

J. Software Engineering & Applications, 2010, 3, 419-516
Published Online May 2010 in SciRes (www.SciRP.org/journal/jsea/).

Copyright © 2010 SciRes. JSEA

TABLE OF CONTENTS

Volume 3 Number 5 May 2010

A Reference Model for the Analysis and Comparison of MDE Approaches for
Web-Application Development

J. S. Saraiva, A. R. Silva……………………………………………………………………………419

Mapping UML 2.0 Activities to Zero-Safe Nets

S. Boufenara, F. Belala, K. Barkaoui……………………………………………………………………426

Implementation of Hierarchical and Distributed Control for Discrete Event Robotic
Manufacturing Systems

G. Yasuda………………………………………………………………………………………………436

Experiences Analyzing Faults in a Hybrid Distributed System with Access Only to
Sanitized Data

R. J. Leach………………………………………………………………………………………………446

Variability-Based Models for Testability Analysis of Frameworks

D. Ranjan, A. K. Tripathi………………………………………………………………………………455

A Conflicts Detection Approach for Merging Formal Specification Views

F. Taibi, F. M. Abbou, M. J. Alam……………………………………………………………………460

A Novel Efficient Mode Selection Approach for H.264

L. Lu, W. Zhou…………………………………………………………………………………………472

Test Cost Optimization Using Tabu Search

P. R. Srivastava, A. Sharma, A. Jadhav…………………………………………………………………477

Research on Knowledge Creation in Software Requirement Development

J. Wan, H. Zhang, D. Wan, D. Huang…………………………………………………………………487

Raising Awareness of the Constituents of Software Design – The Case of Documentation

L. Ilana, Y. Aharon……………………………………………………………………………………495

A Line Search Algorithm for Unconstrained Optimization

G. Yuan, S. Lu, Z. Wei…………………………………………………………………………………503

Experience in Using a PFW System – A Case Study

D. Black, E. Hull, Ken Jackson…………………………………………………………………………510

Journal of Software Engineering and Applications (JSEA)

Journal Information

SUBSCRIPTIONS

The Journal of Software Engineering And Applications (Online at Scientific Research Publishing, www.SciRP.org) is published

monthly by Scientific Research Publishing, Inc., USA.

Subscription rates:
Print: $50 per issue.

To subscribe, please contact Journals Subscriptions Department, E-mail: sub@scirp.org

SERVICES

Advertisements

Advertisement Sales Department, E-mail: service@scirp.org

Reprints (minimum quantity 100 copies)

Reprints Co-ordinator, Scientific Research Publishing, Inc., USA.

E-mail: sub@scirp.org

COPYRIGHT

Copyright©2010 Scientific Research Publishing, Inc.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by

any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as described below, without the

permission in writing of the Publisher.

Copying of articles is not permitted except for personal and internal use, to the extent permitted by national copyright law, or under

the terms of a license issued by the national Reproduction Rights Organization.

Requests for permission for other kinds of copying, such as copying for general distribution, for advertising or promotional purposes,

for creating new collective works or for resale, and other enquiries should be addressed to the Publisher.

Statements and opinions expressed in the articles and communications are those of the individual contributors and not the statements

and opinion of Scientific Research Publishing, Inc. We assumes no responsibility or liability for any damage or injury to persons or

property arising out of the use of any materials, instructions, methods or ideas contained herein. We expressly disclaim any implied

warranties of merchantability or fitness for a particular purpose. If expert assistance is required, the services of a competent

professional person should be sought.

PRODUCTION INFORMATION

For manuscripts that have been accepted for publication, please contact:

E-mail: jsea@scirp.org

J. Software Engineering & Applications, 2010, 3: 419-425
doi:10.4236/jsea.2010.35047 Published Online May 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

A Reference Model for the Analysis and
Comparison of MDE Approaches for
Web-Application Development

João de Sousa Saraiva, Alberto Rodrigues da Silva

INESC-ID/Instituto Superior Técnico, Lisboa, Portugal.
Email: joao.saraiva@inesc-id.pt, alberto.silva@acm.org

Received January 26th, 2010; revised March 18th, 2010; accepted March 20th, 2010.

ABSTRACT

The emerging Model-Driven Engineering (MDE) paradigm advocates the use of models as first-class citizens in the
software development process, while artifacts such as documentation and source-code can be quickly produced from
those models by using automated transformations. Even though many MDE-oriented approaches, languages and tools
have been developed in the recent past, there is no standard that concretely defines a specific sequence of steps to obtain
a functional software system from a model. Thus, the existing approaches present numerous differences among
themselves, because each one handles the problems inherent to software development in its own way. This paper presents
and discusses a reference model for the comparative study of current MDE approaches in the scope of web-application
development. This reference model focuses on relevant aspects such as modeling language scope (domain, business-logic,
user-interface), usage of patterns, separation of concerns, model transformations, tool support, and deployment details
like web-platform independence and traditional programming required. The ultimate goal of this paper is to determine
the aspects that will be of greater importance in future web-oriented MDE languages.

Keywords: Model-Driven Engineering, Web Engineering, Software Development

1. Introduction

The worldwide expansion of the Internet in the last years
has made it a powerful platform for the deployment of a
variety of artifacts and systems. This has led to the ap-
pearance of a myriad of frameworks and libraries that
attempt to harness the power of Internet-based technolo-
gies in order to accomplish various objectives. Typical
examples of widely-used web-application frameworks
include Microsoft’s ASP.NET [1], Sun’s Java EE [2],
PHP (PHP: Hypertext Preprocessor) [3], Ruby on Rails
[4,5], Django [6], or Catalyst [7].

This paper proposes a reference model for the analysis
and comparison of MDE (Model-Driven Engineering)
approaches to web-application development. This refer-
ence model is focused on particularly relevant aspects
such as the scope of modeling language scope (i.e., if it
addresses modeling of domain, business-logic, and
user-interface), separation of concerns, time-saving fea-
tures such as usage of patterns and/or model-to-model
transformations, tool support available, and deployment
aspects like web-platform independence and whether the
approach still requires traditional programming (i.e., de-

velopment of source-code). The goal of this reference
model is to identify concepts, principles and best practices
that are likely to become important in future model-driven
web-application languages.

It should be noted that, although currently there are not
many MDE-oriented approaches to web-site or web-ap-
plication development, there are some approaches – the
analysis of which was not included in this paper due to
length constraints – that we believe should be mentioned.
Of those, we highlight WebML (Web Modeling Language)
[8,9], UWE (UML-based Web Engineering) [10], XIS2
(eXtreme Modeling Interactive Systems) [11,12], the
OutSystems Agile Platform [13], OOHDM (Object-Ori-
ented Hypermedia Design Model) [14], or OPM/Web
(Object Process Methodology for Developing Web-Ap-
plications) [15]. We also point out that there are other
studies and tools regarding MDE-oriented approaches and
languages, not directly related to web-application devel-
opment, but rather to other important aspects such as 1)
the usage of meta-metamodels [16], 2) user-interface
modeling [17-21], or 3) the usage of prototyping tools to
provide a way for stakeholders to draw and communicate

A Reference Model for the Analysis and Comparison of MDE Approaches for Web-Application Development

Copyright © 2010 SciRes. JSEA

420

design ideas, as is the case with Microsoft Sketchflow
[22].

This paper is organized as follows. Section 1 introduces
the context of web-applications and frameworks. Section
2 describes the reference model that we defined for the
analysis and comparison of MDE-oriented web-applica-
tion development approaches. Section 3 provides a dis-
cussion regarding this reference model; this discussion
also features some examples from web-application mod-
eling approaches that we have analyzed in our research,
and to which we have applied this reference model. Fi-
nally, Section 4 concludes this paper.

2. Reference Model

This reference model is defined according to a set of aspects
that are relevant to MDE-based development, namely(see
Table 1): 1) the language used; 2) the usage of model-to-
model transformations; and 3) the tool support for the design,
generation, and deployment of the web-application.

2.1 Modeling Language

The language used by the approach is analyzed in terms of
the meta-metamodel used (if any), and whether it ad-
dresses a set of modeling concerns, such as domain mod-
eling, business-logic modeling, and user-interface mod-
eling.

Meta-metamodel. Besides the web-application model-
ing language, it is important to identify the language’s
meta-metamodel (if any) and the modeling elements that
it provides. We consider that this aspect is important be-
cause: 1) this meta-metamodel’s expressiveness can affect
the number of elements that the language itself can pro-
vide, which in turn can have a direct impact on the lan-
guage’s own expressiveness and its adequacy to solve
complex web-application problems; and 2) the meta-
metamodel used by the language can have a profound
influence on the tool support that is – or may become –
available to the approach, e.g., languages specified as a
UML 2.0 profile [23] are likely to be supported by the
majority of UML modeling tools that support the Profiling
mechanism.

Domain Modeling. Domain modeling concerns the
identification of problem-domain concepts, and their
representation using a modeling language (e.g., UML
diagrams). This aspect is analyzed regarding: 1) whether it
is independent of persistence or user-interface details (i.e.,
domain models do not need to be “adjusted” to support
those layers); and 2) the elements provided by the lan-
guage, such as enumerations (which are useful to avoid
specifying multiple concepts with no particular differ-
ences between themselves) or associations (namely their
arity, i.e., the number of possible associated entities).

Business-Logic Modeling. Although the definition of
business-logic modeling can be considered somewhat
subjective, in this work we consider it as the specification

of the web-application’s behavior. This aspect is analyzed
regarding the following subjects: 1) whether it supports
querying and manipulating domain concepts in a either
textual or graphical manner, e.g., using SQL-like state-
ments; 2) whether this querying and manipulation support
is “low-level”, in a manner similar to traditional source-
code; 3) support for process specification; and 4) usage of
patterns, such as the typical “create-read-update-delete”
(CRUD) set of business-logic patterns. It should be noted
that the “low-level support” subject is considered relevant
because it often reflects the expressiveness of the lan-
guage: typical source-code-oriented languages (such as C
or C#), although complex, are nevertheless very expres-
sive.

Navigation Flow Modeling. The approach’s support for
specifying the navigation flow (in the context of the
modeled web-application) between different HTML
pages, or even inside HTML pages, is also analyzed in this
issue.

User-Interface Modeling. Another important aspect is
the approach’s support for specifying/modeling the
user-interface (UI). The subjects analyzed are the fol-
lowing: 1) whether the UI modeling language is plat-
form-independent (i.e., does not require specific software
to present the UI); 2) supports access-control specification
(i.e., certain controls are shown/hidden according to the
authenticated user); 3) allows the definition of custom UI
elements; 4) allows the usage of interaction patterns (e.g.,
create, edit, associate/dissociate); and 5) supports binding
between UI elements and domain model elements.

2.2 Model-to-Model Transformations

This subsection examines whether the approach uses (or
even considers) the usage of model-to-model transforma-
tions. This kind of transformations is typically used to
accelerate the task of designing the web-application, by
using model analysis and inference mechanisms to auto-
matically specify some parts of the web-application model,
thus releasing the model designer from some repetitive
and error-prone tasks.

2.3 Tool Support and Deployment

This subsection analyzes the tool support that is available
for the approach, regarding the following aspects.

Modeling Tool. This aspect determines whether the
approach (and its language) is supported by a design tool,
and if that design tool is proprietary (i.e., if it is built
specifically for supporting the approach), or if it is a ge-
neric tool, adapted to specific details of the language.

Need for Traditional Programming. This aspect ana-
lyzes if the tools supporting the approach allow the gen-
eration of (parts of) the web-application, and whether the
generated application is complete (i.e., it does not require
the manual implementation of specific features by pro-
grammers).

A Reference Model for the Analysis and Comparison of MDE Approaches for Web-Application Development

Copyright © 2010 SciRes. JSEA

421

Deployment Environment. Finally, this aspect deter-
mines the target platform(s) considered by the approach,
and whether those target platforms are proprietary (in
other words, if there is supposed to be a tight coupling
between the approach and the target platform).

3. Discussion

This section provides a discussion regarding the criteria
described in Section 2. Some of the arguments that we
present in this discussion are based on our own application
of this reference model to some MDE-oriented web-ap-
plication development approaches (such as WebML and
UWE), while others are based on our own previous ex-
periences in this field of study (such as XIS2).

3.1 Modeling Language

It is frequent for this kind of development approaches to
define a graphical modeling language, sometimes with
textual elements involved (e.g., OCL constraints in UWE).
Nevertheless, the language’s users can certainly benefit
from having textual specifications assisted by graphi-
cally-oriented features, such as using drag-and-drop to
place such textual elements.

Regarding syntax, UML-based approaches and lan-
guages tend to use UML’s graphical syntax (e.g., boxes
for representing classes or enumerations, a “stickman”
figure for representing a stakeholder), mainly due to their
nature as UML-extending metamodels and as UML pro-
files. On the other hand, other languages typically define
their own syntax, albeit some parts of those syntaxes are
usually based on existing modeling languages, with the
objective of facilitating their learning process.

