm. Determination of the input E-filed of 
source excitation on the planar circuit, the computing electromagnetic field distribution will be propagated 
gradually on the planar structure. The evaluation of the electric and magnetic field distributions in term of itera-
tion number at 1, 5, 10 and 200 rounds is appeared on the antenna structure, as shown in Figure 10. It was found 
that small iteration number, the electromagnetic field distributions on the planar structure are not completely and 
exactly. After testing the convergence with reasonable number of iterations, on the printed circuit, the norma-
lized electric field peak is at the conductor edge, and minimum values are occurred in remote areas. On the other 
hand, the current density distributions on 2λ  long of conductor of each calculation have spread from source 
in to conductor area and will stabilize when the calculation is convergence (Approximately 200 rounds or more 
that depends on the designed circuit resolutions). 

4.3. Return Loss Analysis of Patch Antenna 
In the order to confirm the efficiency of the WIM simulation to compare the IE3D software and measurement, 
we will analyze and measure the return loss of the simple patch antenna using the N5230C network analyzer of  
 

   
Figure 9. Microstrip patch antenna structure, where Wp = 49.8 mm; Lp = 38.58 
mm; Wg = 59.40 mm; Lg = 48.18 mm; Wf = 2.96mm; Lf = 22.41 mm. 

 

 
(a)                           (b)                          (c)                          (d) 

Figure 10. Comparison of electromagnetic field in term of iteration number. (a) n = 1 round; (b) n = 5 rounds; (c) n = 10 
rounds; (d) n =200 rounds. 
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Figure 11. Experiment of the patch antenna. 

 

 
Figure 12. Simulated and measured results of return loss. 

 
Agilent Technologies, as shown in Figure 11. 

The WIM simulated result of return loss of the designed patch antenna as shown in Figure 12, found that the 
center frequency is obtained at 1.8 GHz, and the −3 dB bandwidth is 180 MHz. Compared to the WIM simula-
tion, theIE3D software and measurement of designed antenna are good agreement. Therefore, a little measure-
ment errors were occurred, it may be the limitation of the experiment set, the interface between coaxial probe 
and conductor strip, and also the planar structure different in the implemented process. 

5. Conclusions 
We have demonstrated the full wave analysis based on the developed Wave Iterative Method (WIM) algorithm 
to analyze the simple microstip patch antenna. The novel WIM algorithm can provide a reasonably good ap-
proximation to the correct values of circuit parameters, and its accuracy is dependent on usable pixel size and 
mode number. Additionally, this algorithm has the advantage of representing the electromagnetic field on circuit 
structure. Finally, the contribution in this paper indicates the development of the novel WIM algorithm based on 
iterative method that can be used to analyze effectively in arbitrarily inhomogeneous region formations.  

In the future, the proposed WIM algorithm will be also applied to MMICs, various planar circuit structures, 
passive circuit in the waveguide, and the electromagnetic solving for EMI/EMC problems. 
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Abstract 
In this work we describe the algorithms to construct the skeletons, simplified 1D representations 
for a 3D surface depicted by a mesh of points, given the respective eigenfunctions of the Discrete 
Laplace-Beltrami Operator (LBO). These functions are isometry invariant, so they are independent 
of the object’s representation including parameterization, spatial position and orientation. Sever-
al works have shown that these eigenfunctions provide topological and geometrical information of 
the surfaces of interest [1] [2]. We propose to make use of that information for the construction of 
a set of skeletons, associated to each eigenfunction, which can be used as a fingerprint for the sur-
face of interest. The main goal is to develop a classification system based on these skeletons, in-
stead of the surfaces, for the analysis of medical images, for instance. 

 
Keywords 
Skeleton, Centerline, Discrete Laplace-Beltrami Operator Eigenfunctions, Graph Theory 

 
 

1. Skeletons 
A curve-skeleton is a 1D model of a 3D object that captures the general characteristics of the original object, and 
it is also known as centerline. They are useful for visualization and virtual navigation. Another application is re- 
gistration of 3D objects: given a query object, the task is to find similar objects in a database by using the curve- 
skeleton as a fingerprint. A great variety of algorithms for the generation of skeletons have been developed in 
recent years [3] [4]. 

Shape intrinsic information should not depend on the given representation of the object. However, many of 
the current methods of skeleton construction have the weakness of being sensitive to changes on scale factors, 
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changes in the surface’s triangulation, orientation, etcetera. It is desirable that the curve-skeletons have certain 
properties in order to be used as fingerprints [1]: 
• Topology preserving. Two objects have the same topology if they have the same number of connected com-

ponents and cavities. Though a 1D curve cannot have cavities, skeletons must be able to grasp objects cha-
racteristics related to its genus. 

• Scaling invariant. It is necessary for the skeletons to be measurement unit independent; i.e. that it does not 
depend on the way in which the object could be measured. 

• Isometry invariant. The skeleton of an object should be independent of the object’s given depiction and loca-
tion. 

• Rotation invariant. Therefore, checking if two objects are similar needs no prior alignment. 
• Similarity. Similar objects should have similar fingerprints. 

In particular, it is known, that the eigenfunctions of the Laplace-Beltrami Operator satisfy several of the 
properties required for a fingerprint [1], for instance: 

The eigenfunctions depend only on the gradient and divergence which are dependent on the Riemannian 
structure of the manifold, so they are clearly isometry invariant. 

The eigenfunctions are normalizable, therefore, there is no need to concern about scale factors. 
Recently, several methods have been developed making use of these eigenfunctions to construct the curve- 

skeletons of objects of interest [5]. 

2. Surfaces Representation  
Object File Format (.off) files are used to represent the geometry of a model by specifying a triangulation of the 
model’s surface. The OFF files in the Princeton Shape Benchmark [6] conform to the following standard: 

OFF files are text files. 
It has a header line with the string OFF. 
The second line states the number of vertices, the number of faces, and the number of edges; however the 

number of edges can be ignored for our purpose. 
The next lines describe the Cartesian coordinates of each vertex, written one per line. The enumeration of the 

vertices is given by the order they occurred in the file, starting with 0. 
After the list of vertices, the faces are listed; starting with the number of sides and followed by the oriented 

list of vertices included. All the faces are oriented in the same direction. 
The faces can have any number of vertices, although they usually are triangles. For example, Table 1 shows 

the description of a unitary cube in this format. 

Case of Study  
Our present case of study are surfaces of rat-hippocampus, obtained from MRI images. On reported works, a re-
lation between morphological changes in the hippocampus and Alzheimer disease in early stages has been found; 
nowadays there are many studies in image analysis of this and other different brain structures [7]. 

As many works have shows, the first eigenfunction of the Laplace-Beltrami operator clearly identifies a prin-
cipal direction of the surfaces of interest, so it is very useful to build a skeleton. Besides that, we noticed that the 
second eigenfunction reveals additional geometrical information, such as localization of protuberance. Thus, we 
decided to build a skeleton based on the second eigenfunction also. The construction of both skeletons will be 
described in detail in section 4. We expect that the properties of these skeletons will provide important informa-
tion regarding the geometry of objects of interest in order to classify them in a more detailed manner. 

3. Laplace-Beltrami Operator  
Let 2f C∈  be a real-valued function defined on a Riemannian manifold M:  

:f M → R .                                       (1) 
The Laplace-Beltrami operator is defined as  

( )divf f∆ = ∇                                       (2) 

This operator appears in several equations in physics:  
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Table 1. Unitary cube. 

OFF     

8 6 0   

0.0 0.0 0.0   

1.0 0.0 0.0   

0.0 1.0 0.0   

1.0 1.0 0.0   

0.0 0.0 1.0   

1.0 0.0 1.0   

0.0 1.0 1.0   

1.0 1.0 1.0   

4 0 1 3 2 

4 0 4 5 1 

4 0 2 6 4 

4 3 1 5 7 

4 3 7 6 2 

4 6 7 5 4 

 
2wave equation : ttu u c∆ =                                 (3) 

2diffusion equation : tu u α∆ =                                (4) 

The method of separation of variables allows us to isolate the spatial dependence of u from the temporal de-
pendence. Let ( ) ( ) ( ),u r t f r a t= , substituting this into the wave equation produces  

2 ttafc
f a

λ∆
= =                                      (5) 

f fλ∆ =                                        (6) 

The substitution into diffusion equation leads to the same result. The solution of Equation (6) is a set of eigen-
values 1 2, ,λ λ   and a set of eigenfunctions 1 2,  ,f f   which can be thought as fundamental vibration modes. 

Finite Element Method  
We do not have an equation describing a differentiable variety M, thus we work with a discrete representation of 
a triangulated surface S described by an OFF file. We need a numerical integration method to solve Equation (6) 
on S. We have opted to use the Finite Element Method [2]. 

First of all, we choose N linearly independent form functions 1 2, , , NF F F  as a basis of a vector space. 
These base functions :iF S → R  are chosen to simplify the calculations, so they are constructed as linear func-
tions that “sample” function f at each vertex of the triangulated surface:  

( )
1 for  ,
0 for  .i

i j
F j

i j
=

=  ≠
                                 (7) 

The function f then can be written as a linear combination of these base functions  

i if U F=∑                                       (8) 

The substitution of this approximation in (6) reduces the equation to a generalized eigenvalue problem. 



A. H. Escalona-Buendia et al. 
 

 
417 

AU BUλ=                                       (9) 
where the entry Ui is the contribution of f at vertex i on S. The components of matrix A are given by: 

dij i jS
A F F s= ∇ ⋅∇∫                                   (10) 

and the components of matrix B are: 

dij i jS
B F F s= ⋅∫                                    (11) 

Figure 1(a) and Figure 1(b) show the first and second eigenfunctions, respectively, of Equation (9) applied 
on a triangulated surface of a rat-hippocampus. The lower values are colored in blue and the higher ones in red. 
We can see the monotonous behavior of the first function whereas the second function grows from the middle of 
the surface through its extremes. 

4. The Construction of the Skeletons  
The first step is to transform the OFF format into a graph, in this way we can use standard Graph Theory me-
thods. Let be { },=G V E , the vertices V are indexed as they are in the OFF file, and the edges E can be easily 
obtained from the list of faces. 

We chose the adjacency lists representation for simplicity and efficiency on a triangulated surface with thou-
sands of vertices, usually each one is adjacent only up to five or six vertices; although that number depends on 
the triangulation and the surfaces. Table 2 shows the adjacency lists of the unitary cube above. 

Although the graph is undirected, we allow redundancy of edges in order to simplify the search for local 
maxima and minima of the eigenfunctions. 
 

    
(a)                                      (b) 

Figure 1. First (a) and second (b) eigenfunctions on a hippocampus surface. 
 

Table 2. Adjacency lists for the unitary cube. 

0: 1 4 2 

1: 3 5 0 

2: 0 6 3 

3: 2 1 7 

4: 5 0 6 

5: 1 7 4 
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We do not want to modify the OFF files, so we use an auxiliary file with the values of the first eigenfunctions 
calculated for each vertex, this is done with the method described in the previous section. On the surfaces stu-
died, we have observed that each eigenfunction gives different information: 
• The first eigenfunction f1 has one maximum and one minimum at opposite points of the surface, these ex-

treme points give us a principal axis, and a main direction (Figure 1(a)). So we decide to use this function to 
build a polygonal skeleton, which can give us information about curvature and torsion.  

• The second eigenfunction f2 has several local maxima and minima at the prominent protuberances of the 
surface (Figure 1(b)). So we decide to use this function to build a tree-based skeleton that captures the ar-
borescent structure of the surface.  

So we need two variations of the same algorithm, one for each eigenvalue. 

4.1. First Eigenfunction Skeleton  
Let M and m be the vertices with the absolute maximum and minimum values of the first eigenfunction: 

( )1 Mf M e=  and ( )1 mf m e= , respectively. We define a set of energy levels { }0 1, , , ne e e  equally spaced:  

( ) , 0,1, ,i m M m
ie e e e i n
n

= + − =                                (12) 

The vertices fall between these energy levels, however there are some edges with one vertex in one level and 
the other in the following, so we define a boundary as a subgraph { },i i i=B V E :  

( ) ( ) ( ){ }1 1,

All vertices of 
i i i

i i

j k f j e f k e= ∈ ≤ ∧ ≥

=

E E

V E
                           (13) 

These boundaries generate a partition of the original graph. 
We perform a deep-first search to find one vertex in the boundary Bi, and a second deep-first search to get all 

the vertices in it. It is possible that for some energy levels these are so close to each other that the algorithm 
cannot find a definite boundary; in this case we skip to the next level. 

Each boundary Bi is a “ring” of vertices, which must be reduced into a centroid ci that can be calculated as a 
“center of mass”:  

1 , for  1, 2, , 1;  
i

i j i i
ji

c r i n N V
N ∈

= = − =∑
V

                          (14) 

where rj represents the coordinates of the vector of vertex j. Obviously, the boundaries for em and eM have just 
one vertex, so 0 mc r=  and n Mc r= . 

Finally we connect these centroids to build the skeleton; this last step is performed by the Prim’s algorithm 
[8]. This algorithm finds the minimum cost-spanning tree of the set of centroids ci, using their Euclidean dis-
tances as the costs function. Although the skeleton for the first eigenfunction is a polygonal, it can be seen as a 
degenerated tree (a one-degree tree). 

Figure 2(a) and Figure 2(b) show the first eigenfunction skeletons of two surfaces for 32 energy levels. 

4.2. The Second Eigenfunction Skeleton  
As we exposed for the first eigenfunction, we search for the absolute maximum and minimum points 

( )2 Mf M e=  and ( )2 mf m e=  and, in this case, we also search for local minima and maxima. A local maxi-
mum (or minimum) is a vertex l which is surrounded by vertices of lower (or upper) values of f2.  

( ) ( ) ( ) ( ) ( ) ( ){ }2 2 2 2,  , ,  ,l u l u f l f u u l u f l f u= ∈ ∀ ∈ ∈ ⇒ > ∨∀ ∈ ∈ ⇒ <L V V E V E         (15) 

The search can be easily done in the adjacency lists of E. 
We use the coordinates vectors of these vertices as the base of the centroids set:  

( ) ( )
0

1

;
,  ,   an enumeration of ;

,  where .

m

li l

p M

c r
c r l i l

c r p+

=

= ∀ ∈

= =

L L

L

                         (16) 
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We define the energy levels ei as in (12) and the boundaries Bi as in (13). However each one of these bounda-
ries could have k connected components 1 2, , ,i i ikB B B , each one has its own centroid 1 2, , ,i i ikc c c , as de-
fined in (14). The algorithm for the second eigenfunction process the surface as a tree structure: it performs a 
deep-first search for a set of boundaries with their respective branch of centroids, and then it performs a second 
search to find a second branch, an so on. The partition of the surface defined by the first search avoids the algo-
rithm to fall into the same boundaries. 

In this case, the Prim’s algorithm shows all its performance in the construction of the skeleton, connecting the 
set of centroids as a minimum-cost spanning tree. In order to avoid that the skeleton cuts the surface, we add di-
rections to the distances between centroids. We associate the information of the energy level to each centroid:  

( )( ) ( ) ( )2  for the centers defined in 16 ,i lh c f l=                         (17) 

( )  for the centroid of .ik i ikh c e= B                              (18) 

The algorithm connects the centroids in increasing order of ( )h c . Figure 3(a) and Figure 3(b) show the 
second eigenfunction skeletons of the same surfaces as Figure 2 and Figure 3. 
 

    
(a)                                                    (b) 

Figure 2. Skeletons of the first eigenfunction on hippocampus (a) and hippocampus (b). 
 

    
(a)                                                    (b) 

Figure 3. Skeletons of the second eigenfunction on hippocampus (a) and hippocampus (b). 
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5. Conclusions and Further Work  
We have developed the algorithms for building the skeletons for the first and second eigefunctions of the Lap-
lace-Beltrami operator calculated on an rat-hippocampus surface depicted by an OFF file. 

The skeleton for the first eigenfunction is built as a polygonal structure along the main axis of the surface. 
The skeleton for the second eigenfunction has a tree-structure with two main branches, each one with a similar 
structure to the first skeleton, and small branches for some local maxima at prominent protuberances. 

This is a first step for the developing of a classification system. The next steps are to generalize these results 
for different anatomical structures, and define characterization methods for these skeletons based on their geo-
metrical and topological properties, such as critical points of curvature and torsion, bifurcation points, number of 
branches, etcetera. 
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Abstract 
We will study the generalized Steklov-Robin eigenproblem (with possibly matrix weights) in 
which the spectral parameter is both in the system and on the boundary. The weights may be sin-
gular on subsets of positive measure. We prove the existence of an increasing unbounded se-
quence of eigenvalues. The method of proof makes use of variational arguments. 
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1. Introduction 
We study the generalized Steklov-Robin eigenproblem. This spectrum includes the Steklov, Neumann and Rob-
in spectra. We therefore generalize the results in [1]-[4]. 

Consider the elliptic system 
( ) ( )

( ) ( )

in ,

on ,

U A x U M x U
U x U P x U

µ

µ
ν

−∆ + = Ω

∂
+ Σ = ∂Ω

∂

                              (1) 

where NΩ ⊂  , 2N ≥  is a bounded domain with boundary ∂Ω  of class 0,1C ,  
[ ] ( ) ( ) ( ) ( ) ( )T 1 1 1 1

1, , : .
k

kU u u H H H H H = ∈ Ω = Ω = Ω × Ω × × Ω    Throughout this paper all matrices are 
symmetric. The matrix 

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

11 12 1

21 22 2

1 2

,

k

k

k k kk

a x a x a x
a x a x a x

A x

a x a x a x

 
 
 =  
 
  





   


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verifies the following conditions: 
(A1) The functions : .ija Ω→   

(A2) ( )A x  is positive semidefinite a.e. on Ω with ( )  , 1, , ,p
ija L i j k∈ Ω ∀ =   for 

2
Np >  when 3N ≥ , 

and 1p >  when 2.N =  
The matrix 

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

11 12 1

21 22 2

1 2

k

k

k k kk

m x m x m x
m x m x m x

M x

m x m x m x

 
 
 =  
 
  





   



 

satisfies the following conditions: 

(M1) ( )M x  is positive semidefinite a.e. on Ω The functions : ,ijm Ω→   for 
2
Np ≥  when 3N ≥ , and 

1p >  when 2.N =  
:ν ν∂ ∂ = ⋅∇  is the outward (unit) normal derivative on .∂Ω  The matrix 

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

11 12 1

21 22 2

1 2

,

k

k

k k kk

x x x
x x x

x

x x x

σ σ σ
σ σ σ

σ σ σ

 
 
 Σ =  
 
  





   



 

verifies the following conditions: 
(S1) The functions : .ijσ ∂Ω→   
(S2) ( )xΣ  is positive semidefinite a.e. on ∂Ω  with ( )   , 1, , ,q

ij L i j kσ ∈ ∂Ω ∀ =   for 1q N≥ −  when 
3N ≥ , and 1q >  when 2,N =   

and the matrix 

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

11 12 1

21 22 2

1 2

.