Finally, regarding semantics, the difference between
UML-based and non-UML-based languages is also
quickly noticeable. The semantics of most UML-based
languages are defined verbally – in their respective lan-
guage specification documents – with some OCL restric-
tions defined; validation of models specified using these
languages is dependent on the expressiveness of OCL and
the modeling tool’s support for OCL restrictions. On the
other hand, the semantics of other languages, although not
specified in a “formal” manner, are supported by cus-
tom-built tools that can easily address all aspects of the
language’s semantics, because of those tools’ use of low-
level programming languages. Nevertheless, we consider
that this difference is present mainly because of the
compromise, that each approach must assume, between
the “tool support” and “model exchangeability” factors: 1)
for “real-world” languages (with a high degree of com-
plexity), it is usually easier to provide adequate modeling
and validation facilities via a custom tool with a low-level
programming language, than by a UML generic modeling
tool with a “UML Profile + OCL restrictions” customiza-
tion mechanism; 2) however, due to their typically aca-
demic nature, UML-based approaches are also concerned

with exchanging models between tools, a concern not
shared by commercially-oriented approaches, which ac-
counts for the choice to use UML in such approaches.

Meta-metamodel. We have noticed that commer-
cial-oriented approaches usually define their languages
without using a standard meta-metamodel, while aca-
demic approaches tend to use existing meta-metamodels
(e.g., UML [23]) as the basis for their web-application
modeling language.

This is possibly due to the common belief that the
meta-metamodels available today, such as UML or MOF,
are too complex and attempt to address too many prob-
lems (which is one of the major factors that drive the
discipline of Domain-Specific Modeling [24]). Consid-
ering that commercial approaches are supposed to be
practical and “easy to use”, the creators of such ap-
proaches are likely to opt for the creation of a language
from scratch (even if this involves some initial extra ef-
fort), in order to avoid dealing with issues due to the in-
herent complexity of existing meta-metamodel languages.

On the other hand, academic approaches are typically
more focused on obtaining and divulging results that
contribute to advance the state-of-the-art, while aspects
such as simplicity and “ease of use” are usually consid-
ered secondary. Thus, in this kind of environment, using a
standard meta-metamodel is not only recommended, but it
is also a way to ensure that other researchers can quickly
build upon those results and advance the state-of-the-art
even further.

Domain Modeling. Domain modeling is a subject that
must be addressed by any application development ap-
proach. This is because an application, with the purpose of
solving a certain problem, will undoubtedly manipulate a
set of entities, directly or indirectly related to that problem;
these entities, in turn, are described by a domain model.

Most software development approaches and best prac-
tices advocate the independence between the domain
model and other parts of the application functionality (e.g.,
separating the domain model from persistence or UI layer
details). However, most languages usually end up re-
quiring that the domain model be “adjusted” to UI- or
persistence-oriented details (e.g., in the Address Book
example at the UWE tutorial [25], the “Address Book”
class has an attribute “introduction”, in order for the main
screen of the application to show a small introductory
message to the user). Although from a theoretical per-
spective this can be regarded as a bad thing, in practice it
does have the advantage of endowing the designer with a
greater level of control over the web-application imple-
mentation itself, instead of just relying on possibly fallible
automated mechanisms. Nevertheless, this advantage can
also be obtained by the technique of adding modeling
elements, outside of the domain model, to establish the
mappings between the domain model elements and the
elements of other models.

A Reference Model for the Analysis and Comparison of MDE Approaches for Web-Application Development

Copyright © 2010 SciRes. JSEA

422

Also, most languages usually provide some degree of
support for important concepts like enumerations and
associations. Associations are obviously important, as
they enable the definition of relationships between entities.
On the other hand, enumerations are also important be-
cause they enable the a-priori definition of “instances”
while avoiding a potential explosion of entity types.
UML-based approaches can inherit support for these
concepts automatically; other languages typically provide
support for associations, but enumerations are seldom
supported (e.g., WebML does not support enumerations,
but the OutSystems Agile Platform does).

Business-Logic Modeling. Business-logic modeling is
usually addressed by this kind of modeling approaches,
although how this is handled varies greatly according to
the approach. Modeling features typically found are the
usage of pre-defined business-logic patterns, the possi-
bility for designers to define their own business-logic
patterns, and the deference of business-logic specification
to traditional, source-code-oriented, development. How-
ever, most approaches frequently adopt a combination of
these possibilities: XIS2 provides the typical create-read-
update-delete operations automatically, and the designer
can add more operations; on the other hand, the OutSys-
tems Agile Platform only supports its pre-defined opera-
tions, although the wide variety of operations that it sup-
ports should be adequate for most of the business-logic
that the designer would want to specify.

A relevant issue that should be mentioned here is the
trade-off between abstraction and expressive power. Al-
though languages such as XIS2 or WebML try to raise the
abstraction level at which designers have to think and
specify their models (as opposed to just developing the
web-application in a manual source-code-oriented fash-
ion), the fact is that this higher abstraction usually also
affects the expressive power available to designers in a
negative manner. On the other hand, approaches that are
not particularly oriented towards raising the abstraction
level (e.g., business-logic modeling in the OutSystems
Agile Platform is intended to provide developers, who
have experience in dealing with web-application-related
concepts such as “request parameters”, “session values”
or “asynchronous requests”, with a graphical environment
for them to do their tasks) suffer almost no impact on the
expressive power available to business-logic modeling.

Navigation Flow Modeling. Navigation flow modeling
is an aspect that is fundamental to any kind of web-ap-
plication, and so these development approaches must
address it. Due to their “web-application modeling” nature
and all that this implies (e.g., the existence of HTML
pages, hyperlinks to navigate between pages, using re-
quest parameters or a similar mechanism to provide nec-
essary parameters), this kind of development approach
typically all follow the same guidelines: a directed graph
is drawn, where nodes correspond to HTML pages, and

edges correspond to the possible navigation flows that are
available to the user within the context of a certain page.

The difference between most approaches, however, lies
in whether the designer can specify the sets of edges (i.e.,
actions or links) available in each node. An example of
this difference can be found in XIS2 and WebML: in XIS2
the designer can specify actions, associated to UI elements
in a page, and the navigation flows will afterward be as-
sociated with the corresponding page’s actions, while in
WebML each Data-Unit node has a well-defined set of
links, for input and output, and so the designer cannot
specify additional links.

User-Interface Modeling. Most web-application de-
velopment approaches address UI modeling in a graphical
manner, using a WYSIWYG (What You See Is What You
Get) approach. However, there are many variations on
what can be modeled in the UI. For example, the WebML
language, as described in [26], only allows the specifica-
tion of what elements will be present on the page, but not
where they will be located (although its commercial tool
does provide support for this kind of UI modeling). On the
other hand, other approaches (such as the OutSystems
Agile Platform or XIS2) do allow the specification of the
location of such elements.

An issue that should be mentioned, related to
WYSIWYG-like UI modeling, is the possibility of using
and or capturing UI patterns to address the UI’s behavior.
From our experiences in using this reference model, we
have noticed that most approaches (such as XIS2,
WebML and the OutSystems Agile Platform) usually
address this behavioral aspect through the capture of UI
patterns (e.g., associate/dissociate, list, create item), ena-
bling applications to interact with users, instead of just
displaying requested resources.

An aspect where most approaches actually differ be-
tween themselves is the possibility of reusing page or
interface components. As an example, WebML and
OutSystems’ Platform support this feature, while XIS2 or
UWE do not. Nevertheless, we consider this to be a very
important feature, as it allows designers to specify certain
screen sections only once, and “import” those sections
into some/all of the application’s screens, with the obvi-
ous added advantage that changes to such a section need
to be done only in a single point in the model; a good
example of such a component would be a web-site banner,
or a web-site contents’ navigation tree.

Regarding platform-independence, we believe that
there is not much to be said, considering that these ap-
proaches have to generate regular HTML to be sent to a
web-browser, and so can be considered as target-platform-
independent.

Finally, it is very frequent for these approaches to allow
binding UI elements to domain elements (e.g., configure
the rows of a table to show the values of field in specific
instances). However, these approaches usually differ on

A Reference Model for the Analysis and Comparison of MDE Approaches for Web-Application Development

Copyright © 2010 SciRes. JSEA

423

whether they allow the customization of those bindings in
the model (e.g., change a cell in a table row to show a
different value for each instance). Although not being able
to customize these bindings can certainly simplify the
modeling task and avoid designer errors, in practice this is
also a limitation on the expressiveness of the language,
which can force developers to change generated source-
code in order to address specific requirements.

3.2 Model-to-Model Transformations

From our own experience regarding both academic and
non-academic web-application tools and approaches,
support for model-to-model transformations is an aspect
seldom addressed by these approaches, and typically
found only on the UML-based ones. This is possibly be-
cause model-to-model transformations are typically im-
plemented in such a way that user-defined information on
the destination model may be lost. Additionally, most
approaches use a single modeling language, and so the
information that would be present in the destination
“model” can be inferred from the information that has
already been modeled.

The approaches that do consider the usage of model-
to-model transformations typically use them to accelerate
modeling tasks, by taking the information already mod-
eled at the time the transformation is performed and gen-
erating new views. These transformations reflect how
those views would typically be modeled, and the designer
is free to change the generated views to suit the applica-
tion’s needs (e.g., showing an extra field in the UI, or
adding an extra step in an activity diagram).

3.3 Tool Support and Deployment

For any web-application modeling approach to actually be
usable, it has to provide some kind of tool support.

Modeling Tool. Tool support is an aspect typically in-
fluenced by the meta-metamodel used (if any), and by the
academic/commercial orientation of the approach. Aca-
demic approaches based on UML are usually tool-agnostic
and are supposed to be usable in any UML modeling tool
that supports the Profiling mechanism. On the other hand,
commercial approaches provide their own proprietary
(and language-specific) modeling tools; nevertheless, it is
sometimes possible to specify UML profiles that enable
the modeling of such languages in regular UML modeling
tools (albeit in a somewhat limited fashion). An example
of this can be found in [27], which defines a WebML-
oriented UML profile.

It should be noted, however, that such language-specific
tools have a great advantage over “generic” tools, as they
can assist the user throughout the entire development
life-cycle (by means of mechanisms such as contextual
help or helpful validation tips), in a manner that is well
adjusted to the approach.

Need for Traditional Programming. Although it would

certainly be desirable that a modeling approach required
no programming efforts (for reasons such as avoiding
programming errors, or reduced software development
costs), the fact is that most web-application modeling
approaches typically consider typical programming tasks
(i.e., manual editing of generated source-code artifacts) as
an activity to occur during the development life-cycle, in
order to account for particular requirements that may not
be expressible by the approach’s modeling language. Of
the approaches that are known to us, only the OutSystems
Agile Platform considers that source-code should not be
edited in a manual fashion: designers/developers can only
edit the model itself, and generated code and databases are
always kept “behind-the-scenes”.

This is an aspect that clearly illustrates one of the con-
sequences of the traditional MDE question “how expres-
sive should the modeling language be?” This question is
actually a dilemma because increasing the expressiveness
of a language typically involves adding elements to it, in
order to address more semantic possibilities, which in turn
can increase the difficulty for a new designer to learn the
language, as well as possibly reducing its level of ab-
straction. On the other hand, if the language does not
provide many elements, it is easier to learn, but it may also
be unable to specify some desirable features. So, current
modeling languages are actually the result of a “balanced
compromise” between these factors, always taking into
account the purpose of the language.

Deployment Environment. Most web-application mod-
eling approaches are actually independent of the de-
ployment environment, because they do not target a spe-
cific technology or platform (e.g., MySQL database,
Apache web-server); nevertheless, although the concepts
in the languages of some approaches may pose some
technological restrictions, developers are sometimes able
to use “workarounds” to remove such restrictions (e.g.,
replacing a Java servlet with an adequate ASP.NET class).

As an example of this kind independence, we can point
out WebML, UWE and XIS2: because of their usage of
high-level elements, they can generate code for any
web-oriented platform (e.g., ASP.NET, Apache Tomcat);
in fact, XIS2 can also generate code for desktop-based
platforms. However, models that are created in the Out-
Systems Agile Platform can only be deployed to the
OutSystems deployment stacks, which use either 1) the
JBoss application server and Oracle database, or 2) Mi-
crosoft’s IIS application server and SQL Server Express
database.

Nevertheless, we consider it important to note that, al-
though in the deployment aspect the Agile Platform is
apparently much more limited than other approaches, this
“disadvantage” is actually what allows the Agile Platform
to automate most of the web-application development
life-cycle, namely deployment and application upgrade/
rollback scenarios, something that is clearly lacking in

A Reference Model for the Analysis and Comparison of MDE Approaches for Web-Application Development

Copyright © 2010 SciRes. JSEA

424

most of the web-application modeling approaches that we
know.

4. Conclusions

Most web-applications are still created in a traditional
manner, by manually developing source-code, which is a
slow and error-prone task. This is a problem, not specific
to just web-applications but to the software engineering
discipline in general, that MDE aims to address. Fur-
thermore, the web-based development paradigm intro-
duces a set of Internet and HTTP-related concepts that
have to be addressed by the designer (e.g., page, naviga-
tion, request, GET, POST).

In this paper, we proposed a reference model for com-
paring current MDE-driven approaches for web-applica-
tion development, according to relevant criteria such as
support for domain, business-logic, UI and navigation-
flow modeling, as well as usage of model-to-model
transformations and tool support. Table 1 summarizes
the key issues of the proposed reference model. Finally,
this paper discussed the defined reference model.