k

k

k k kk

x x x
x x x

P x

x x x

ρ ρ ρ
ρ ρ ρ

ρ ρ ρ

 
 
 =  
 
  





   



 

(P1) ( )P x  is positive semidefinite a.e. on ∂Ω  for 1q N≥ −  when 3N ≥ , and 1q >  when 2.N =  
We assume that ( ) ( ) ( ) ( ), , , A x x M x P xΣ  verify the following assumptions: 
Assumption 1. ( )A x  is positive definite on a set of positive measure of Ω, 
or ( )xΣ  is positive definite on a set of positive measure of .∂Ω  
And ( )M x  is positive definite on a set of positive measure of Ω, 
or ( )P x  is positive definite on a set of positive measure of .∂Ω  
Remark 2. Assumption 1 is equivalent to 

( ) ( ), d , d 0  0.A x U U x x U U x U
Ω ∂Ω

+ Σ > ∀ ≠∫ ∫  

Remark 3. Since ( ) ( ) ( ) ( ), , , A x x M x P xΣ  satisfy (A2), (S2), (M1), (P1) respectively, then we can write 
them in the following form (i.e.; eigen-decomposition of a positive semi-definite matrix or diagonalization) 

( ) ( ) ( ) ( )T .J J JJ x Q x D x Q x=  

where ( ) ( )T
J JQ x Q x I=  ( ( ) ( )T 1

J JQ x Q x−=  i.e.; are orthogonal matrices) are the normalized eigenvectors, I 
is the identity matrix, ( )JD x  is diagonal matrix and in the diagonal of ( )JD x  are the eigenvalues of J (i.e.; 
( ) ( ) ( )( )1diag , ,J J

kJD x x xλ λ=  ) and { }, , , .J A M P= Σ  
Remark 4. The weight matrices ( )M x  and ( )P x  may vanish on subsets of positive measure. 
Definition 1. The generalized Steklov-Robin eigensystem is to find a pair ( ) ( ), Hµ ϕ ∈ × Ω  with 0ϕ ≡/  
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such that 

( ) ( )

( ) ( ) ( )

d , d , d

, d , d    .

U x A x U x x U x

M x U x P x U x U H

ϕ ϕ ϕ

µ ϕ ϕ
Ω Ω ∂Ω

Ω ∂Ω

∇ ⋅∇ + + Σ

 = + ∀ ∈ Ω 

∫ ∫ ∫
∫ ∫

                   (2) 

Remark 5. Let U ϕ=  in (2) if there is such an eigenpair, then 0µ >  and 

( ) ( ), d , d 0.M x x P x xϕ ϕ ϕ ϕ
Ω ∂Ω

+ >∫ ∫  

Indeed, if ( ) ( ), d , d 0,M x x P x xϕ ϕ ϕ ϕ
Ω ∂Ω

+ =∫ ∫  or 0,µ =  then 

( ) ( )2 d , d , d 0.x A x x x xϕ ϕ ϕ ϕ ϕ
Ω Ω ∂Ω
∇ + + Σ =∫ ∫ ∫  

We have that 2 d 0xϕ
Ω
∇ =∫  which implies that constant,ϕ =  and ( ) , d 0A x xϕ ϕ

Ω
=∫  this implies that  

( ) , 0,A x ϕ ϕ =  a.e. (with 0ϕ ≠ ) in Ω. This implies that ( )A x  is not positive definite on a subset of Ω of  
positive measure, and ( ) , d 0,x xϕ ϕ

∂Ω
Σ =∫  then ( ) , 0,x ϕ ϕΣ =  a.e. with ( )0ϕ ≠  on .∂Ω  This implies  

that ( )xΣ  is not positive definite on subset of ∂Ω  of positive measure. So we have that, ϕ  would be a con-
stant vector function; which would contradict the assumptions (Assumption 1) imposed on ( )A x  and ( ).xΣ  

Remark 6. If ( ) 0A x ≡  and ( ) 0xΣ ≡  then 0µ =  is an eigenvalue of the system (1) with eigenfunction 
constantϕ =  vector function on Ω . 

It is therefore appropriate to consider the closed linear subspace (to be shown below) of ( )H Ω  under As-
sumption 1 defined by 

( ) ( ) ( ) ( ) ( ){ }, : : , d , d 0 .M P U H M x U U x P x U U x
Ω ∂Ω

Ω = ∈ Ω + =∫ ∫  

Now all the eigenfunctions associated with (2) must belong to the ( ),A Σ -orthogonal complement  

( ) ( ) ( ) ( ), ,:M P M PH
⊥

 Ω = Ω   of this subspace in ( ).H Ω  We will show that indeed ( ) ( ),M P Ω  is subspace of  

( ).H Ω  Let ( ) ( ),, M PU V∈ Ω  and α ∈  we wish to show that ( ) ( ),M PUα ∈ Ω  and ( ) ( ), .M PU V+ ∈ Ω  

( )( ) ( )( )( )
( ) ( )( ) ( ) ( ),2

, d , d

, d , d 0.M PU

M x U U x P x U U x

M x U U x P x U U x

α α α α

α

Ω ∂Ω

∈ Ω

Ω ∂Ω

+

= + =

∫ ∫

∫ ∫


 

Therefore ( ) ( ), .M PUα ∈ Ω  Now we show that ( ) ( ), .M PU V+ ∈ Ω  

( )( ) ( ) ( )( ) ( )
( ) ( ) ( )
( ) ( ) ( )

, d , d

, d , d , d

, d 2 , d 2 , d .

M x U V U V x P x U V U V x

M x U U x P x U U x M x V V x

P x V V x M x U V x P x U V x

Ω ∂Ω

Ω ∂Ω Ω

∂Ω Ω ∂Ω

+ + + + +

= + +

+ + +

∫ ∫
∫ ∫ ∫
∫ ∫ ∫

 

Since ( ) ( ), ,M PU ∈ Ω  it follows that 

( ) ( ) ( ) ( )
( ) ( ) ( )

T0 , d , d

, d .

M M M

M M M

M x U U x Q x D x Q x U U x

D x Q x U Q x U x
Ω Ω

Ω

= =

=

∫ ∫
∫

 

By setting ( ) ( ): ,My x Q x U=  we get 

( ) ( ) ( ) ( ) ( )2

1
0 , d d .

k
M

M i i
i

D x y x y x x x y x xλ
Ω Ω

=

= = ∑∫ ∫  

Since ( ) 0M
i xλ ≥  for a.e. ,x∈Ω  it readily follows that 

( ) ( ) 0 for  . . ;M
i ix y x a e xλ = ∈Ω  

that is, the vector ( ) ( )MD x y x  satisfies 



A. Fadlallah et al. 
 

 
424 

( ) ( ) 0  for . . ,MD x y x a e x= ∈Ω  

or equivalently 

( ) ( ) 0  for . . on .M MD x Q x U a e= Ω  

Hence, 

( ) ( ) ( ) ( )
( ) ( ) ( )

T2 , d 2 , d

2 , d 0,

M M M

M M M

M x U V x Q x D x Q x U V x

D x Q x U Q x V x
Ω Ω

Ω

=

= =

∫ ∫
∫

 

since ( ) ( ) 0 . . on .M MD x Q x U a e= Ω  A similar arguments shows that 

( )2 , d 0.P x U V x
∂Ω

=∫  

Therefore ( ) ( ), ,M PU V+ ∈ Ω  so we have that ( ) ( ),M P Ω  is a subspace of ( ).H Ω  Thus, one can split 
the Hilbert space ( )H Ω  as a direct ( ),A Σ -orthogonal sum in the following way 

( ) ( ) ( ) ( ) ( ) ( ), , , .M P A M PH
⊥

Σ
 Ω = Ω ⊕ Ω    

Remark 7. 1) If ( ) 0M x ≡  in Ω, then the subspace  
( ) ( ) ( ) ( ) ( ) ( )1 1 1 1

0 0 0 0 0, : ,
k

M P H H H H H Ω = Ω = = Ω × Ω × × Ω    provided ( ) 0P x >  on ∂Ω . 
2) If ( ) 0P x ≡  in ∂Ω  and ( )x M∈Ω , then the subspace ( ) ( ) { }, 0 ,M P Ω =  provided ( ) 0M x >  on Ω. 

• We shall make use in what follows the real Lebesgue space ( )q
kL ∂Ω  for 1 q≤ ≤ ∞ , and of the continuity 

and compactness of the trace operator 

( ) ( ) ( )2 1
:   for  1 ,

2
q
k

N
H L q

N
−

Γ Ω → ∂Ω ≤ <
−

 

is well-defined, it is a Lebesgue integrable function with respect to Hausdorff 1N −  dimensional measure. 
Sometimes we will just use U in place of UΓ  when considering the trace of a function on ∂Ω . Through-
out, this work we denote the ( )2

kL ∂Ω -inner product by 

, : dU V U V x
∂ ∂Ω
= ⋅∫  

and the associated norm by 

( )2 :     ,U U U U V H
∂ ∂Ω
= ⋅ ∀ ∈ Ω∫  

(see [5], [6] and the references therein for more details). 
• The trace mapping ( ) ( )2: kH LΓ Ω → ∂Ω  is compact (see [7]). 

( ) ( ) ( ),, , d , d ,M PU V M x U V x P x U V x
Ω ∂Ω

= +∫ ∫                       (3) 

defines an inner product for ( )H Ω , with associated norm 

( ) ( ) ( )2

, : , d , d .M PU M x U U x P x U U x
Ω ∂Ω

= +∫ ∫                        (4) 

Now, we state some auxiliary result, which will be need in the sequel for the proof of our main result. Using 
the Hölder inequality, the continuity of the trace operator, the Sobolev embedding theorem and lower semicon-
tinuity of ( ),. A Σ

, we deduce that ( ),. A Σ
 is equivalent to the standard ( )H Ω -norm. This observation enables 

us to prove the existence of an unbounded and discrete spectrum for the Steklov-Robin eigenproblem (1) and 
discuss some of its properties. 

Definition 2. Define the functional 

( ) [ ), : 0, ,A HΣΛ Ω → ∞  

( ) ( ) ( ) ( ) ( )2
, ,: , d , d ,  ,A AU U U A x U U x x U U x U U HΣ ΣΩ ∂Ω

 Λ = ∇ ⋅∇ + + Σ = ∀ ∈ Ω ∫ ∫  
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and 

( ) [ ), : 1, ,M P Hϒ Ω → ∞  

( ) ( ) ( ) ( ) ( )2
, ,: , d , d 1 1,  .M P M PU M x U U x P x U U x U U H

Ω ∂Ω
ϒ = + − = − ∀ ∈ Ω∫ ∫  

Lemma 1. Suppose (A2), (S2), (M1), (P1) are met. Then the functionals ,A ΣΛ  and ,M Pϒ  are C1-functional 
(i.e.; continuously differentiable). 

See [8] for the proof of Lemma 1. 
Theorem 8. ,A ΣΛ  is G-differentiable and convex. Then ,A ΣΛ  is weakly lower-semi-continuous. 
See [8] for the proof of Theorem 8. 

2. Main Result 
Theorem 9. Assume Assumption 1 as above, then we have the following. 

1) The eigensystem (1) has a sequence of real eigenvalues 

1 2 30  as ,j jµ µ µ µ< ≤ ≤ ≤ ≤ ≤ →∞ →∞ 
 

and each eigenvalue has a finite-dimensional eigenspace. 
2) The eigenfunctions jϕ  corresponding to the eigenvalues jµ  from an ( ),A Σ -orthogonal and ( ),M P - 

orthonormal family in ( ),M P
⊥

 Ω   (a closed subspace of ( )H Ω ). 
3) The normalized eigenfunctions provide a complete ( ),A Σ -orthonormal basis of ( ), .M P

⊥
 Ω   Moreover, 

each function ( ),M PU
⊥

 ∈ Ω   has a unique representation of the from 

( ) ( )

( )

, ,
1

22

,
1

1 with : , , ,

.

j j j j jA M P
j j

j jA
j

U c c U U

U c

ϕ ϕ ϕ
µ

µ

∞

Σ
=

∞

Σ
=

= = =

=

∑

∑
                     (5) 

In addition, 

( )
22

,
1

.jM P
j

U c
∞

=

= ∑  

Proof of Theorem 9. We will prove the existence of a sequence of real eigenvalues jµ  and the eigenfunc-  

tions jϕ  corresponding to the eigenvalues that from an orthogonal family in ( ),M P
⊥

 Ω  . 

We show that ,A ΣΛ  attains its minimum on the constraint set 

( ) ( ){ }0 , ,: 0 .M P M PW U U
⊥

 = ∈ Ω ϒ =   

Let ( ) ( )
0

,: inf ,AU W
Uα Σ∈

= Λ  by using the continuity of the trace operator, the Sobolev embedding theorem and  

the lower-semi-continuity of , .A ΣΛ  
Let { } 1l l

U ∞

=
 be a minimizing sequence in W0 for , ,A ΣΛ  since ( ),lim ,A ll

U αΣ→∞
Λ =  we have that  

( ) ( ), ,
,A l l AU UΣ Σ

Λ =  by the definition of α  we have that for all 0>  and for all sufficiently large l, then 
2

,l AU α
Σ
≤ +   by using the equivalent norm we have that, there is exist ,β  such that 

( )
2 2

,
,l lH AU Uβ

Ω Σ
≤  

so we have that 

( ) ( )2 2

,
.l lH AU Uβ β α

Ω Σ
≤ ≤ +   

Therefore, this sequence is bounded in ( )H Ω . Thus it has a weakly convergent subsequence { }: 1
jlU j ≥   
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which convergent weakly to Û  in ( )H Ω . From Rellich-Kondrachov theorem this subsequence converges 
strongly to Û  in ( )2 ,kL Ω  so Û  in W0. Thus ( ),

ˆ
A U αΣΛ =  as the functional is weakly l.s.c. (see Theorem 

8). 
There exists 1ϕ  such that ( ), 1A ϕ αΣΛ = . Hence, ,A ΣΛ  attains its minimum at 1ϕ  and 1ϕ  satisfies the 

following 

( ) ( )

( ) ( )( )
1 1 1

1 1 1

d , d ,

, d , d .

V x A x V x x V

M x V x P x V x

ϕ ϕ ϕ

µ ϕ ϕ
Ω Ω ∂Ω

Ω ∂Ω

∇ ⋅∇ + + Σ

= +

∫ ∫ ∫
∫ ∫

                      (6) 

for all ( ) ( ), .M PV
⊥

 ∈ Ω   We see that ( )1 1,µ ϕ  satisfies Equation (2) in a weak sense and 1 0Wϕ ∈  this im-  

plies that ( ) ( )1 ,M Pϕ
⊥

 ∈ Ω   by the definition of W0. Now take 1V ϕ=  in Equation (6), we obtain that the ei-
genvalue 1µ  is the infimum ( ), 1 1Aα ϕ µΣ= Λ = . This means that we could define 1µ  by the Rayleigh quotient 

( )

( )
0

,
1 2

0 ,

inf .A

U W
U M P

U

U
µ Σ

∈
≠

Λ
=  

Clearly, ( )1 , 1 0Aµ ϕΣ= Λ > . Indeed assume that ( ), 1 0A ϕΣΛ =  then 1 0ϕ∇ =  on ,Ω  hence 1ϕ  must be a 
constant and ( ) , 0A x ϕ ϕ =  with 0ϕ ≠  that contradicts the assumptions imposed on ( )A x . Thus 1 0µ > . 

Now we show the existence of higher eigenvalues. 
Define 

( )1 0 1 1 ,:  b  : , .M PW y U U ϕ→ =    

We know that the kernel of 1  

( ){ }1 0 1 1: 0 : .ker U W U W= ∈ = =   

Since W1 is the null-space of the continuous functional 1 ,., M Pϕ  on ( ) ( ), ,M P

⊥
 Ω   W1 is a closed sub-  

space of ( ) ( ),M P

⊥
 Ω  , and it is therefore a Hilbert space itself under the same inner product ( ),.,. M P

. Now  

we define 

( ){ } ( )

( )
1

,
2 , 1 2

0 ,

inf : inf .A
A U W

U M P

U
U U W

U
µ Σ

Σ ∈
≠

Λ
= Λ ∈ =  

Since 1 0W W⊂  then we have that 1 2µ µ≤ . Now we define 

( )2 1 2 2 ,:  b  , M PW y U U ϕ→ =    

we know that the kernel of 2  

( ){ }2 1 2 2: 0 : .ker U W U W= ∈ = =   

Since W2 is the null-space of the continuous functional 2 ,., M Pϕ  on ( ) ( ),M P

⊥
 Ω  , W2 is a closed sub-

space of ( ) ( ),M P

⊥
 Ω  , and it is therefore a Hilbert space itself under the same inner product ( ),.,. M P

. Now  

we define 

( ){ } ( )

( )
2

,
3 , 2 2

0 ,

inf : inf .A
A U W

U M P

U
U U W

U
µ Σ

Σ ∈
≠

Λ
= Λ ∈ =  

Since 2 1W W⊂  then we have that 2 3.µ µ≤  Moreover, we can repeat the above arguments to show that 3µ   

is achieved at some ( ) ( )3 , .M Pϕ
⊥

 ∈ Ω   

We let 

( ){ }3 2 3 ,
: , 0M PW u W U ϕ= ∈ =  

and 
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( ){ } ( )

( )
3

,
4 , 3 2

0 ,

inf : inf .A
A U W

U M P

U
U U W

U
µ Σ

Σ ∈
≠

Λ
= Λ ∈ =  

Since 3 2W W⊂  then we have that 3 4µ µ≤ . Moreover, we can repeat the above arguments to show that 4µ   

is achieved at some ( ) ( )4 , .M Pϕ
⊥

 ∈ Ω   

Proceeding inductively, in general we can define 

( )1 ,
:  b  , ,j j j j M P
W y U U ϕ− → =    

we know that the kernel of 2  

( ){ }1 : 0 : .j j j jker U W U W−= ∈ = =   

Since Wj is the null-space of the continuous functional 
,

., j M P
ϕ  on ( ) ( ),M P

⊥
 Ω  , Wj is a closed subspace  

of ( ) ( ),M P

⊥
 Ω  , and it is therefore a Hilbert space itself under the same inner product ( ),.,. .M P

 Now we de-
fine 

( ){ } ( )

( )