Some reflections can be made regarding the criteria
identified in this reference model. The first aspect con-
cerns the compromise between language expressiveness,
simplicity, and learning curve for new designers. Al-
though the purpose of the language must always be a
factor to weigh in on this compromise, the fact is that
very expressive languages can be harder to learn because

of their great number of elements than languages with
few elements, which are typically simpler. Moreover, if a
creator of a language starts increasing its expressiveness
by adding new elements, it is likely that its level of ab-
straction over another language is also diminished, be-
cause those new elements must reflect particular seman-
tic possibilities of the lower-level language. Note that we
say “very expressive languages” instead of “languages
with many elements”. This is on purpose, as a language
can provide many elements, and still not be very expres-
sive; in these cases, some of those elements have exactly
the same semantic meaning but different syntax, what we
typically call syntactic sugar. Java and C# e.g., have
about the same level of expressiveness, although C# pro-
vides a greater number of elements (e.g., delegates).

Another aspect concerns the compromise between tool
support, and integration with the deployment platform.
Although, in theory, using a generic tool to create models
and generate the desired source-code is a good idea, in
practice it actually increases the difficulty of obtaining a
working system from the model. A good example of this
can be found in the OutSystems Agile Platform vs. a ge-
neric UML-based modeling approach such as XIS2: the
latter requires the generation, compilation and deploy-
ment of artifacts (clearly a task to be performed by a
programmer or a technical user), while the former han-
dles all these deployment aspects in a manner completely
transparent to the designer.

Table 1. Main issues of the proposed reference model

Analysis Aspects Examples of Possible Analysis Options

Meta-metamodel
UML 2.0 (Profile)
None

Domain
Modeling

Independence of database
Independence of UI
Support for enumerations and associations

Business-Logic
Modeling

Support for domain model query and manipulation
Usage of business-logic patterns

Navigation Flow
Modeling

Designer-defined navigation links between pages

Modeling
Language

Modeling

User-Interface
Modeling

Custom interface elements
Designer-defined UI patterns

Modeling levels concerned
PIM-to-PIM
PIM-to-PSM Model-to-Model

Transformations
Transformation languages

Programming-language specific
Independent of programming-language (e.g., QVT)

Modeling Tool
None
Integrated into (or an extension for) a generic CASE/IDE tool
Language-specific tool

Need for Traditional
Programming

None
Yes

Platform-independent
Targets specific platform

Tool Support and
Deployment

Deployment Environment
Platform-independent
Targets specific platform

A Reference Model for the Analysis and Comparison of MDE Approaches for Web-Application Development

Copyright © 2010 SciRes. JSEA

425

Finally, although there is work regarding MDE ap-

proaches for the development of web-applications, it
does not address platforms of a more specialized nature,
such as CMS (Content Management System) or DMS
(Document Management System) platforms. Although
this is understandable, as these platforms provide addi-
tional concepts and supporting them would introduce
even more problems (e.g., what to do when a language
element can not be mapped to an implementation con-
cept), we consider that it also constitutes additional mo-
tivation to use a set of languages and the corresponding
model-to-model transformations: each language could
address a specific kind of platform, and the model-to-
model transformations would be responsible for mapping
concepts between those languages/platforms.

REFERENCES
[1] “The Official Microsoft ASP.NET Site”. http://www.asp.net

[2] “Java EE”. http://java.sun.com/javaee

[3] “PHP: Hypertext Preprocessor”. http://www.php.net

[4] “Ruby Programming Language”. http://www.ruby-lang.org

[5] “Ruby on Rails”. http:// rubyonrails.org

[6] “Django–The Web framework for perfectionists with
deadlines.” http://www. djangoproject.com

[7] “Catalyst–Web Framework”.
http://www.catalystframework.org

[8] http:// www.webml.org

[9] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai
and M. Matera, “Designing Data-Intensive Web Applica-
tions,” Morgan Kaufmann, 2003.

[10] “UWE–UML–Based Web Engineering”.
http://uwe.pst.ifi.lmu.de

[11] A. R. Silva, J. S. Saraiva, R. Silva and C. Martins, “XIS-
UML Profile for eXtreme Modeling Interactive Systems,”
4th International Workshop on Model-based Methodolo-
gies for Pervasive and Embedded Software, IEEE Com-
puter Society, Los Alamitos, March 2007, pp. 55-66.

[12] A. R. Silva, J. Saraiva, D. Ferreira, R. Silva and C.
Videira, “Integration of RE and MDE Paradigms: The
ProjectIT Approach and Tools,” “On the Interplay
of .NET and Contemporary Development Techniques,”
IET Software Journal, Vol. 1, No. 6, December 2007, pp.
294-314.

[13] “Agile Software Development and Management,” Out-
Systems. http://www.outsystems.com/agile

[14] “Object-Oriented Hypermedia Design Model”.
http://www.telemidia.puc-rio.br/oohdm/oohdm.html

[15] I. B. Reinhartz and D. Dori, S. Katz, “OPM/Web–Object–
Process Methodology for Developing Web Applications,”
Annals of Software Engineering, Vol. 13, No. 1-4, 2002,
pp. 141-161.

[16] J. S. Saraiva and A. R. Silva, “Evaluation of MDE Tools
from a Metamodeling Perspective,” Journal of Database
Management, Vol. 19, No. 4, October-December 2008,
pp. 21-46.

[17] W. Kozaczynski and J. Thario, “Transforming User Ex-
perience Models to Presentation Layer Implementations,”
Proceedings of the Second Workshop on Domain-Specific
Visual Languages, Seattle, November 2002.

[18] P. P. Silva and N. W. Paton, “User Interface Modeling in
UMLi,” Institute of Electrical and Electronic Engineers
Software, IEEE, Vol. 20, No. 4, July 2003, pp. 62-69.

[19] J. Van den Bergh and K. Coninx, “Towards Modeling
Context-sensitive Interactive Applications: the Context-
Sensitive User Interface Profile (CUP),” SoftVis’05: Pro-
ceedings of the 2005 ACM Symposium on Software Visu-
alization, ACM, New York, 2005, pp. 87-94.

[20] P. Azevedo, R. Merrick and D. Roberts, “OVID to
AUIML-User-Oriented Interface Modelling,” Proceed-
ings of 1st International Workshop, Towards a UML Pro-
file for Interactive Systems Development, York, October
2000.

[21] N. J. Nunes and J. F. Cunha, “Towards a UML profile for
interaction design: the Wisdom approach,” Proceedings
of 1st International Workshop, Towards a UML Profile
for Interactive Systems Development, York, Springer Ver-
lag, October 2000, pp. 101-116.

[22] “Microsoft Expression: Sketchflow Overview”. http://
www.microsoft.com/expression/products/SketchflowOve
rview.aspx

[23] “Unified Modeling Language: Superstructure–Specifi-
cation Version 2.0,” Object Management Group, August
2005. http://www.omg.org/cgi-bin/apps/doc?formal/05-0
7-04.pdf

[24] “DSM Forum: Domain-Specific Modeling”.
http: //www.dsmforum.org

[25] “UWE–Tutorial”.
http://uwe.pst.ifi.lmu.de/teachingTutrial.html

[26] M. Brambilla, “The Web Modeling Language,” Politec-
nico di Milano. http://home.dei.polimi.it/mbrambil/webml.
htm

[27] N. Moreno and P. Fraternalli and A. Vallecillo, “WebML
Modeling in UML,” Institution of Engineering and
Technology Software, Vol. 1, No. 3, June 2007, pp. 67-
80.

J. Software Engineering & Applications, 2010, 3: 426-435
doi: 10.4236/jsea.2010.35048 Published Online May 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

Mapping UML 2.0 Activities to Zero-Safe Nets

Sabine Boufenara1, Faiza Belala1, Kamel Barkaoui2

1LIRE Laboratory, Mentouri University of Constantine, Algeria; 2CEDRIC-CNAM, Rue Saint-Martin, Paris, France.
Email: sabineboufenara@yahoo.com, belalafaiza@hotmail.com, barkaoui@cnam.fr

Received February 18th, 2010; revised April 6th, 2010; accepted April 6th, 2010.

ABSTRACT

UML 2.0 activity diagrams (ADs) are largely used as a modeling language for flow-oriented behaviors in software and
business processes. Unfortunately, their place/transition operational semantics is unable to capture and preserve
semantics of the newly defined high-level activities constructs such as Interruptible Activity Region. Particularly, basic
Petri nets do not preserve the non-locality semantics and reactivity concept of ADs. This is mainly due to the absence of
global synchronization mechanisms in basic Petri nets. Zero-safe nets are a high-level variant of Petri nets that ensure
transitions global coordination thanks to a new kind of places, called zero places. Indeed, zero-safe nets naturally
address Interruptible Activity Region that needs a special semantics, forcing the control flow by external events and
defining a certain priority level of executions. Therefore, zero-safe nets are adopted in this work as semantic framework
for UML 2.0 activity diagrams.

Keywords: UML Activity Diagrams Formalization, Interruptible Activity Region, Zero-Safe Nets

1. Introduction

The Unified Modelling Language (UML) [1] has recently
undergone a significant upgrade of its basic concepts,
giving rise to a new major version, namely UML 2.0.
Being widely used for specification and documentation
purposes in the software development process, UML
offers a spectrum of notations for capturing different
aspects of software structure and behaviour. Activity
diagram (AD) notations are intended to model behav-
ioural aspects of software systems, particularly control
and data flows.

Activity Diagrams (ADs) are widely used to model
various types of applications fluctuating from basic
computations to high level business processes, embedded
systems and system-level behaviors. They facilitate the
modelling of control and object (or data) flows by intro-
ducing a multitude of new concepts and notations such as
collections, streams, loops and exceptions. Several se-
mantics models have been defined to support these con-
cepts. Nevertheless, many problems persist and reduce the
usability of ADs [2,3]. This is mainly due to the new
constructs and principles complexity and their formal
semantics lack, leading to inconsistent interpretations of
the model. For example, in a workflow process, described
in terms of tasks and execution orders between them,
Termination (or Cancelation) concept may be modeled via
ADs Interruptible Activity Region. This modelling may
have several interpretations since the used modelling

concepts are still informal. Thus, a large gap has to be
bridged prior to obtain an execution model and automated
reasoning.

The abstract semantics of ADs have also completely
changed in UML 2.0. They are no longer considered as a
kind of state-machine diagrams and their semantics is
being well explained in terms of Petri net concepts. But,
basic Petri nets do not preserve semantics of new con-
structs of UML 2.0 ADs. We believe that this is essen-
tially due to the locality character (local activations at
transitions enabling) of basic Petri nets, whilst in UML 2.0,
contrary to UML 1.x, the activation of computational
steps may be not local.

Many attempts are currently led to give UML 2.0 ADs
an operational semantics via some well known formal
models such as high-level Petri nets [4], Abstract State
Machine [5] and so on, for eventual analysis and simula-
tion purposes. The objective of this paper is to describe
how Zero Safe Nets (ZSNs for short) are very suitable to
handle semantics of UML 2.0 ADs Interruptible Activity
Region. ZSN is a new variant of Petri-net model intro-
duced by Bruni [6] to define synchronization mechanisms
among transitions without introducing any new interac-
tion mechanism. On the basis of this formalism, we sug-
gest a set of mapping rules to define a formal semantic of
UML 2.0 ADs complex constructs. ZSNs semantics is
then used to conduct control flow in the net guarantying
atomicity and isolation of a transaction that is all what we
need in the cancellation schema. This formal specification

Mapping UML2.0 Activities to Zero-Safe Nets

Copyright © 2010 SciRes. JSEA

427

is precise enough to enable a unique model interpretation
at an utmost detail level. It can therefore serve as tools
implementation basis. Finally, it participates to ensure that
the specified behaviour meets the intended intuition of the
modeller.

The remainder of this paper is structured as follows. A
detailed discussion of related works is given in Section 2.
Section 3 presents syntax and informal semantics of both
Interruptible Activity Region in UML 2.0 ADs and ZSNs.
In Section 4, we describe our contribution by presenting
first the problematic, then the intuitive mapping to address
the Interruptible Activity Region formalization and finally
the formal definition of this mapping. Section 5 concludes
the paper with remarks and outlook on future work.

2. Related Works and Paper Contribution

The state of the art concerning UML 2.0 activity diagrams
semantics covers three different approaches: the first
based on Petri-nets, the second using graph transformation
rules and the third generating pseudo-code. Since the two
latter approaches are out of the scope of the present paper,
we therefore discuss UML 2.0 semantics related work
only in terms of Petri-nets.

Since UML specification envisions a “Petri-like se-
mantics” for activity diagrams, it is quite interesting to
propose a mapping between the two notations. Barros [7]
suggests translating a subset of ADs concepts to Petri nets
ones. Actions considered as activities in Petri nets are no
longer atomic, inducing to ADs semantics violation in the
UML specification standard ([1] p. 203). Moreover, only
locally behaved activities are considered in Petri nets,
whereas non-locality semantics is one major innovative
characteristic of UML 2.0 ADs.

In [8], an AD is transformed into FMC (Fundamental
Modeling Concepts) for their attractive feature, and then,
a Colored Petri net is constructed for execution and vali-
dation purposes. This approach focuses on abstract syntax
and thus, does not preserve semantics, especially for the
atomicity principle.

Störrle uses different variants of Petri nets (from col-
ored to procedural and exception Petri nets) to propose a
formal semantics to UML 2.0 ADs. The author tackles the
formalization of many concepts [9-12] such as control-
flow, procedure calling, data-flow, exceptions, loop-
nodes, conditional-nodes and expansion-regions using
various versions of Petri nets. However, different con-
cepts can generally coexist in the same AD. Therefore,
analysis of the whole system behavior is not possible due
to non-unified formalism.