,
1 , 2

0 ,

inf : inf .
j

A
j A j U W

U M P

U
U U W

U
µ Σ

+ Σ ∈
≠

Λ
= Λ ∈ =  

In this way, we generate a sequence of eigenvalues 

1 2 30 jµ µ µ µ< ≤ ≤ ≤ ≤ ≤ 
 

whose associated jϕ  are c-orthogonal and ( ),M P -orthonormal in ( )1
0 .H

⊥
 Ω   

Claim 1 jµ →∞  as .j →∞  
Proof of claim 1. By way of contradiction, assume that the sequence is bounded above by a constant. There-

fore, the corresponding sequence of eigenfunctions jϕ  is bounded in ( ).H Ω  By Rellich-Kondrachov theo-
rem and the compactness of the trace operator, there is a Cauchy subsequence (which we again denote by jϕ ), 
such that 

( )

2

,
0.j k M P

ϕ ϕ− →                                    (7) 

Since the jϕ  are ( ),M P -orthonormal, we have that 
( ) ( ) ( )
2 2 2

,, ,
2 0j k j k M PM P M P

ϕ ϕ ϕ ϕ− = + = > , if ,j k≠   

which contradicts Equation (7). Thus, .jµ →∞  We have that each jµ  occurs only finitely many times. 
Claim 2 
Each eigenvalue jµ  has a finite-dimensional eigenspace. 
See [8] for the proof of claim 2. 
We will now show that the normalized eigenfunctions provide a complete orthonormal basis of ( )1

0H
⊥

 Ω  . 
Let 

1 ,j j
j

ψ ϕ
µ

=  

so that 
( )

2

,
1.j A

ψ
Σ
=  

Claim 3 

The sequence { } 1j j
ψ

≥
 is a maximal ( ),A Σ -orthonormal family of ( ) ( ),M P

⊥
 Ω  . (We know that the set is  

maximal ( ),A Σ -orthonormal if and only if it is a complete orthonormal basis). 
Proof of Claim 3. By way of contradiction, assume that the sequence { } 1j j

ψ
≥

 is not maximal, then there 

exists a ( ) ( ), ,M Pξ
⊥

 ∈ Ω   and { } 1
,j j

ξ ψ
≥

∈/  such that ( )
2

, 1Aξ
Σ
=  and 

( ),
, 0 j A

jξ ψ
Σ
= ∀ , i.e.; 
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( )
( )

( )

( )( )
( )

( )

, ,
,

by 6

,
,

1 10 , , ,

1, , , ,

j j jA A
j jA

j
j j j j jM P

j j M P

ξ ψ ξ ϕ ξ ϕ
µ µ

µ
ξ ϕ µ ξ ϕ µ ξ ψ

µ µ

Σ Σ

Σ

∂

= = =

= = =

 

since 0 j jµ > ∀ . Therefore 
( ),

, 0j M P
ξ ψ = . We have that  1jW jξ ∈ ∀ ≥ . It follows from the definition of 

jµ  that 

( )

( ) ( )
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2 2

, ,

1  1.A
j

M P M P

j
ξ
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ξ ξ

Σ≤ = ∀ ≥  

Since we know from Claim 1 that jµ →∞  as ,j →∞  we have that ( )
2

, 0.M Pξ =  Therefore 0ξ =  a.e in 

Ω, which contradicts the definition of ξ. Thus the sequence { } 1j j
ψ

≥
 is a maximal ( ),A Σ -orthonormal family 

of ( ) ( ), ,M PH
⊥

 Ω   so the sequence { } 1j j
ψ

≥
 provides a complete orthonormal basis of ( ) ( ), ;M PH

⊥
 Ω   that is, 

for any ( ) ( ),AU
⊥

Σ
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∞
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Now let 
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Claim 4 
We shall show that 
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Proof of Claim 4. 
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Abstract 
The rotationally symmetric flow of a micropolar fluid in the presence of an infinite rotating disk 
has been studied numerically. The equations of motion are reduced to a system of ordinary diffe-
rential equations, which in turn are solved numerically using SOR method and Simpson’s (1/3) 
rule. The results are calculated for different values of the parameter s (the ratio of angular veloci-
ties of disc and fluid) and the suction parameter a. Moreover, three different sets of the values of 
non-dimensional material constants related to micropolar behavior of the fluid have been chosen 
arbitrarily. The calculations have been carried out using three different grid sizes to check the ac-
curacy of the results. The research concludes that the micropolar fluids flow resembles with that 
of Newtonian fluids when the material constants become close to zero. The comparison of these 
results is presented for possible values of the parameter s. 

 
Keywords 
Micropolar Fluids, Rotating Disk and Numerical Study 

 
 

1. Introduction 
Eringen [1] introduced the theory of micropolar fluids, a sub class of microfluid [2]. The theory fully explains 
the internal characteristics of the substructure particles which are also allowed to undergo rotation and deforma-
tion. Airman et al. [3] concluded that the micropolar fluid serves a better model for animal blood. Guram and 

 

 

*Corresponding author. 

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2015.62040
http://dx.doi.org/10.4236/am.2015.62040
http://www.scirp.org
mailto:profatif@hotmail.com
mailto:s.nawaz@mu.edu.sa
mailto:mshafique6161@yahoo.com
http://creativecommons.org/licenses/by/4.0/


A. Nazir et al. 
 

 
431 

Smith [4] considered the flow of a micropolar fluid which is steady relative to a frame of reference rotating with 
small uniform angular velocity when the velocity and spin are two dimensional and depend on the depth whe-
reas pressure is independent of the horizontal coordinates. Anwar and Guram [5] considered the flow of a mi-
cropolar fluid contained between a rotating and a stationary disk. Narayana and Rudraiah [6] discussed the flow 
of a viscous fluid between two disks, one rotating and the other at rest. The same problem in micropolar fluid 
has been studied numerically taking either suction or blowing at the stationary disk by Agrawal Dhanapal [7]. 

The laminar flow due to an infinite rotating disk was first theoretically investigated with an approximate me-
thod by Von Karman [8]. Later on, Cochran [9] presented accurate numerical solutions of the Von Karman’s 
problem. Dolidge [10], Sparrow & Gregg [11] and Benton [12] studied the related problems for different physi-
cal situations. Rogers and Lance [13] presented numerical solution for the flow produced by an infinite rotating 
disk when the fluid at infinity is in a state of solid rotation. Balaram and Luthra [14] obtained numerical solution 
of the steady flow produced by an infinite rotating disk when the second-order fluid at infinity is in a state of 
solid rotation. Sajjad et al. [15] obtained numerical solution for accelerated rotating disk in a viscous fluid. Ram 
and Kumar [16] analyzed three dimensional rotationally symmetric boundary layer flow of field dependent 
viscous fluid saturating porous medium due to the rotation of an infinite disk. Evans [17] studied the effect of 
uniform suction on the rotationally symmetric flow produced by an infinite rotating disc with the fluid at infinity 
is rotating in the same sense as the disc. 

In this research, the numerical solutions of the rotationally symmetric slow of micropolar fluids in the pres-
ence of an infinite rotating disk have been discussed. In order to find the numerical solution of the problem, the 
Navier Stokes equations are reduced to ordinary differential equations by using similarity transformations [17]. 
The finite difference scheme is solved numerically by using SOR Iterative Procedure with Simpson (1/3) Rule 
[18]. The calculations have been carried out using three different grid sizes to check the accuracy of the results. 
The numerical results have been discussed both in tabular and graphically.  

The purpose of using these numerical techniques for numerical solution is that, the finite difference approxi-
mations are found to be discrete techniques wherein the domain of interest is represented by a set of points or 
nodes and information among these points is commonly obtained by using Taylor series expansions while the 
finite element method employs piecewise continuous polynomials to interpolate among nodal points. The finite 
difference techniques are very easy to understand and straight forward for computational analysis.  

2. Mathematical Analysis 
The cylindrical polar coordinates ( ), ,r zϕ  are used, r being the radial distance from the axis, ϕ , the polar an-
gle and z the normal distance from the disk. We assume that the flow is steady and incompressible. The body 
force and body couples are neglected. With these assumptions the equations of motion become: 

0∇⋅ =V                                        (1) 

( ) ( ) ( ) ( )k k pµ ρ− + ∇× ∇× + ∇× −∇ + = ⋅∇V ν V V                        (2) 

( ) ( ) ( ) ( ) ( )2k k jα β γ γ ρ+ + ∇ ∇⋅ − ∇×∇× + ∇× − = ⋅∇ν ν V ν V ν                 (3) 

where ρ  is the density, V  the velocity, ν  the micro-rotation or spin, p the pressure, µ  is dynamic vis-
cosity coefficient, j the micro-inertia, α , β , γ  and k are material constants. 

The following similarity transformations are used: 

( ) ( ) ( ),   ,   u r F v r G w Hζ ζ υ ζ= Ω = Ω = Ω                         (4) 

( ) ( ) ( ) ( ) ( )3 2 1 2 3 2 1 2
1 2 3,   ,   and   2r L v r M v Nν υ ζ υ ζ ζ= − Ω = Ω = Ω  

where zζ
υ
Ω

=  is the dimensionless variable, υ  being kinematics viscosity. The Equations (1) to (3) in di-

mensionless form become: 
2 0F H ′+ =                                       (5) 

2 2 2
1F F G HF s C M′′ ′ ′= − + + +                               (6) 

http://appliedmechanics.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=M.+Balaram&q=M.+Balaram
http://appliedmechanics.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=B.+R.+Luthra&q=B.+R.+Luthra
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1 12 0FG HG G M G C L′ ′′ ′+ − + + =                               (7) 

( )2 2
2 2 32 2 0L C G C L C L LN M′′ ′ ′+ − + − − =                           (8) 

( )2 2 32 2 0M C F C M C NM LM′′ ′ ′+ − − − =                            (9) 

4 5 5 62 2 0N L C L C G C N C NN′′ ′ ′ ′− + + − − =                          (10) 

where primes denote differentiation with respect to ζ . The constants C1, C2, C3, C4, C5 and C6 all are non di-
mensional. 

The boundary conditions are 
0 : 0,  1,  0,  0,  0,  0;

: 0,  ,  0,  0,  0.
F G H L M N

F G s L M N
ζ
ζ
= = = = = = =
→∞ = = = = =

                      (11) 

3. Finite Difference Equations 
In order to obtain the numerical solution of nonlinear ordinary differential Equations (6) to (10), we approximate 
these equations by central difference approximation at a typical point nζ ζ=  of the interval [ )0,∞ , we obtain 

( ) ( ) ( )2 2 2 2 2
1 1 1 1 1 11 2 2 1 0

2 2 2n n n n n n n n n
h h hH F M h h F F H F h G s C M M+ − + −

   − − + + + + + − − − =   
   

    (12) 

( ) ( )2
1 1 1 1 11 2 1 1 0

2 2 2n n n n n n n n
h h hH G h F G H G C L L+ − + −

   − − + + + − − =   
   

               (13) 

( ) ( ) ( )
2

2 2 2
3 1 2 3 3 1 3 2 1 11 2 1 1 0

2 2n n n n n n n n n
h hC hN L C h C L L C hN L C h M C G G+ − + −

 
− − + − + + − + − = 

 
     (14) 

( ) ( ) ( ) ( )2 2
3 1 2 3 3 1 2 1 11 2 1 1 0

2n n n n n n n n
hC hN M C h C h L M C hN M C F F+ − + −− − + − + + + − =        (15) 

( ) ( ) ( ) ( )( )2 2
6 1 5 6 1 5 4 1 11 2 1 1 1 0

2n n n n n n n n
hC hN N C h N C hN N C h G C L L+ − + −− − − + + + − − − =       (16) 

where h denotes a grid size, ( ) ( ),  n n n nF F G Gζ ζ= =  and ( )n nH H ζ= . For computational purposes, we re-
place the interval [ )0,∞  by [ )0, t , where t is sufficiently large. 

4. Computational Procedure 
We now solve numerically the finite difference Equations (12) to (16) by using SOR method subject to the ap-
propriate boundary conditions (11). The first order ordinary differential Equation (5) integrate by Simpson’s (1/3) 
rule subject to the initial condition H a= −  when 0ζ =  where a is the suction parameter. 

The computation has been checked for different of the relaxation parameter between 1 2ω< < . The optimum 
value of the relaxation parameter for the problem under consideration is 1.5. The SOR procedure is terminated 
when the following condition is satisfied: 

1 6max 10n n
i iU U+ −− <  

where n denotes the number of iterations and U stands for each of F, G, L, M and N. The above procedure is re-

peated for higher grid levels 
2
h  and 

4
h .  

5. Discussion on Numerical Results 
Numerical results have been found to observe the effect of parameters s and a on velocity field and microrota-
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tion. In order to check the accuracy of the results for velocity components F, G and H and the microrotation 
components L, M and N, the calculations have been carried out on three different grid sizes namely h = 0.1, 0.05 
and 0.025. The three different sets of the material constants C1, C2, C3, C4, C5 and C6 in the Table 1 below have 
been chosen arbitrarily and calculations have been carried out for each set. 

The velocity derivatives at the surface of the disc are given in Table 2 for micropolar fluids results with the 
results for Newtonian fluids. In Table 3 to Table 5, the numerical results are presented for s = 0.0, −0.1, −0.16 
and a = 0.0, 1.5 for the material constants case I. The radial and transverse velocity components F and G are re-
spectively depicted in Figure 1 and Figure 2 for different values of the suction parameter a when s = 0. The ve-
locity components show a reduction in magnitude with increasing values of a. The boundary layer is clearly in-
dicated near the surface of the disk. 

Figure 3 and Figure 4 present velocity components F and G for various values of suction parameter a when 
s = −0.1. The figure indicates the effect of the outer flow for the first time. Some radial flow reversal is occur-
ring in the outer flow but there is stability for the boundary layer. Thus for increasing s negatively and then the 
radial flow development will cause the boundary layer to leave the disk. 
 
Table 1. Three sets of material constants used in calculations of micropolar fluids. 

Cases C1 C2 C3 C4 C5 C6 

I 0.1 0.3 0.4 0.5 0.7 0.8 

II 0.5 1.5 2.0 3.0 3.5 4.0 

III 0.3 0.5 1.5 2.5 3.0 3.5 

 
Table 2. The comparison of Micropolar fluids and Newtonian fluids for ( )0F ′  and ( )0G′ . 

s 
( )0F ′  ( )0G′  

Micropolar fluids Newtonian fluids [17] Micropolar fluids Newtonian fluids [17] 

0.0 0.51022801 0.51022912 −0.61592027 −0.61591916 

−0.10 0.49130449 0.49130550 −0.60825160 −0.60825056 

−0.15 0.47627299 0.47627301 −0.58762407 −0.58761507 

−0.16 0.47332786 0.47332988 −0.57766843 −0.57766748 

 

 
Figure 1. Graph of F for different values of parameter a = 0, 0.2, 0.5, 1.0 and 1.5 
from top to bottom when s = 0. 
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Figure 2. Graphs of G for different values of parameter a = 0, 0.2, 0.5, 1.0 and 
1.5 from top to bottom when s = 0. 

 

 
Figure 3. Graph of F for different values of parameter a = 0, 0.3, 0.5, 1.0 and 1.5 
from top to bottom when s = −0.1. 

 

 
Figure 4. Graph of G for different values of parameter a = 0, 0.2, 0.5, 0.7, 1.0 and 
1.5 from top to bottom when s = −0.1. 
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Table 3. The numerical results for velocity components F, G and H and the microrotation components L, M and N when s = 
0.0 and a = 0.0. 

h ζ  F G H L M N 

0.05 

0.000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 

1.000 0.179240 0.475672 −0.264748 −0.132547 −0.005065 0.061811 

2.000 0.116682 0.198637 −0.569258 −0.100132 −0.017006 0.030972 

3.000 0.055710 0.079067 −0.736567 −0.055573 −0.015614 0.009449 

4.000 0.023615 0.030491 −0.811870 −0.027335 −0.010107 0.001537 

5.000 0.009307 0.011294 −0.842782 −0.012569 −0.005525 −0.000480 

6.000 0.003340 0.003853 −0.854550 −0.005392 −0.002665 −0.000683 

7.000 0.000936 0.001029 −0.858460 −0.001912 −0.001024 −0.000438 

8.000 0.000000 0.000000 −0.859246 0.000000 0.000000 0.000000 

0.025 

0.000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 

1.000 0.179756 0.475490 −0.265459 −0.132669 −0.005076 0.061869 

2.000 0.116687 0.198008 −0.570529 −0.100185 −0.017102 0.030837 

3.000 0.055505 0.078594 −0.737561 −0.055501 −0.015655 0.009322 

4.000 0.023472 0.030247 −0.812501 −0.027248 −0.010100 0.001480 

5.000 0.009235 0.011179 −0.843204 −0.012505 −0.005508 −0.000501 

6.000 0.003306 0.003803 −0.854869 −0.005355 −0.002651 −0.000689 

7.000 0.000925 0.001015 −0.858737 −0.001898 −0.001017 −0.000438 

8.000 0.000000 0.000000 −0.859515 0.000000 0.000000 0.000000 

0.012 

0.000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 

1.000 0.179545 0.475495 −0.265239 −0.132672 −0.005128 0.061799 

2.000 0.116731 0.198355 −0.570108 −0.100151 −0.017086 0.030901 

3.000 0.055642 0.078881 −0.737367 −0.055528 −0.015651 0.009401 

4.000 0.023554 0.030398 −0.812532 −0.027287 −0.010111 0.001519 

5.000 0.009270 0.011246 −0.843348 −0.012534 −0.005518 −0.000486 

6.000 0.003321 0.003830 −0.855060 −0.005372 −0.002658 −0.000685 

7.000 0.000930 0.001023 −0.858946 −0.001904 −0.001020 −0.000437 

8.000 0.000000 0.000000 −0.859728 0.000000 0.000000 0.000000 
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Table 4. The numerical results for velocity components F, G and H and the microrotation components L, M and N when s = 
−0.01 and a = 0.0.  