The development culminates in [13-15] concluding that
Petri-nets might, after all, not be appropriate for formal-
izing activity diagrams. Especially, mapping advanced
concepts, such as interruptible activity regions, is found to
be not intuitive. Moreover, Petri-nets formalization of

ADs concepts is not unified and integrates different
variants of Petri-nets to map concepts belonging to the
same diagram. Additionally the traverse-to completion
semantics insurance is identified as being the major
problem in Petri-nets mapping. In [16], we have proposed
a generic mapping from UML 2.0 ADs to Zero-Safe Nets
(ZSNs) and have shown by several examples how this
Petri net variant can surmount this latter problem. Indeed,
non-locality semantics of ADs is preserved via a global
synchronization, offered by ZSNs, rather than a local one
as in basic Petri nets. In [17], we have been interested by
streaming parameters and exception outputs constructs in
UML 2.0 ADs, their formal semantics has been defined in
terms of these Petri nets variant without losing an impor-
tant characteristic of those concepts that is atomicity.

In this paper, we extend these recent works by im-
proving the proposed mapping to be more formal and
general. Indeed, we examine semantics of Interruptible
Activity Region construct in which actions need to be
promptly cancelled on the reception of an external event.
This can not be provided with basic Petri nets that are
local and not reactive.

3. Basic Concepts

We are interested in this section to remind fundamental
notions used in this study. For more details, the reader
can consult [1,18] (for Interruptible Activity Region in
ADs) and [6] (for ZSNs).

3.1 Interruptible Activity Region

The UML 2.0 specification made by the OMG [1] stan-
dard provides a meta-model to define the abstract syntax
for activity diagrams including Interruptible Activity
Region.

These ADs special regions are groups of nodes where
all execution might be terminated, if an edge traverses an
interruptible activity, before leaving the region. Inter-
rupting edges must have their source node in the region
and their target node outside it, but in the same AD con-
taining the region.

An Interruptible Activity Region is notated by a
dashed, round-cornered rectangle drawn around the
nodes contained in the region. An interrupting edge is
notated with a lightning-bolt activity edge.

During the process of an Interruptible Activity Region,
the reception of an event (exception-event) triggers the
block abort of that part of the Activity, and resumes exe-
cution with another action that may be the excep-
tion-handler. The standard specification [1] states, that
“When a token leaves an interruptible region via edges
designated by the region as interrupting edges, all tokens
and behaviours in the region are terminated”. Interruptible
regions are introduced to support more flexible non-local
termination of flow.

Mapping UML2.0 Activities to Zero-Safe Nets

Copyright © 2010 SciRes. JSEA

428

Example 1. Figure 1 gives an example taken from [1]
illustrating these concepts. This example illustrates that if
an order cancellation request ‘Order Cancel Request’ is
made, while executing one of the actions (receive, fill, or
ship orders), the ‘Cancel Order’ behaviour is immedi-
ately invoked and the action being executed is aborted.

Cancellation is a very common behavior in the execu-
tion of workflows process. It is used to capture the inter-
ference of an event or an activity in other activities exe-
cution of a workflow preventing execution or termination.
A cancellation can involve a cancellation area, a sub
process or an entire workflow. In UML 2.0 ADs, Inter-
ruptible Activity Region has been defined to hold such
behavior.

3.2 Introducing ZSNs

Zero-safe nets have been introduced by Bruni in [6] to
define synchronization mechanism among transitions,
without introducing any new interaction mechanism be-
sides the ordinary token-pushing rules of nets. Their role
is to ensure the atomic execution of complex transitions
collections, which can be considered as synchronized.

Atomic execution of multiple coordinated transitions
is forth possible in ZSNs thanks to a new kind of places,
called zero places. From an abstract viewpoint, those
transitions will appear as synchronized. Zero places are
bound to zero tokens in a system observable state. A to-
ken in a zero place is equivalent to a system internal state
that is non-observable. ZSN synchronized evolution must
begin at an observable state, evolve in non-observable
markings and must end at an observable state. Therefore,
ZSNs define two sorts of places; stable places corre-
sponding to net places, and zero places. A ZSN evolution
is considered as a transaction. A stable token generated
in a transaction is frozen all over the evolution; it is re-
leased only once the transaction is finished. We notice
that a transaction in this case, is represented by a system
activity possibly composed of a set of concurrent but
atomic sub-activities.

Zero places coordinate the atomic execution of transi-

Figure 1. Interruptible Activity Region enclosed by a dashed
line. The Interrupting edge is expressed by a lightning-bolt
style

tions which, from an abstract viewpoint, will appear as
synchronized. At the abstract level, we are not interested in
observing the hidden state. Modeling of the well- known
example of ‘dining philosophers’ problem’ is sufficient to
show how ZSNs are powerful to synchronize transitions in
an atomic way (see [19] for more details).

Example 2. (taken from [19]). There are n philoso-
phers (here, we suppose n = 2) sitting on a round table;
each having a plate in front and between each couple of
plates there is a fork, with a total of n forks on the table.
Each philosopher cyclically thinks and eats, but to eat he
needs both the left hand side fork and the right hand one
of his plate. After eating a few mouthfuls, the philoso-
pher puts the forks back on the table and starts thinking
again.

It is not difficult to imagine conflict situations leading
to a deadlock when each philosopher takes one fork and
cannot continue. This is due to the fact that the coordina-
tion mechanism is hidden inside transitions (Take1 and
Take2) that are too abstract (see Figure 2(a) modeling a
centralized non-terminism). Places Fki denote forks. A
token in the place Fki means that the ith fork is on the
table.

The same model is redrawn using free choice nets.
Decisions are now local to each place i.e. decisions are
made independently (see Figure 2(b)) and deadlock
situation is clear. One decision concerns the assignment
of the first fork whether to the first or to the second phi-
losopher, the other decision concerns the assignment of
the second fork. Note that Chi,j stands for Choicei,j where
i denotes Forki and j denotes PHilosopherj. Then, it might
happen that the first fork is assigned to the first philoso-
pher (Ch1,1) and the second fork is assigned to the second
philosopher (Ch2,2), and in such case the free choice net
deadlocks and none of the Takei actions can occur. Thus,
the translated net admits non-allowed computations in
the abstract sub-system of Figure 2(a).

Zero-safe nets surmount this deadlock problem by
executing only some atomic transactions, where tokens
produced in low-level resources are also consumed. In
the example, the ow-level. This is possible, but at the
expense of preseinvisible resources consist of places Fki,j
for 1  i, j  2, that can be interpreted as zero places. In
this way the computation performing Ch1,1 and Ch2,2 is
forbidden, because it stops in an invisible state, i.e., a
state that contains zero tokens (see Figure 2(c)).

While basic Petri nets fail to conserve the system se-
mantics at a low-level, free choice nets make local deci-
sions possible at lrving execution semantics. Zero-safe
nets are able to preserve execution semantics even when
expressed in refined way.

Formal Definitions [6]
A ZSN is a 6-tuple B = (SB, TB, FB, WB, uB, ZB) where NB
= (SB, TB, FB, WB, uB) is the underlying place/ transition

Mapping UML2.0 Activities to Zero-Safe Nets

Copyright © 2010 SciRes. JSEA

429

Figure 2. Example of dining philosophers: (a) Centralized
nondeterminisme, (b) Local nondeterminisme presenting
deadlock, (c) Atomic free choice

net. SB is a non-empty set of places. TB is a non-empty
set of transitions. FB  (SB × TB)  (TB × SB) is a set of
directed arcs. WB is the weight function that associates a
positive integer to each arc. uB is the places marking as-
sociating positive tokens number to each place. ZB  SB
is the set of zero places (also called synchronization
places). The places in SB \ ZB are stable places. A stable
marking is a multiset of stable places. The presence of
one or more zero places of a given marking makes it un-
observable, while stable markings describe observable
states of the system.

Let B be a zero safe net and let s = u0[t1>u1…un-1[tn>un
be a firing sequence of the underlying net NB of B,
 The sequence s is a stable step of B if:

 a  SB \ ZB, Σn
i =1 pre(ti)(a) ≤ u0(a)

 (Concurrent enabling)
u0 and un are stable markings of B
 (Stable fairness)

Pre(t)(a) defines the weight of the arc from place a
input of transition t to this one. Post(t)(a) defines the
weight of the arc from transition t to its output place a. The
concurrent enabling property insures the initial simulta-
neous enabling of all step transitions by stable places and
not only those transitions allowing the initial triggering of
the first execution. We notice that this property prohibits
the consummation of stable tokens produced in the step by
its transitions.
 Stable step s is a stable transaction of B if in addition:

Markings u1,…, un-1 are not stable
(Atomicity)

a  SB \ ZB, Σn
i =1 pre(ti)(a) = u0(a)

 (Perfect enabling)
The perfect enabling ensures the consummation of all

initial stable tokens before the transaction ends.
In a stable transaction, each transition represents a mi-

cro-step carrying out the atomic evolution through in-
visible states. Stable tokens produced during the transac-
tion become active in the system, only at the end of the
transaction.

Example 3. Consider the zero-safe net example of
Figure 2(c). The firing sequence {Fk1,Fk2}(Ch1,1>{Fk1,1,
Fk2} (Ch1,1>{Fk2,2,Fk1,1} is not a stable step since the
stable fairness is not satisfied. The marking {Fk2,2,Fk1,1}
enables no transition, defining hence a deadlock situation.
Since the sequence above is not a stable step and dead-
locks at a non-visible state, so it is forbidden.

The two following firing sequences are the unique sta-
ble transactions:

{Fk1,Fk2}(Ch1,1>{Fk1,1,Fk2}(Ch2,1>{Fk2,1,Fk1,1}(Take1

>{PhE1}.
{Fk1,Fk2}(Ch1,2>{Fk1,2,Fk2}(Ch2,2>{Fk1,2,Fk2,2}(Take2

>{PhE2}.
In what follows, we exploit features offered by

zero-safe nets to define a priority level in ADs actions
executions, leading to the reactivity definition.

4. Handling Interruptible Activity Region
via ZSNs

Formalizing ADs using Petri nets seems to be a good
approach. The specification states that “Activities are
redesigned to use a Petri-like semantics” [1]. Unfort-
unately, basic Petri nets present some limits.

In [16], we have shown that Petri nets, supposed to be
a semantic framework for ADs, are not well suitable to
handle new UML semantics such as traverse-to- comple-
tion principle. Indeed, the latter requires a global synchro-
nisation and not a local one as defined by Petri nets. We
defined a generic mapping from ADs to zero-safe nets that
preserves ADs operational semantics while focusing on
traverse-to-completion principle and synchronization of
fork and join nodes. Therefore, we covered control/data
flows and concurrency. Besides, in [17], we have focused
on semantics of streaming parameters and exception out-
puts, and showed also that ZSNs are able to express such
complex semantics. Atomic transactions have been de-
fined in ZSNs under a token game based on freezing to-
kens that have been created in the transaction until it ends.
This becomes possible thanks to the zero-places.

The contribution of this paper is to define a suitable
mapping of ADs to ZSNs, dealing with more complex
concepts of UML 2.0 ADs, namely the Interruptible Ac-
tivity Region. We show how basic Petri nets are not able

Mapping UML2.0 Activities to Zero-Safe Nets

Copyright © 2010 SciRes. JSEA

430

to express semantics of this construct due to their non
reactive aspect. We define a new net called ZSNIAR based
on ZSNs, formalizing the Interruptible Activity Region
as well as other important ADs principles and constructs
such as global synchronisation of concurrent regions [16]
and streaming parameters and exception outputs [17].

4.1 Petri Nets Limits

When dealing with the Interruptible Activity Region, two
questions are to be considered: the first is about the rais-
ing and handling of exceptions and the second concerns
the reactivity to external event.

1) Exceptions are a key example of non-local behavior.
Raising and handling an exception means switching,
from one of specified program states, to some other ones
in one step (a kind of multi-goto).

In Petri nets, while system state is modeled via distrib-
uted marking over the whole net places, state changes are
local. When mapping Interruptible Activity Region into
Petri nets, state is hence distributed over many places of
the region. To handle the cancellation semantics via Petri
nets, we need to remove a set of place markings (of the
interruptible region) at once. Moreover, the number of
destructed tokens is only known at run time.

Yet, we can create some net structure warranting that
all possible token distributions over places are covered.
This is possible by adding arcs that will be connected to
all potential combinations of all places in the region. It is
obvious that this chaotic solution leads to a huge arcs
number (spaghetti arcs). This, will greatly reduce the
readability and understanding of such net. Reset arcs
seem to be a good solution.

2) The reception of an external event triggers the ac-
tivity block abortion in Interruptible Activity Region, and
continues execution with another action that may be the
exception-handler.

All actions of the Interruptible Activity Region are
immediately aborted and no action outside the interrupti-
ble region can be executed before the handling of that
event. This leads to a priority and isolation of execution.

Within the Petri nets semantics, there is no priority in
executing two concurrent transitions. The choice of firing
one of the enabled concurrent transitions is non-deter-
ministic.

Example 4. In Figure 3, we give a naïve basic Petri

net that formalizes the AD of Figure 1. The transcription
follows mapping rules defined by Storrle in [3] (See Ta-
ble 1). The author added a number of transitions, model-
ing the interruption event, equal to the cancelled actions
in the region. Each transition is connected to the input
place of a cancelled action and to transition Cancel Or-
der via an output common place. When the Cancel Order
Request is made, places of the Interruptible Activity Re-
gion, with dark gray, have to be emptied.

Table 1. Mapping rules from UML activities to basic Petri
nets [3]

Order Cancel
Request

Receive Order

Fork

Fill Order

Send Invoice

Ship Order

Accept Payment

Join

Close Order Cancel Order

Order Cancel
Request

Order Cancel
Request

Make Payment

P3

P2

P1

Figure 3. Intuitive mapping of the AD of figure 1 to basic
Petri nets [3]

Nodes and edges
UML Activity dia-

gram
Petri Nets

Control nodes

Fork/Join

Activity edges

Executable nodes

Activity

Mapping UML2.0 Activities to Zero-Safe Nets

Copyright © 2010 SciRes. JSEA

431

We notice that semantics of cancellation (first point)
does not appear in the net: First, the cancel event is not
visible (sketched by transitions Order Cancel Request
that are enabled by internal places) and second, the net is
supposed to be 1-safe.

Regarding the second point mentioned above: when
place p1 is marked, both transitions Fill Order and Order
Cancel Request are enabled and have the same probabil-
ity to fire (situation of effective conflict). Whereas in this
context, we would like to fire the aborting transition, that
is Order Cancel Request.

The ZSNs model offers transitions coordination thanks
to zero places. It guarantees atomicity and isolation of
transaction, and this is all what we need in the cancella-
tion schema. In what follows, we use ZSNs semantics to
conduct the control flow in the net.

4.2 Mapping Intuition

In what follows, we discuss two zero-safe nets based
approaches to formalize AD interruptible region with
regard to semantics via the running example 1.

The first solution introduces reset arcs and no new
mechanism is necessary beyond the zero-safe nets se-
mantics. In the net of Figure 4, we introduce a transition
called ‘cancel’, and then we connect all places in the
Interruptible Activity Region to that transition by a reset
arc for each. The firing of transition ‘cancel’ empties all
its input places at once, regardless of their marking. Thus,
the net is no longer forced to be 1-safe. To overcome the
second shortcoming pointed out, we add an input place
‘interface place’ to transition ‘cancel’. This place repre-
sents the external cancel event. It is connected to transi-
tion ‘cancel’ via an arc of weight 1. When the place ‘in-
terface place’ is marked, the transition ‘cancel’ is enabled.
Possibly, other transitions of the region are enabled at the
same time. We need to guide the control to fire transition
‘cancel’ first. This is known as isolation and atomicity. To
achieve this, we assume that ‘interface place’ is a zero
place and not a stable one, so when marked, transition
‘cancel’ is enabled and immediately fired. This is due to
the enabling property of ZSNs. Then another problem
arises: when combining both solutions i.e. reset arcs and
the interface zero place, enabling of transition cancel is
made via the zero place connected with a non-reset arc.
Thus, if another input place that has to be emptied by
cancel, has an other output transition, it could be possible
to fire that transition first and then ‘cancel’ transition
indeterminably without impeding ZSNs rules. This is
essentially caused by the presence of reset arcs. To
overcome this problem, we can easily create a stable token
in the transaction that is frozen until the transaction ends.
The corresponding place is also an input one to cancelled
transitions via reset arcs. (see Figure4).

In Figure 4, firing the external transition creates one
stable token in the stable place pfreeze and one zero token in

t2t1

external

transition

interface

place

Interruptible Activity Region

Cancel

…Pfreeze

Figure 4. Formal semantics of the Interruptible Activity
Region via ZSNs augmented with reset arcs

interface place. The stable token cannot be consumed
until the transaction ends, hence prohibiting the firing of
the region enabled transitions such as t1 and t2. The unique
transition that satisfies firing conditions is cancel. The
created token in pfreeze can be consumed in the first next
firing not being a cancellation procedure.

It is clear that such construction greatly improves
modeling cancellation patterns and preserves semantics.
However, adopting such technique has its drawbacks; the
number of used reset arcs in this model depends always on
the number of places in the interruptible region. This
reduces considerably the net readability.

In Figure 5, we define a special cancellation transition
cancel (pictured by an underlined rectangle) with its new
enabling and firing semantics. Cancel may have many
stable inputs and one zero input place, that is interface
place. There are two different conditions to enable tran-
sition cancel:

1) Necessary condition but not sufficient to fire cancel:
the input zero place is marked.

2) Effective firing condition: the instantaneous marking
of cancel input places, i.e., input places markings when
the zero token is created. This marking is calculated at run
time, and this one is the enabling marking. Thus, once
firing cancel transition, all of its input places are emptied.

When the zero place is marked (via an external transition),
cancel is enabled, the current marking is then calculated

interface

place

P2 P1

Interruptible Activity

Region

Cancel

……

t1 t2

E
X
T
E
R
N

S
Y
S
T
E
M

Figure 5. Formal semantics of the Interruptible Activity
Region via ZSNs and a special transition cancel

Mapping UML2.0 Activities to Zero-Safe Nets

Copyright © 2010 SciRes. JSEA

432

and is equal to the destroyed tokens. This latter is neces-
sary to the transition firing. Hence, it is forbidden to fire t1
or t2 first. In such case, the cancel firing condition would
not be satisfied leading to a deadlock situation in an in-
visible state (non-observable marking). Firing cancel will
switch, from one of specified program states ({p1}, {p2} or
{p1, p2}), to some other ones in one step.

In our proposed semantics, event triggering cancella-
tion is not formalized via a transition (this should be the
intuition), but via a zero place. Hence, coordinating the
execution of the termination action is made possible.

With basic Petri nets, this is not possible since it is
agreed that an enabled transition can be fired or not, i.e.
firing one of two concurrently enabled transitions is non-
determinitic. With ZSNs, interface place is modeled with
a zero place rather than a stable one. Whenever, an
out-transition (a transition not belonging to the system) is
fired, a zero token is created in the interface place indi-
cating that the system is actually executing a transaction.
Transactions have a higher execution priority compared to
transitions. Hence, firing cancel transition is prior to any
other transition.

Figure 6 presents the mapping of the Interruptible Ac-
tivity Region part of Figure 1. When Ship Order is enabled,
a cancellation event occurs. This is traduced by marking
the zero place interface place. The effective firing condi-
tion of cancel is calculated and it is equal to {interface
place, p3}. Two transitions are now enabled: Ship Order
and Cancel. Firing transition Cancel is prior than transition
Ship Order. Firing Ship Order first, leads to a deadlock

P3

Interface place

Receive Order

Fill Order

Ship Order

Cancel

Fork

Figure 6. Intuitive mapping of the Interruptible Activity
Region of the AD of Figure 1 to ZSNs

situation (non finishing transaction) caused by the con-
sumption of cancel transition enabling tokens.

4.3 Formal Mapping

Table 2 defines preliminarily hints on formalizing UML
2.0 ADs via ZSNs. This generic mapping covers basic
constructs, concurrent-region, traverse-to-completion pri-
nciple, streaming parameters, exception outputs and the
Interruptible Activity Region.

Executable and fork/join nodes are mapped to transi-
tions. Control nodes become stable or zero places, de-
pending of the synchronization schema to be modeled.
Specific Petri nets models are given in particular cases such
as streaming parameters, exception outputs and the Inter-
ruptible Activity Region. Most of these notations have
already been examined in earlier work. The semantics of
the Interruptible Activity Region is discussed in this paper.

To formalize the mapping, we propose, for both basic
activity diagram AD of UML 1.x and a complete one of
UML 2.0, rigorous notations as given below. Extended
activity diagram AD2 encloses new constructs and se-
mantics, namely object nodes, traverse-to-completion
principle, streaming parameters, exception outputs and
Inturruptible Activity Region. Next, we define a formal
semantic definition of AD2 in terms of ZSNs.

Definition 1:
An activity diagram is defined by a tuple AD = (EN, BN,
CN, iN, fN, CF) where:

EN: denote Executable Nodes, i.e., elementary actions.
EN = {A1, A2, ..., An}.

BN: denote Branch Nodes i.e. decisions and merges.
BN = {d1, ..., dk; m1, ..., mk'}, such as : k  k'.

CN: denote Concurrency Nodes i.e. forks and joins.
CN = {f1, ..., fm; j1, ..., jm'}, such as: m  m'.

iN: denotes the initial Node.
fN: denotes the final Node.
CF: is a function denoting Control Flows. CF  ((EN,

BN, CN, iN)  (EN, BN, CN, fN)). A directed arc sketches
the control flow where the source may be an action, a
branch, a control or the initial node and the arc target
may be an action, a branch, a control or the final node.

Definition 2:
An UML2.0 AD is defined by a tuple AD2 = (AD, ON,
OF, CR, SA, EA, IAR) where:

AD: is the corresponding basic activity diagram as de-
fined above.

ON: denotes Object Nodes. In this work, we deal with
pins. ON = {o1, ..., or}. Objects may represent data or
streams {s1, …, sr' } or exceptions {e1, …, ew'}.

OF: is a function denoting Object (token) Flows. OF
 ((BN, CN, iN, ON)  (BN, CN, fN, ON)). OF =
{of1, …ofx}. As tokens move across an object flow edge,
they may undergo transformations. An object flow might
carry a transformation behavior denoted tb.

Mapping UML2.0 Activities to Zero-Safe Nets

Copyright © 2010 SciRes. JSEA

433

Table 2. The intuition of ADs formal semantics via ZSNs:
Zero places are pictured with small circles

CR: denotes Concurrent Regions. A concurrent region
is a sub-AD2 delimited with a fork and a join. Concurrent
regions have a special semantics under the traverse-to-
completion principle. This one has been discussed in [16]
along with a generic mapping to ZSNs.

SA: is a set of Streaming Actions {S1, …, Sr}. A
streaming action is an elementary action Ai with in-
put/output streaming parameters si.

EA: is a set of Exception Actions {E1, …, Ew}. An ex-
ception action is an elementary action Ai having excep-
tion outputs ei.

IAR: denotes Interruptible Activity Regions. An inter-
ruptible region is a sub-AD2 bound to a special specifica-
tion Spec that can, informally, be Spec (IAR) = (evt, can-
cel) where evt is the interruption triggering event and
cancel is the cancellation action. We note that evt and
cancel do not belong to the IAR. In the perspective of
cancellation, only actions EN and control nodes CN may
be interrupted, thus the enclosed actions and control
nodes define an IAR. IARi= {Ag, …, Ag', fh, ..., fh'; jv, ...,
jv'}, such that, A, f and j stand respectively for actions,
forks and joins enclosed in the region.

For the sake of the presentation, we restrict our ZSN
definition purpose to control flow, data flow and Inter-
ruptible Activity Region. Let ADIAR be a sub-AD2, such
that, ADIAR = (EN, BN, CN, iN, fN, CF, ON, OF)) and let
Spec be a specification such that:

Spec (IAR) = (evt, cancel). We define ADIAR by identi-
fying, in addition to IAR nodes, the input and output ob-
ject and branch nodes connected to each IAR node via a
control or object edge, including edges. Recall that an
IARi= {Ag, …, Ag', fh, ..., fh'; jv, ..., jv'}.

Next, we define a formal mapping from a sub AD2
ADIAR to a zero-safe net ZSNIAR.

Example 5. Consider the AD of Figure 1: let IAR1 be

IAR1 = {ReceiveOrder, FillOrder, ShipOrder, f1}, where
f1 stands for the fork node and {ReceiveOrder, FillOrder,
ShipOrder}  EN.

We define ADIAR1 by identifying inputs and outputs of
IAR1 nodes. ADIAR1 = {ReceiveOrder, FillOrder, ShipOr-
der, f1, d1, ReceiveOrder, d1, d1, FillOrder, FillOrder,
f1), f1, ShipOrder} where d1 stands for the decision node
and pairs of the form x, y stand for edges such as x is
the edge source and y is its target. Spec (IAR1) = (Or-
derCancelRequest, CancelOrder) where OrderCancel-
Request stands for evt and CancelOrder for Cancel.

Definition 3:
ZSNIAR is a special ZSN defining the semantic of ADIAR,
an UML 2.0 sub activity diagram with the Spec specifi-
cation.
ZSNIAR = (ZSN, SIAR, Zcancel, Cancel, ip, sp) where:

- There is a single source place ip, such that, ip
 SB, ip =.
- There is a single sink place sp, where sp  SB,

ZSNs Nodes

Activities Nodes Basic
Activity
Nodes

Concurrent
Region

Executable Nodes

Object Nodes

Control Nodes

Object Flows

Control Flows

Unless

Except

Exception
Outputs

Streaming Parameters

Events
zero place
Interface

InterruptibleActivityRegion

Zero place

{stream}

{stream}

Activity

Activity

.

.

N

E

 synch1

 synch2

Cancel

…interface place

Cancel

{stream}

{stream}

z

Mapping UML2.0 Activities to Zero-Safe Nets

Copyright © 2010 SciRes. JSEA

434

sp =.
- Every node n in the instance net is on the path
from ip to sp.