h ζ  F G H L M N 

0.05 

0.000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 

1.000 0.163850 0.477984 −0.248418 −0.136301 −0.006879 0.061170 

2.000 0.091781 0.186209 −0.511450 −0.107574 −0.017863 0.026623 

3.000 0.029148 0.040950 −0.625998 −0.065370 −0.014898 −0.000802 

4.000 0.001462 −0.032056 −0.651904 −0.037765 −0.008380 −0.014413 

5.000 −0.006261 −0.068608 −0.645015 −0.022444 −0.003547 −0.020480 

6.000 −0.006178 −0.086359 −0.631914 −0.014246 −0.000984 −0.022865 

7.000 −0.004098 −0.094583 −0.621554 −0.009695 0.000058 −0.023092 

8.000 −0.002131 −0.098170 −0.615414 −0.006718 0.000315 −0.021139 

9.000 −0.000784 −0.099592 −0.612605 −0.003921 0.000229 −0.015200 

10.000 0.000000 −0.100000 −0.611900 0.000000 0.000000 0.000000 

0.025 

0.000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 

1.000 0.163982 0.477946 −0.248625 −0.136390 −0.006934 0.061146 

2.000 0.091849 0.186099 −0.511859 −0.107607 −0.017903 0.026584 

3.000 0.029187 0.040848 −0.626508 −0.065366 −0.014914 −0.000831 

4.000 0.001495 −0.032127 −0.652484 −0.037750 −0.008385 −0.014430 

5.000 −0.006233 −0.068650 −0.645656 −0.022430 −0.003549 −0.020489 

6.000 −0.006157 −0.086381 −0.632605 −0.014236 −0.000986 −0.022869 

7.000 −0.004083 −0.094593 −0.622282 −0.009688 0.000056 −0.023094 

8.000 −0.002124 −0.098174 −0.616163 −0.006714 0.000313 −0.021140 

9.000 −0.000781 −0.099593 −0.613365 −0.003919 0.000228 −0.015201 

10.000 0.000000 −0.100000 −0.612663 0.000000 0.000000 0.000000 

0.012 

0.000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 

1.000 0.164012 0.477938 0.248672 0.136410 0.006948 0.061140 

2.000 0.091861 0.186080 −0.511947 −0.107613 −0.017915 0.026576 

3.000 0.029189 0.040832 −0.626607 −0.065365 −0.014920 −0.000836 

4.000 0.001493 −0.032137 −0.652584 −0.037747 −0.008387 −0.014431 

5.000 −0.006235 −0.068656 −0.645753 −0.022427 −0.003549 −0.020488 

6.000 −0.006158 −0.086385 −0.632699 −0.014233 −0.000986 −0.022868 

7.000 −0.004084 −0.094595 −0.622374 −0.009687 0.000056 −0.023093 

8.000 −0.002124 −0.098174 −0.616255 −0.006714 0.000313 −0.021139 

9.000 −0.000781 −0.099593 −0.613456 −0.003919 0.000228 −0.015201 

10.000 0.000000 −0.100000 −0.612754 0.000000 0.000000 0.000000 
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Table 5. The numerical results for velocity components F, G and H and the microrotation components L, M and N when s = 
−0.16 and a = 1.5. 

h ζ  F G H L M N 

0.05 

0.000 0.000000 1.000000 −1.500000 0.000000 0.000000 0.000000 

1.000 −0.002528 0.088033 −1.522923 −0.082486 −0.002232 −0.010100 

2.000 −0.008317 −0.109105 −1.507162 −0.049570 −0.000038 −0.035059 

3.000 −0.003198 −0.150499 −1.495820 −0.029503 0.000588 −0.040513 

4.000 −0.000582 −0.158720 −1.492485 −0.020994 0.000374 −0.040488 

5.000 0.000199 −0.160254 −1.492282 −0.017493 0.000139 −0.039504 

6.000 0.000329 −0.160529 −1.492864 −0.015606 0.000020 −0.038042 

7.000 0.000272 −0.160560 −1.493479 −0.013809 −0.000022 −0.035449 

8.000 0.000170 −0.160498 −1.493923 −0.011234 −0.000028 −0.030365 

9.000 0.000069 −0.160330 −1.494159 −0.007036 −0.000018 −0.020215 

10.000 0.000000 −0.160000 −1.494221 0.000000 0.000000 0.000000 

0.025 

0.000 0.000000 1.000000 −1.500000 0.000000 0.000000 0.000000 

1.000 −0.011205 0.060019 −1.506979 −0.089021 −0.000175 −0.016609 

2.000 −0.005664 −0.144366 −1.484961 −0.057573 0.003504 −0.044292 

3.000 0.006414 −0.180500 −1.487086 −0.035908 0.003608 −0.049458 

4.000 0.009843 −0.179762 −1.504564 −0.025014 0.002249 −0.047525 

5.000 0.008359 −0.173125 −1.523221 −0.019566 0.001041 −0.044332 

6.000 0.005517 −0.167406 −1.537139 −0.016459 0.000315 −0.041014 

7.000 0.002973 −0.163677 −1.545512 −0.014051 −0.000021 −0.037073 

8.000 0.001260 −0.161617 −1.549599 −0.011245 −0.000115 −0.031068 

9.000 0.000352 −0.160591 −1.551095 −0.006991 −0.000082 −0.020325 

10.000 0.000000 −0.160000 −1.551378 0.000000 0.000000 0.000000 

0.012 

0.000 0.000000 1.000000 −1.500000 0.000000 0.000000 0.000000 

1.000 −0.067561 0.195665 −1.454176 −0.078957 −0.009610 0.012609 

2.000 −0.108889 −0.008283 −1.266693 −0.045617 −0.003901 −0.010169 

3.000 −0.108214 −0.076914 −1.045830 −0.025831 0.001519 −0.019670 

4.000 −0.093475 −0.109525 −0.842828 −0.018374 0.004688 −0.024761 

5.000 −0.073748 −0.129694 −0.675170 −0.016381 0.006288 −0.028789 

6.000 −0.053074 −0.143288 −0.548445 −0.016000 0.006704 −0.032064 

7.000 −0.034184 −0.152062 −0.461664 −0.015355 0.006121 −0.033907 

8.000 −0.018827 −0.157114 −0.409328 −0.013376 0.004737 −0.032798 

9.000 −0.007588 −0.159491 −0.383588 −0.008934 0.002729 −0.024962 

10.000 0.000000 −0.160000 −0.376529 0.000000 0.000000 0.000000 
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Figure 5. Graph of F for different values of parameter a = 0, 0.3, 0.5 and 1.5 from top to 
bottom when s = −0.16. 

 

 
Figure 6. Graphs of G for different values of parameter a = 0, 0.2, 0.5 and 1.5 from top to 
bottom when s = −0.16. 

 
Figure 5 and Figure 6 show velocity profiles for F and G for different values of the parameter a when s = 

−0.16. It is noted that this value of s is limiting for which a solution for a = 0 can be found and a large value of 
suction is required to reduce the radial flow traversal as amount of the outflow in the boundary layer is increased. 
Some oscillatory behavior is seen for transverse velocity component. The flow pattern changes quickly. 
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Abstract 
We present the dependence of electron temperature fluctuations of O++ and H+ by the chemical 
abundances of oxygen and nitrogen. Models assume that hydrogen density is uniform in one case 
and non uniform in the second case, which vary with the distance from the central star. The abun-
dances of oxygen and nitrogen change by scale factor 5 and 1/5. Our analysis suggests that tem-
perature fluctuations are consistent with photoionization. Using the cloudy photoionization code, 
we found a reasonable close agreement of the computed value with the one that was done before 
this work. Our simulation also shows that how change of abundances affects temperature fluctua-
tions and its value is less than 0.01. 

 
Keywords 
H II Region, Planetary Nebulae, Abundances 

 
 

1. Introduction 
Accurate abundances of heavy metals are essential for solving astrophysical problems, including stellar and ga-
lactic chemical evolution. This was tested by different authors like [1]. The problem of the existence of temper-
ature fluctuations in H II regions was first noted by [2], suggested that those measured in ionized gaseous nebu-
lae depend on the ionization radiation field, hydrogen density and elemental abundances. 

The gas temperature obtained from the observed O[III] line ratio is greater than the one from the Balmer 
discontinuity [3]. Different authors like [4] [5] tried to estimate the value of temperature fluctuations t2 on pho-
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toionization in H II region. These values in H II region varying from 0.02 to 0.09 were found and yielded sig-
nificant effects on element abundances. 

The abundance determination in H II region and the planetary nebula have positive impacts of temperature 
fluctuations given by [2]. The abundances of H, He, C, O, N, Ne, S, and Ar are included to determine the tem-
perature fluctuations of electron by changing the abundances of oxygen and nitrogen elements by scale factor 5 
and 0.2. These are the most important elements which have a great impact on cooling. 

Cloudy is an impressive code offering a vast amount of possibilities to model wide variety of objects. The 
contents of physics and the basic numerical framework of the codes are explained in the documents given by [6] 
with the version of C10.00 to explain all the phenomena. 

In this paper, we will try to analyze the effect of hydrogen density and chemical abundances on temperature 
structure of electrons and its temperature fluctuations of both hydrogen and oxygen ions. In §2, we present the 
problem formulation of temperature fluctuations. In §3 we describe the models and present our calculations. In 
§4 we present the results and finally we present the conclusion. 

2. Formulation of the Problem 
Temperature in homogeneities on the emission lines, based on statistical approximation introduced by [2], which 
quantifies the brightness increase or decrease of each line in terms of the departure of the temperature from the 
average temperature T0 and is given by  

2

0 2

d

d
eV

eV

n T V
T

n V
= ∫
∫

                                       (1) 

For homogeneous metalicity nebulae characterized by small temperature in homogeneities, ne is the electron 
density, T is the electron temperature, and V is the volume over which the integration is carried out. The rms 
amplitude t of the temperature in homogeneities is defined as  

( )22
02

2 2
0

d

d
eV

eV

n T T V
t

T n V

−
= ∫

∫
                                   (2) 

We simplified the expression presented by [2], in which t2 depends on the density of ionic species considered 
while in the above equation. We implicitly consider only ionized H (by setting 2

i H en n n= = ). 
The nature of temperature fluctuations is one of the important question in nebular astrophysics. CLOUDY 

predicts that they should be very small because of the abundance of cooling function of temperature, while some 
observations indicate a very large value of t2 [7]. Density fluctuations could be a source of temperature fluctua-
tions, due to increased collisional deexcitation in zones of higher density, but photoionization models including 
such density fluctuations also fail to return large enough values of t2 [1] and [8]. 