1) Zcancel  ZB: is a set of zero places {zcanc1, …, zcancx},
such that,  zcanci  Zcancel,

 zcanc
 = {canci}

2) SIAR  P. SIAR is a set of places. SIAR = {p  (p  SB)
 (p = n  n  {ADIAR  {BN  ON – {poi of  OF and
of = oi  oi' and tb on of}  {iN, fN}  {pc c 
CF}}}

3) Cancel  T: a set of special transitions {canc1, …,
cancx}, such that, the enabling condition to each transi-
tion canci is the marking of zcanci and the effective firing
condition is the instantaneous marking calculated, when
zcanci is marked. Given a transition canci, the firing se-
quence is given by:

{zcanci, MSIAR}(canci > M'/ zcanci, M'  M'SIAR =  and
canci = {SIAR, zcanci} where MSIAR and M'SIAR respec-
tively stand for SIAR markings before and after firing
canci.

4) ZSN: denotes a zero-safe net, i.e., ZSN = (SB, TB; FB,
WB, uB; ZB) as defined in Section 3.2 such that:

SB = BN  ON – {poi  of = (poi, poi+1) and  tb on
of}  {iN, fN}  {pc c  CF}

For each branch or object node, we create a place.
When two object nodes are connected via an edge not
carrying a transformation behavior, just one place is cre-
ated and takes the name of one of the two (since they
have the same name).

TB = EN  CN  {toi of  OF and of = oi  oi' and
tb on of}  {td id i' of  OF and of = di  di' or cf 
CF and cf = di  di' }  {tm im i' of  OF and of = mi  mi'

or cf  CF and cf = mi  mi' }  Cancel.
Executable and control nodes are mapped into transi-

tions. An object flow gives rise to a new transition iff this
edge carries a transformation behavior. For each control
flow, we define a transition.

FB = {x, y  x, y  CF  (x  TB)  (y  SB)} 
{x, y  x, y  CF  (x SB)  (y  TB)}  {x, y  (x
 TB)  (y  SB)   Ai  x = Ai  y = oi'}.

WB: FB  lN.
ip = iN.
sp = fN.
uB = {iN}
ZB = {evt}, zcanc = evt.
The above definition, mapping an ADIAR to a ZSN, is

faithful to the intuitive mapping given in Table 2. Con-
current regions, streams, and exceptions are not yet taken
into account. The semantics of cancellation is deeply
considered. So far, none of the previous works authors
has considered the problem of reactivity in ADs cancel-
lation behavior.

5. Conclusions

This paper is a continuation of our last two papers [16],

[17]. Their main goal was to propose a generic mapping
of ADs basic concepts to ZSNs ones. Especially, they
handle formalization of concurrent-region, while con-
sidering the traverse-to-completion semantics and excep-
tion outputs streaming parameters via ZSNs.

This paper highlights also the failure of Petri nets to
cover high semantics of ADs, namely the Interruptible
Activity Region. Here, we have proposed, with the same
spirit, the use of ZSNs as a formal semantic framework
to handle this region.

A generic mapping from ADs to ZSNs, covering basic
constructs, concurrent-region, traverse-to-completion
principle, streaming parameters, exception outputs and
the Interruptible Activity Region has been defined. Its
formal definition based on ZSNs covers until now con-
trol flow, data flow and Interruptible Activity Region.
Concurrent region, streaming parameters and exceptions
are not yet covered, but they can be integrated very sim-
ply in the defined ZSNIAR .

Some other constructs namely expansion-region and
exception handling are to be considered in future works.
Our aim is to define an EZS-Net (Extended Zero-Safe
Net) for all new constructs defined in AD2. The EZS-Net
will be dedicated to formalize UML ADs in a complete
and unified way.

ZSNs are tile logic based models which is an extension
of rewriting logic, taking into account the concept of side
effects and dynamic constraints on terms. Mapping
UML2 ADs to ZSNs can be followed by the projection
of these latter in rewriting logic and thus, exploiting its
practical system Maude for verification and validation
aims.

REFERENCES
[1] “OMG Unified Modelling Language: Superstructure,” Fi-

nal Adopted Specification Version 2.0,Technical Report,
Object Management Group, November 2003.
http://www .omg.org

[2] T. Schttkowsky and A. Föster, “On the Pitfalls of UML 2
Activity Modeling,” International Workshop on Modeling
in Software Engineering, Minneapolis, IEEE Computer
Society, 2007.

[3] H. Störrle and J. H. Hausmann, “Towards a Formal
Semantics of UML 2.0 Activities,” Software Engineering
Vol. 64, 2005, pp. 117-128.

[4] T. Murata, “Petri Nets: Properties, Analysis and Appli-
cations,” Proceedings of the IEEE, Vol. 77, No. 4, April
1989, pp. 541-580.

[5] E. Borger and R. Stark, “Abstract State Machines,” Sprin-
ger Verlag, 2003.

[6] R. Bruni and U. Montanari, “Zero-Safe Nets, or Transition
Synchronization Made Simple,” In C. Palamidessi and J.
Parrow, Eds., Proceedings of the 4th workshop on Expre-
ssiveness in Concurrency, Electronic Notes in
Theoretical Computer Science, Santa Margherita

Mapping UML2.0 Activities to Zero-Safe Nets

Copyright © 2010 SciRes. JSEA

435

Ligure, Elsevier Science, Vol. 7, 1997.

[7] J. P. Barros and L. Gomes, “Actions as Activities and
Activities as Petri Nets,” In Jan J¨urjens, Bernhard Rumpe,
Robert France, and Eduardo B. Fernandey, Eds., UML
2003 Workshop on Critical Systems Development with
UML, San Francisco, 2003, pp. 129-135.

[8] T. S. Staines, “Intuitive Mapping of UML 2 Activity
Diagrams into Fundamental Modeling,” “Concept Petri
Net Diagrams and Colored Petri Nets,” 15th Annual IEEE
International Conference and Workshop on the Engi-
neering of Computer Based Systems, Belfast, 2008.

[9] H. Störrle, “Semantics of Exceptions in UML 2.0 Acti-
vities,” Journal of Software and Systems Modeling, 9 May
2004. www.pst.informatik.uni-muenchen.de/stoerrle

[10] H. Störrle, “Semantics of Control-Flow in UML 2.0
Activities,” In N.N. Ed., Proceedings IEEE Symposium on
Visual Languages and Human-Centric Computing, Rome,
Springer Verlag, 2004.

[11] H. Störrle, “Semantics and Verification of Data Flow in
UML 2.0 Activities,” Electronic Notes in Theoretical
Computer Science, Vol. 127, No. 4, 2005, pp. 35-52.
www. pst.informatik.uni-muenchen.de/-stoerrle

[12] H. Störrle, “Semantics and Verification of Data-Flow in
UML 2.0 Activities,” Proceedings International Work-
shop on Visual Languages and Formal Methods, IEEE
Press, 2004, pp. 38-52. www.pst.informatik.uni-muench
en.de/_stoerrle

[13] R. Eshuis and R. Wieringa. “Comparing Petri Net and
Activity Diagram Variants for Workflow Modelling–A
Quest for Reactive Petri Nets,” In Weber et al. Petri Net
Technology for Communication Based Systems, Lecture

Notes in Computer Science, Vol. 2472, 2002, pp. 321-351.

[14] R. Eshuis and R. Wieringa. “A Real-Time Execution
Semantics for UML Activity Diagrams,” In H. Hussmann,
Ed., Fundamental Approaches to Software Engineering,
Lecture Notes in Computer Science, Genova, Springer
Verlag, Vol. 2029, 2001, pp. 76-90.

[15] R. Eshuis and R. Wieringa. “An Execution Algorithm for
UML Activity Graphs,” Proceedings of the 4th Interna-
tional Conference on The Unified Modeling Language,
Modeling Languages, Concepts, and Tools, Lecture
Notes in Computer Science, Toronto, Springer Verlag,
Vol. 2185, 2001, pp. 47-61.

[16] S. Boufenara, F. Belala and C. Bouanaka, “Les Zero-Safe
Nets Pour la Préservation de la TTC Dans les Diagrammes
d’activité d’UML, ” “Revue des Nouvelles Technologies
de l’Information RNTI-L-3,” Cépaduès éditions, 15ème
Conférence Internationnale sur les Langages et Modèles à
Objets : LMO, 2009, pp. 91-106.

[17] S. Boufenara, F. Belala and N. Debnath, “On Formalizing
UML 2.0 Activities: Stream and Exception Parameters,”
22nd International Conference on Computers and Their
Applications in Industry and Engineering CAINE-2009,
San Francisco, 4-6 November 2009.

[18] C. Bock, “UML 2 Activity and Action Models,” Part 6:
Structured Activities, 2005. http://www.jot.fm/issues/issue
_2005_05/column4

[19] R. Bruni and U. Montanari, “Transactions and Zero-Safe
Nets,” In: H. Ehrig, G. Juhás, J. Padberg and G. Rozenberg,
Eds., Proceedings of Advances in Petri Nets: Unifying
Petri Nets, Lecture Notes in Com- puter Science,
Springer Verlag, Vol. 2128, 2001, pp. 380-426.

J. Software Engineering & Applications, 2010, 3: 436-445
doi:10.4236/jsea.2010.35049 Published Online May 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

Implementation of Hierarchical and Distributed
Control for Discrete Event Robotic
Manufacturing Systems

Gen’ichi Yasuda

Nagasaki Institute of Applied Science, Nagasaki, Japan.
Email: YASUDA_Genichi@NiAS.ac.jp

Received January 6th, 2010; revised January 22nd, 2010; accepted January 25th, 2010.

ABSTRACT

The large scale and complex manufacturing systems have a hierarchical structure where a system is composed several
lines with some stations and each station also have several machines and so on. In such a hierarchical structure, the
controllers are geographically distributed according to their physical structure. So it is desirable to realize the
hierarchical and distributed control. In this paper, a methodology is presented using Petri nets for hierarchical and
distributed control. The Petri net representation of discrete event manufacturing processes is decomposed and distributed
into the machine controllers, which are coordinated through communication between the coordinator and machine
controllers so that the decomposed transitions fire at the same time. Implementation of a hierarchical and distributed
control system is described for an example robotic manufacturing system. The demonstrations show that the proposed
system can be used as an effective tool for consistent modeling and control of large and complex manufacturing systems.

Keywords: Implementation, Robotic Manufacturing Systems, Hierarchical and Distributed Control, Discrete Event

Systems, Petri Nets

1. Introduction

Because of robot’s flexibility, industrial robots have been
introduced into industry to automate various operations
without significant redesign. This flexibility is derived
from the generality of the robot’s physical structure, con-
trol and reprogrammability, but it can only be exploited if
the robot can be programmed easily. In some cases, the
lack of adequate programming tools makes some tasks
impossible to be performed. In other cases, the cost of
programming may be a significant fraction of the total
cost of an application. Further, it is quite obvious that a
single robot cannot perform effective tasks in an industrial
environment, unless it is provided with some additional
equipment. It is usually required to integrate the robot into
the manufacturing system, which includes NC machine
tools, belt conveyors, and other special purpose machines.
Further, the robot often must interact with such machines,
other robots or operators.

These external processes are executing in parallel and
asynchronously. It is not possible to predict exactly when
events of interest to the robot program may occur. The
signal lines are supported by most robot systems to coor-

dinate multiple robots and machines, but this is a very
limited form of communication between processes. So-
phisticated tasks require efficient means for coordination
and for sharing the state of the system between processes.
The programming system should provide a mechanism for
specifying the behavior of systems more complex than a
single robot. Existing robot programming systems are
based on the view of a robot system as a single robot
weakly linked to other machines. Many machines may be
cooperating during a task. The interactions between them
may be highly dynamic. No existing robot programming
system adequately deals with all of these interactions. No
existing computer language is adequate to deal with this
kind of parallelism and real-time constraints.

The overall structure of the working area in a large and
complex manufacturing system consists of one or more
lines, each line consists of one or more stations, and each
station (shop or cell) consists of one or more machines
such as robots and intelligent machine tools. Inside of a
cell, machines execute cooperation tasks such as machining,
assembling and storing. Inside of a shop, cells cooperate
mutually and execute more complicated tasks. Further-
more each machine consists of several motion elements.

Implementation of Hierarchical and Distributed Control for Discrete Event Robotic Manufacturing Systems

Copyright © 2010 SciRes. JSEA

437

A task executed by a robot or an intelligent machine
tool can be seen as some connection of more detailed
subtasks. For example, transferring an object from a start
position to a goal position is a sequence of the following
subtasks; moving the hand to the start position, grasping
the object, moving to the goal position, and putting it on
the specified place. Thus the manufacturing system han-
dles complicated tasks by dividing a task hierarchically in
this structure, which is expected to be effective in man-
aging cooperation tasks executed by great many machines
or robots.

One of the effective methods to describe and control
such systems is the Petri net which is a modeling tool for
asynchronous and concurrent discrete event systems [1].
Conventional Petri net based control systems were im-
plemented based on an overall system model. The de-
scription capability of the Petri net is very high; never-
theless, in case of manufacturing systems, the network
model becomes complicated and it lacks for the readabil-
ity and comprehensibility. Since in the large and complex
systems, the controllers are geographically distributed
according to their physical (hardware) structure, it is de-
sirable to realize the hierarchical and distributed control.

The hierarchical and distributed control for large and
complex discrete event manufacturing systems has not
been implemented so far [2-4]. A Petri net model includes
control algorithms, and is used to control the manufac-
turing process by coincidence of the behavior of the real
system with the Petri net model. Thus, if it can be realized
by Petri nets, the modeling, simulation and control of
large and complex discrete event manufacturing systems
can be consistently realized by Petri nets [5-6]. In this
paper, the author presents a methodology by extended
Petri nets for hierarchical and distributed control of large
and complex robotic manufacturing systems, to construct
the control system where the cooperation of each con-
troller is implemented so that the aggregated behavior of
the distributed system is the same as that of the original
system and the task specification is completely satisfied.

2. Discrete Event Modeling of Robotic
Manufacturing Systems using Petri Nets

A manufacturing process is characterized by the flow of
workpieces or parts, which pass in ordered form through
subsystems and receive appropriate operations. Each
subsystem executes manufacturing operations, that is,
physical transformations such as machining, assembling,
or transfer operations such as loading and unloading.
From the viewpoint of discrete event process control, an
overall manufacturing process can be decomposed into a
set of distinct activities (or events) and conditions mutu-
ally interrelated in a complex form. An activity is a single
operation of a manufacturing process executed by a sub-
system. A condition is a state in the process such as ma-
chine operation mode.

For example, a simple robot operation example, where
the robot waits until a workpiece appears and then handles
the workpiece and sends it out for the next operation, can
be modeled as follows:

condition the robot is waiting
event a workpiece arrives
condition the workpiece has arrived and is waiting
event the robot starts the handling
condition the robot is handling the workpiece
event the robot finishes the handling
condition the handling has been completed
event the workpiece is sent for other operation
The above example illustrates a system where events

and conditions are mutually connected. These systems are
known as event-condition systems. Events simultaneously
represent the end of the preceding condition and the be-
ginning of the succeeding condition. Event-condition
systems exhibit the following features:

1) Asynchronism
The system is essentially asynchronous. Events always

occur when their conditions are satisfied.
2) Ordering
Before and after one condition there are always events,

and each event is defined by preconditions and post con-
ditions.

3) Parallelism
In one system two or more conditions can be held si-

multaneously and for this, events that do not interact may
occur independently.

4) Conflict
One condition can be a precondition of various events

and depending on which event is occurring, different
conditions hold.

Because of these features, the following phenomena
can occur in the event-condition system:

1) Deadlock occurs when the system enters into a state
that is not possible for any event to occur.

2) Bumping occurs when despite the holding of a con-
dition, the preceding event occurs. This can result in the
multiple holding of that condition. When the system is
free of this phenomenon, the system is called safe.

To represent discrete event manufacturing systems a
modeling technique was derived from Petri nets [7-8].
Considering not only the modeling of the systems but also
the actual manufacturing system control, the guarantee of
safeness and the additional capability of input/output
signals from/to the machines are required. The extended
Petri net consists of the following six elements: 1) Place; 2)
Transition; 3) Directed arc; 4) Token; 5) Gate arc; 6)
Output signal arc.

A place represents a condition of a system element or
action. A transition represents an event of the system. A
directed arc connects a place to a transition, and its direc-
tion shows the input and output relation between them.
Places and transitions are alternately connected using

Implementation of Hierarchical and Distributed Control for Discrete Event Robotic Manufacturing Systems

Copyright © 2010 SciRes. JSEA

438

directed arcs. The number of directed arcs connected with
places or transitions is not restricted. A token is placed in a
place to indicate that the condition corresponding to the
place is holding.

A gate arc connects a transition with a signal source,
and depending on the signal, it either permits or inhibits
the occurrence of the event which corresponds to the
connected transition. Gate arcs are classified as permis-
sive or inhibitive, and internal or external. An output
signal arc sends the signal from a place to an external
machine. A transition is enabled if and only if it satisfies
all the following conditions:

1) It does not have any output place filled with a token.
2) It does not have any empty input place.
3) It does not have any internal permissive arc signaling

0.
4) It does not have any internal inhibitive arc signaling 1.
An enabled transition may fire when it does not have

any external permissive arc signaling 0 nor any external
inhibitive arc signaling 1. The firing of a transition re-
moves tokens from all its input places and put a token in
each output place connected to it. The assignment of to-
kens into the places of a Petri net is called marking and it
represents the system state. In any initial marking, there
must not exist more than one token in a place. According
to these rules, the number of tokens in a place never ex-
ceeds one, thus, the Petri net is essentially a safe graph.

If a place has two or more input transitions or output
transitions, these transitions may be in conflict for firing.
When two or more transitions are enabled only one tran-
sition should fire using some arbitration rule. By the rep-
resentation of the activity contents and control strategies
in detail, features of discrete event manufacturing systems
such as ordering, parallelism, asynchronism, concurrency
and conflict can be concretely described through the ex-
tended Petri net.

3. Design of Hierarchical and Distributed
Control

The overall procedure for the design and implementation
of hierarchical and distributed control is summarized as
shown in Figure 1. The basic procedures of modeling
and decomposition of robotic manufacturing systems are
shown. A global, conceptual Petri net model is first cho-
sen which describes the aggregate manufacturing process.
At the conceptual level each task specification is repre-
sented as a place of the Petri net as shown, where the
activity of each equipment is also represented as a place.

Based on the hierarchical approach, the Petri net is
translated into detailed subnets by stepwise refinements
from the highest system control level to the lowest ma-
chine control level. At each step of detailed specification,
some parts of the Petri net, transitions or places, are sub-
stituted by a subnet in a manner, which maintains the
structural properties.

 Start

Petri net modelling at the conceptual level
based on the task specification

Detailed Petri net representation of
the manufacturing processes

Decomposition of the Petri net and its
assignment to the machine controllers

Transformation of the Petri net in each controller
to the loadable data structure

Simulation experiment of the hierarchical and
distributed control system

Is the task specification satisfied?

End

YES

NO

Figure 1. Flow chart of Petri net based implementation of
hierarchical and distributed control system

It is natural to implement a hierarchical and distributed
control system, where one controller is allocated to each
control layer or block. For the manufacturing system, an
example structure of hierarchical and distributed control
is composed of one station controller and three machine
controllers as shown in Figure 2, although each robot
may be controlled by one robot controller. The detailed
Petri net is decomposed into subnets, which are executed
by each machine controller.

In the decomposition procedure, a transition may be
divided and distributed into different machine controllers
as shown in Figure 3. The machine controllers should be
coordinated so that these transitions fire in union. De-
composed transitions are called global transitions, and
other transitions are called local transitions.

Decomposed transitions must function in union, that is,
the aggregate behavior of decomposed subnets should be
the same as that of the original Petri net. By the Petri net
model, the state of the discrete event system is repre-
sented as the marking of tokens, and firing of any transi-
tion brings about change to the next state. So the firing
condition and state (marking) change before decomposi-
tion should be the same as those after decomposition.
The firability condition and external gate condition of a
transition j before decomposition are described as follows:

Implementation of Hierarchical and Distributed Control for Discrete Event Robotic Manufacturing Systems

Copyright © 2010 SciRes. JSEA

439




R

r

II
rj

Q

q

IP
qj

N

n

O
nj

M

m

I
mjj

kgkg

kpkpkt

1

,

1

,

1

,

1

,

)()(

)()()(









 (1)


V

v

EI
vj

U

u

EP
uj

E
j kgkgkg

1

,

1

,)()()(


 (2)

where,
M : input place set of transition j ;

)(, kpI
mj : state of input place m of transition j at time

sequence k ;
N : output place set of transition j ;

)(, kpO
nj : state of output place n of transition j at time

sequence k ;
Q : internal permissive gate signal set of transition j ;

)(, kg IP
qj : internal permissive gate signal variable q of

transition j at time sequence k ;

R : internal inhibitive gate signal set of transition j ;

)(, kg II
rj : internal inhibitive gate signal variable r of

transition j at time sequence k ;

U : external permissive gate signal set of transition j ;

)(, kg EP
uj : external permissive gate signal variable u

of transition j at time sequence k ;

V : external inhibitive gate signal set of transition j ;

 Station controller

Robot
controller

MC
controller

Conveyor
controller

Machining
 Center1

Conveyor2 Robot Machining
 Center2

Conveyor1

Figure 2. Example structure of distributed control system

 t1 t2

t11 t21 t12 t22t3 t4

decomposition

Station
controller

Machine
controller

t11,t21,t12,t22: global transition
t3,t4: local transition

Figure 3. Decomposition of transition

)(, kg EI
vj : external inhibitive gate signal variable v of

transition j at time sequence k ;

The state (marking) change, that is, the addition or
removal of a token of a place, is described as follows:

))()(()()1(,, kgktkpkp E
jj

I
mj

I
mj  (3)

))()(()()1(,, kgktkpkp E
jj

O
nj

O
nj  (4)

If transition j is divided into s transitions 1j , 2j , , , sj ,

the firability condition of a transition after decomposition
is described as follows:




Rsub

r

II
rjsub

Qsub

q

IP
qjsub

Nsub

n

O
njsub

Msub

m

I
mjsubjsub

kgkg

kpkpkt

1

,

1

,

1

,

1

,

)()(

)()()(









 (5)


Vsub

v

EI
vjsub

Usub

u

EP
ujsub

E
jsub kgkgkg

1

,

1

,)()()(


 (6)

From Equation (1) and Equation (5),


S

sub

jsubj ktkt
1

)()(


 (7)

From Equation (2) and Equation (6),

)()(
1

kgkg
S

sub

E
jsub

E
j 



 (8)

where,
S : total number of subnets
Msub : input place set of transition jsub of subnet

sub ;

)(, kpI
mjsub : state of input place m of transition jsub of

subnet sub at time sequence k ;
Nsub : output place set of transition jsub of subnet

sub ;

)(, kpO
njsub : state of output place n of transition jsub of

subnet sub at time sequence k ;
Qsub : internal permissive gate signal set of transi-

tion jsub of subnet sub ;

Rsub : internal inhibitive gate signal set of transi-
tion jsub of subnet sub ;

Usub : external permissive gate signal set of transi-
tion jsub of subnet sub ;

Vsub : external permissive gate signal set of transi-
tion jsub of subnet sub ;

Implementation of Hierarchical and Distributed Control for Discrete Event Robotic Manufacturing Systems

Copyright © 2010 SciRes. JSEA

440

The addition or removal of a token of a place con-
nected to a decomposed transition is described as fol-
lows:

))()(()()1(,, kgktkpkp E
jj

I
mjsub

I
mjsub  (9)

))()(()()1(,, kgktkpkp E
jj

O
njsub

O
njsub  (10)

Consequently it is proved that the firability condition
of the original transition is equal to AND operation of
firability conditions of decomposed transitions. If and
only if all of the decomposed transitions are enabled,
then the global transitions are enabled. To exploit the
above results, the coordinator program has been intro-
duced to coordinate the decomposed subnets so that the
aggregate behavior of decomposed subnets is the same as
that of the original Petri net.

There may exist a place which has plural input transi-
tions and/or plural output transitions. This place is called
a conflict place. The transitions connected to a conflict
place are in conflict when some of them are enabled at
the same time. In this case, only one of them fires and the
others become disabled. The choice for firing is done
arbitrarily using an arbiter program.

In case that a transition in conflict with other transi-
tions is decomposed as shown in Figure 4, these transi-
tions should be coordinated by the station controller. If
arbitration of the transitions is performed independently
in separate subnets, the results may be inconsistent with
the original rule of arbitration. Therefore the transitions
should be arbitrated together as a group. On the other
hand, arbitration of local transitions in conflict is per-
formed by local machine controllers.

The Petri net based control structure with introduction
of coordinator is shown in Figure 5. The control soft-
ware is distributed into the station controller and machine
controllers. The station controller is composed of the
Petri net based controller and the coordinator. The con-
ceptual Petri net model is allocated to the Petri net based
controller for management of the overall system. For
cooperative or exclusive tasks between robots, global
transitions at the station controller are used to communi-
cate the status of the robots. The detailed Petri net mod-
els are allocated to the Petri net based controllers in the
machine controllers. Each machine controller directly
monitors and controls the sensors and actuators of its
machine.

The control of the overall system is achieved by coor-
dinating these Petri net based controllers. System coor-
dination is performed through communication between
the coordinator in the station controller and the Petri net
based controllers in the machine controllers as the fol-
lowing steps.

1) When each machine controller receives the start
signal from the coordinator, it tests the firability of all

decomposition

t1

t2

t3

t1

t21

t22

t3

t21,t22: global transition
t1,t3: local transition

Figure 4. Decomposition of transition in conflict

Station
controller

Machine
controller

Global model

Machine 1 model

Machine 1 Machine N

Machine N model

Coordinator

Petri net engine

Petri net engine Petri net engine

Firability test result of
global transitions in
machine 1 model

Determination of firing
global transitions

Firability test result of
global transitions in
machine N model

Figure 5. Petri net based control structure with coordinator

transitions in its own Petri net, and sends the information
on the global transitions and the end signal to the coor-
dinator.

2) The coordinator tests the firability of the global
transitions, arbitrates conflicts among global and local
transitions, and sends the names of firing global transi-
tions and the end signal to the machine controllers.

3) Each machine controller arbitrates conflicts among
local transitions using the information from the coordi-
nator, generates a new marking, and sends the end signal
to the coordinator.

4) When the coordinator receives the end signal from
all the machine controllers, it sends the output command
to the machine controllers.

5) Each machine controller outputs the control signals
to its actuators.

Multilevel hierarchical and distributed control for
large and complex manufacturing systems can be con-
structed such that the control system structure corre-
sponds to the hierarchical and distributed structure of the
general manufacturing system. The coordination mecha-

Implementation of Hierarchical and Distributed Control for Discrete Event Robotic Manufacturing Systems

Copyright © 2010 SciRes. JSEA

441

nism is implemented in each layer repeatedly as shown in
Figure 6. The overall system is consistently controlled,
such that a coordinator in a layer coordinates one-level
lower Petri net based controllers and is coordinated by
the one-level upper coordinator.