3. Model Parameters 
We consider two different models for this photoionized region in H II regions. The first one correspond to a 
dense nebulae ionized by a star that is very hot and its temperature is T  = 75,000 K and its density n(H) = 104 
cm−3. The second correspond to a more diluted nebulae ionized by a hot star. We assumed the density of the gas 
in neutral medium within the galaxy is that of power law decrease in the gas density with the distance from the 
center given by  

o
o

rn n
r

α−
 

=  
 

                                      (3) 

where no is the gas density at r = ro and ro is the scale length describing the rate of decay of this with radius. We 
have chosen hydrogen density, n(H) = 103 cm−3, change by 0.5α = − , and T  = 105 K. The stars are assumed 
to radiate as a blackbody. The inner radius of the nebulae is chosen to be 1016 cm for the former case and 5 × 
1016 cm for the latter one. In both cases we assume that the total number of H Lyman continuum photons emit-
ted by the star, Q(H) = 1048 photons per second and the filling factor is unit. 

An additional set of a nebular parameters is the chemical composition of gas, usually taken to be 105, 776, 
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437, 182, 110, 75, and 36 atoms of He, C, O, N, Ne, S, and Ar, respectively per 106 H atoms is shown in Table 
1. This is taken from the average composition of elements are taken from [9], whereas the chemical composition 
of Ar and S are taken from the solar composition given by [10]. The most important of these abundances are that 
of C, O, which we assume that these elements as the principal coolant [11] and [12]. This model is constructed 
with different values of oxygen and nitrogen. To investigate the temperature fluctuations of electron, we vary 
the total abundances of both oxygen and nitrogen by scale factor 5 and 1/5 to test separately. When the abun-
dance of oxygen vary by scale factor 5 and 1/5 in H II region helps to estimate temperature of electron and very 
useful for obtaining estimates of abundance gradients in spiral galaxies and of oxygen abundances of star- 
forming regions in the distant universe [13]. The parameters are given in Table 2 and Table 3. 

4. Result and Discussion 
We can easily observe from the result given in Table 4 and Table 5, variations of temperature with inhomoge-
neities abundances of O and N. This result of this paper strongly suggests that abundances change produce tem-
perature fluctuations. When the abundances of O rises by scale factor 5, the magnitude of its temperature is  
 
Table 1. Elemental abundances used in the nebular model. 

H He O C N Ne S Ar 

106 105 437 776 182 110 18 16 

0.00 −1.00 −3.36 −3.11 −3.74 −3.96 −4.75 −4.79 

 
Table 2. First model parameters. 

( )HQ  
ph s−1 

T  ( )Hn  
cm−3 

inR  
cm 

O (abundance)  
increase scale by 5 

N (abundance)  
increase scale by 5 

1048 75,000 K 104 1016 
2188 

( )log O H 2.66= −  
912 

( )log N H 3.04= −  

 100,000 K 103 5 × 1016 ( )log O H 2.66= −  ( )log N H 3.04= −  

 
Table 3. Second model parameters. 

( )HQ  
ph s−1 

T  ( )Hn  
cm−3 

inR  
cm 

O (abundance by  
scale factor of 1/5) 

N (abundance by  
scale factor 1/5) 

1048 100,000 K 104 5 × 1016 
689 

( )log O H 4.06= −  
145.6 

( )log N H 4.439= −  

 75,000 K 103 1016 ( )log O H 4.06= −  ( )log N H 4.439= −  

 
Table 4. Elemental abundances used in the model and the result obtained. 

 75,000 KT = , ( ) 4 3H 10  cmn −= , ( ) 48 1Q H 10  phs−=  and 1610  cmR =  

Abundances ( )OT ++  ( )HT +  ( )2 Ht +  ( )2 Ot ++  

( )log O H 3.66= −  9760 K 9340 K 0.0083 0.006 

( )log O H 2.66= −  7430 K 6860 K 0.01 0.007 

( )log O H 4.06= −  11,200 K 10,900 K 0.0036 0.004 

( )log N H 3.74= −  9760 K 9340 K 0.0083 0.006 

( )log N H 4.4= −  9850 K 9410 K 0.01 0.007 

( )log N H 3.04= −  9410 K 9050 K 0.005 0.0032 
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lower than the normal abundances given by [9]. Whereas the abundances decreases by scale factor 1/5, its peak 
temperature greater than the normal one. Similarly, when the abundances increases, t2 ≈ 0.007 whereas t2 ≈ 
0.004 when the O abundances decrease by scale factor 1/5. This result shows that there is slight variation with 
the result obtained by [3] for uniform density distribution. This shows that when the abundances increases, its 
temperature fluctuations increases. In similar way T(O++), the rise of the abundances and temperature of ionized 
O are in the contrary. When it increases by scale factor its temperature is 7430 K and drops by 1/5, its tempera-
ture rises to 11,200 K. 

When the abundances of O is increased by a scale factor 5, the temperature of H (T(H+)) is decreased by  
26.5% and its temperature fluctuation t2(O++) is slightly increased by 0.001. But it drops by scale factor 1/5, 
temperature of H rises to 10 900 K and its fluctuation is t2(H+) = 0.004. 

Similarly, when the abundance of nitrogen increases by scale factor 5, its temperature of T(O++) decreases by 
3.7%. This is much smaller than the previous one. Its temperature fluctuation t2(H+) of H and O when the abun-
dances of N increases by scale factor 5 are 0.05 and 0.0032 respectively. But when the abundance of nitrogen 
drops by scale factor 1/5, its temperature is slightly greater than the normal abundances given by [9]. 

In the first model, we have more diluted nebulae ionized by a hot star. We have chosen hydrogen density 
n(H) = 104 cm−3, change by 0.5α = − , and T  = 75,000 K. The result is shown in Figure 1 describes the  
 
Table 5. Elemental abundances used in the this model and the result obtained. 

 100,000 KT = , ( ) 3 3H 10  cmn −= , 0.5α = − , ( ) 48 1Q H 10  phs−=  and 1610  cmR =  

Abundances ( )OT ++  ( )HT +  ( )2 Ht +  ( )2 Ot ++  

( )log O H 3.66= −  9476 K 8950 K 0.013 0.008 

( )log O H 2.66= −  7550 K 5270 K 0.043 0.003 

( )log O H 4.06= −  11,100 K 10,800 K 0.006 0.003 

( )log N H 3.74= −  9470 K 8950 K 0.001 0.008 

( )log N H 4.4= −  9710 K 9210 K 0.02 0.007 

( )log N H 3.04= −  8490 K 7830 K 0.0013 0.009 

 

 
Figure 1. Temperature structure for the first model. Green broken line is the abundances of oxygen increase by scale factor 
5, whereas black dot line is the abundances decrease by scale factor 1/5 and red broken line is for the normal abundances 
given by [9], T  = 75,000 K, and n(H) = 103, α = −0.5. 
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temperature of electrons drops when the abundances of the most cooling elements increase by scale factor 5. The 
higher the abundances of oxygen elements, its peak temperature drops faster than the other two cases. Similarly 
the abundances of nitrogen shown in Figure 2 increase by the scale factor 5, its variation of temperature fluctua-
tion is significant relative to oxygen abundances. But this does not mean that, nitrogen abundances have not im-
pacts on changing the temperature. At a distance around 0.145 pc, the variations of temperature are high relative 
to other points. 

In the second model, we have more diluted nebulae ionized by a hot star and we have chosen hydrogen den-
sity n(H) = 103 cm−3, change by 0.5α = − , and T  = 105 K. The result shown in Figure 3 and Figure 4  
 

 
Figure 2. Temperature structure for the first model. Green broken line is the abundances of nitrogen decrease by scale 
factor 1/5, whereas black dot line is the abundances increase by scale factor 5 and red broken line is for the normal 
abundances given by [9] T  = 75,000 K, and n(H) = 103, α = −0.5. 

 

 
Figure 3. Temperature structure for the second model. Green broken line is the abundances of oxygen increase by 
scale factor 5, whereas black dot line is the abundances decrease by scale factor 1/5 and red broken line is for the 
normal abundances given by [9], T  = 100,000 K, and n(H) = 104. 
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Figure 4. Temperature structure for the first model. Green broken line is the abundances of oxygen increase by scale factor 
5, whereas black dot line is the abundances decrease by scale factor 1/5 and red broken line is for the normal abundances 
given by [9], T  = 100,000 K, and n(H) = 104. 

 
describe the temperature of electron is greatest when the abundances of both O and N are smallest. Since these 
elements are the main cooling agents, its temperature structure shows that through the processes temperature 
drops in both cases. Temperature fluctuations of O and N are smaller in this model. 

5. Conclusion 
In this paper we present a study of temperature fluctuation on two different cases, for uniform and non uniform 
hydrogen density at two different temperatures of 75,000 and 100,000 K. This was done by in homogeneities on 
the emission lines, based on statistical approximation introduced by [11], which quantities the brightness in-
crease or decrease of each line in terms of the departure of the temperature from the average temperature T0 de-
scribed by Equation (1). The main results are based on the analysis of chemical abundances of oxygen and ni-
trogen on different mechanism to test such change. Temperature fluctuations are obtained from the photoioniza-
tion models generated by the spectral synthesis code CLOUDY (C10.00), calculated using the recombination 
theory for hydrogenic ions. Accurate t2 values have been obtained by comparing the O++ abundances derived 
from recombination lines with those derived from collisionally excited lines. It is clear from the result that tem-
perature variations t2 < 0.01 value as described in [14]. The main causes of temperature fluctuations are chemi-
cal inhomogeneities of heavy metals, density variations and temperature of central stars. 
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