The details of coordination in a two-level control sys-
tem composed of a global controller and several local
controllers have been implemented as shown in Figure 7.

4. Implementation of Control System

4.1 Example of Workstation Task

The basic procedures of modeling and decomposition of
robotic manufacturing systems are shown through a sim-
ple example. The example robotic manufacturing system
is composed of two input conveyors, two machining
centers, one handling robot, and one output conveyor as
shown in Figure 8.

 System
controller

Line
controller

Station
controller

Machine
controller

: Coordinator

: Petri net based controller

Figure 6. Hierarchical and distributed control structure for
overall manufacturing system

Holding of external gates

Firability test of all transitions

Firability test of global transitions

Arbitration of conflicts concerning global transitions

Determination of firing global transitions

Arbitration of conflicts among local transitions

Generation of a new marking

Reception of end signal from its local controllers

Output of control signals to its actuators

Start

Local coordinator Petri net based
controller from

coordinator

to coordinator

Holding of external gates

Firability test of all transitions

Firability test of global transitions

Arbitration of conflicts concerning global transitions

Determination of firing global transitions

Arbitration of conflicts among local transitions

Generation of a new marking

Reception of end signal from the global controller
and all local coordinators

End

Start

Global coordinator Petri net based
controller

to subsystems

from
subsystems

Figure 7. Flowchart of coordination in two-level control system

Implementation of Hierarchical and Distributed Control for Discrete Event Robotic Manufacturing Systems

Copyright © 2010 SciRes. JSEA

442

CV2 CV1

MC1 MC2

CV3

Robot

A B

A B

A

B

A B B

Figure 8. Example of robotic manufacturing system

The task specification of each equipment with the

names of subtasks is as follows.
1) The conveyor CV1 carries a workpiece of type A

into the workcell (CIN_A).
2) The conveyor CV2 carries a workpiece of type B

into the workcell (CIN_B).
3) The robot loads the workpiece of type A into the

machining center MC1 (LDA_MC1).
4) The robot loads the workpiece of type B into the

machining center MC1 (LDB_MC1).
5) The robot loads the workpiece of type B into the

machining center MC2 (LDB_MC2).
6) The machining centers process the workpieces each

(PR_MC1, PR_MC2).
7) The robot unloads the processed workpiece from

the machining center MC1 and carries them to the con-
veyor CV3 (UNLD_MC1).

8) The robot unloads the processed workpiece from
the machining center MC2 and carries them to the con-
veyor CV3 (UNLD_MC2).

9) The conveyor CV3 carries the workpiece away
(COUT).

4.2 Petri Net Based Modeling

From the viewpoint of the flow of workpieces, the task
specification is summarized by Petri nets as shown in
Figure 9.

 LDA_MC1 PR_MC1 UNLD_MC1 CIN_A COUT

LDB_MC1 PR_MC1 UNLD_MC1 CIN_B COUT

LDB_MC2 PR_MC2 UNLD_MC2 CIN_B COUT

Figure 9. Petri net representation of the task specification of
the example system

A global, conceptual Petri net model is first defined
which describes the aggregate manufacturing process. At
the conceptual level each task specification is represented
as a place of the Petri net as shown in Figure 10, where
the activity of each equipment is also represented as a
place. Activities of the conveyor CV2, the machining
center MC1 and the robot should be arbitrated based on
the global Petri net model, because the places have two
or more input/output transitions.

Based on the hierarchical approach, Petri nets are
translated into detailed subnets by stepwise refinements
from the highest system control level to the lowest ma-
chine control level [6]. At each step of detailed specifica-
tion, some places of the Petri net are substituted by a
subnet in a manner, which maintains the structural prop-
erties. Figure 11 shows the detailed Petri net representa-
tion of subtasks: loading, processing and unloading in
Figure 10.

The transitions among associated machines in the de-
tailed Petri net representations imply the cooperative
control structure in the overall system. For example,
loading a workpiece of type A necessitates the coopera-
tive or synchronized activities among the conveyor CV1,
the machining center MC1, and the robot. First, “for-
ward” operation to carry a workpiece is performed by the

 CV1

CV2 CV3

MC2

MC1
LDB_MC1

LDA_MC1

PR_MC1

PR_MC2 UNLD_MC2

UNLD_MC1

LDB_MC2

CIN_A

CIN_B

COUT

1

2

3

4 5

6

7

8

9

10

11

12

13

LDA_MC1

LDB_MC1

 LDB_MC2

 UNLD_MC1

UNLD_MC2

Robot

2 3

7 9

8 10

4 5

11 12

Figure 10. Petri net representation of the example system at
the conceptual level

Implementation of Hierarchical and Distributed Control for Discrete Event Robotic Manufacturing Systems

Copyright © 2010 SciRes. JSEA

443

Forward Waiting Fixing

Grasp Moving

Waiting

Put on Moving Waiting

(CV1)

(Robot)

(MC1)

2

3

(a) Loading A to MC1 (LDA_MC1)

Forward Waiting Fixing

Grasp Mov ing

Waiting

Put on Moving Waiting

(CV2)

(Robot)

(MC1 or 2)

7
8

9
10

(b).Loading B into MC1 or MC2 (LDB_MC1, LDB_MC2)

Backward Positioning Machining Forward Unfix ing
3,9
10

4
11

(c) Processing (PR_MC1, PR_MC2)

Waiting

Grasp Moving

Waiting

Put on Moving

(MC1 or 2)

(Robot)

(CV3)

4
11

5
12

(d) Unloading A or B (UNLD_MC1, UNLD_MC2)

Figure 11. Detailed Petri net representation of subtasks

conveyor CV1. At the end of “forward” operation, when
the robot is free, the “loading” operation is started. The
conveyor CV1 starts waiting, the robot starts moving to
grasp the workpiece, and the machining center starts
moving forward to get the workpiece from the robot.
After holding the workpiece, the robot starts moving to
put it on the machining center and the conveyor CV1 is
free. After putting on, the machining center starts fixing
the workpiece, while the robot is waiting. After fixing the
workpiece, the “loading” operation is finished.

4.3 Control System Design and Experiments

For the manufacturing system, an example structure of
hierarchical and distributed control is composed of one

station controller and three machine controllers (Figure
2). The Petri net executed in each machine controller is
shown in Figure 12, simply by extracting the specified
sequences of subtasks in the detailed Petri nets. For the
implementation of the Petri net based control algorithm,

Waiting Put on

Put on

Grasp

Grasp

(Loading A into MC1)

(Unloading from MC1)

Moving

Moving

Moving

Moving

Waiting Put on Grasp

(Loading B into MC1)

Moving Moving

Waiting Put on Grasp

(Loading B into MC2)

Moving Moving

Put on Grasp

(Unloading from MC2)

Moving Moving

21 211 212 213 214 31

71 711 712 713 714 91

81 811 812 813 814 101

41

111

411

1111 1112 1113

413 412 51

121

(a) Robot controller

Processing Fixing Waiting Waiting (B) Forward

(MC1: Fixing and processing A or B)

(MC2: Fixing and processing B)

Processing

Fixing

Waiting

Waiting (A) Forward 22

82

221 222 32

42 421

821 822 102 112 1121

Fixing Waiting (B)Forward 72 92 721 722

(b) MC controller

Forward Waiting

Forward

Waiting

Forward

(CV1: Carrying A to workcell; MC1)

(CV2: Carrying B to workcell; MC1 or MC2)

(CV3: Carrying out from MC1 or MC2)

23

73

231

731

43

53

301

302

303

Waiting

Waiting

Waiting

732 74

44 304

(c) Conveyor controller

Figure 12. Petri net representation of machine controllers

(: global transition)

Implementation of Hierarchical and Distributed Control for Discrete Event Robotic Manufacturing Systems

Copyright © 2010 SciRes. JSEA

444

a transition of a Petri net model is defined using the
names of its input places and output places; for example,
t1-1=p1-1, -p1-11, where the transition no.1 (t1-1) of the
subsystem no.1 is connected to the input place no.1 and
the output place no.11. Using the names of transitions,
global transitions are defined; for example, G1=t1-1, t2-1,
t3-1 indicates that the global transition G1 is composed
of the transition no.1of the subsystem no.1 (Robot con-
troller), the transition no.1 of the subsystem no.2 (MC
controller), and the transition no.1 of the subsystem no.3
(Conveyor controller). Then, the global transitions with
comments of the example control system are as follows.

G1= t1-21, t2-22, t3-23 (start of loading A from CV1);
G2= t1-212, t3-231 (end of grasp A on CV1);
G3= t1-214, t2-222 (end of put A on MC1);
G4= t1-31, t2-32 (end of loading A into MC1);
G5= t1-71, t2-72, t3-73 (start of loading B from CV2);
G6= t1-712, t3-731 (end of grasp B on CV2);
G7= t1-714, t2-722 (end of put B on MC1);
G8= t1-91, t2-92 (end of loading B into MC1);
G9= t1-81, t2-82, t3-74 (start of loading B from CV2);
G10= t1-812, t3-731 (end of grasp B on CV2);
G11= t1-814, t2-822 (end of put B on MC2);
G12= t1-101, t2-102 (end of loading B into MC2);
G13= t1-41, t2-42, t3-303(start of unloading from MC1);
G14= t1-412, t2-421 (end of grasp on MC1);
G15= t1-51, t3-43 (end of put on CV3);
G16= t1-111, t2-112, t3-304 (start of unloading from MC2);
G17= t1-1112, t2-1121 (end of grasp on MC2);
G18= t1-121, t3-44 (end of put on CV3);

The hierarchical and distributed control system has
been realized using a set of PCs. Each machine controller
is implemented on a dedicated PC. The station controller
is implemented on another PC. Communications among
the controllers are performed using serial communication
interfaces. A Petri net model includes control algorithms,
and is used to control the manufacturing process by coin-
cidence of the behavior of the real system with the Petri
net model.

The names of global transitions and their conflict rela-
tions are loaded into the coordinator in the station con-
troller. The connection structure of a decomposed Petri
net model and conflict relations among local transitions
are loaded into the Petri net based controller in a machine
controller. By executing the coordinator and Petri net
based controllers algorithms based on loaded information,
simulation experiments have been performed. The Petri
net simulators in the machine controllers initiate the
execution of the subtasks attached to the fired transitions
through the serial interface to the robot or other external
machine. When a task ends its activity, it informs the
simulator to proceed with the next activations by the ex-
ternal permissive gate arc. A machine controller controls
one or more machines or robots using multithreaded pro-
gramming [9]. Experimental results show that the de-
composed transitions fire at the same time as the original
transition of the detailed Petri net of the whole system
task. Firing transitions and marking of tokens can be di-
rectly observed on the display at each time sequence us-
ing the simulator as shown in Figure 13 [10].

Figure 13. View of Petri net simulator at the station controller

Implementation of Hierarchical and Distributed Control for Discrete Event Robotic Manufacturing Systems

Copyright © 2010 SciRes. JSEA

445

5. Conclusions

A methodology to construct hierarchical and distributed
control systems, which correspond to the structure of
manufacturing systems, has been presented. The overall
control structure of an example robotic manufacturing
system was implemented using a communication net-
work of PCs, where each machine controller is realized
on a dedicated PC. The Petri net based control software
is distributed into the station controller and machine
controllers; the station controller executes the conceptual
Petri net, and the machine controllers execute decom-
posed subnets. The controllers are arranged according to
the hierarchical and distributed nature of the man-
ufacturing system. The control software does not use the
overall system model, and the decomposed Petri net
model in each machine controller is not so large and
easily manageable. Machine controllers are coordinated
such that decomposed transitions fire at the same time
and the task specification is completely satisfied. The
Petri net model includes the control algorithm; control is
executed in order that the behaviour of the Petri net
model is in correspondence with that of the real system.
Thus modeling, simulation and control of large and
complex manufacturing systems can be performed
consistently using Petri nets. The experimental control
system uses conventional PCs with serial interfaces, but
the performance of the control system can be improved
using dual port shared memory and high-speed serial
interfaces for communication between controllers.

REFERENCES
[1] W. Reisig, “Petri Nets,” Springer-Verlag, Berlin, 1985.

[2] M. Silva, “Petri Nets and Flexible Manufacturing,” In G.
Rozenberg, Ed., Advances in Petri Nets 1989, Lecture
Notes in Computer Science, Springer-Verlag, Vol. 424,
1990, pp. 374-417.

[3] A. D. Desrochers and R. Y. Al-Jaar, “Applications of
Petri Nets in Manufacturing Systems: Modeling, Control
and Performance Analysis,” IEEE Press, 1995.

[4] E. J. Lee, A. Togueni, and N. Dangoumau, “A Petri Net
Based Decentralized Synthesis Approach for the Control
of Flexible Manufacturing Systems,” Proceedings of the
IMACS Multiconference Computational Engineering in
Systems Applications, Lille, 2006.

[5] G. Bruno, “Model-based Software Engineering,” Chap-
man & Hall, 1995.

[6] V. O. Pinci and R. M. Shapiro, “An Integrated Software
Development Methodology Based on Hierarchical Col-
ored Petri Nets,” In G. Rozenberg, Ed., Advances in Petri
Nets 1991, Lecture Notes in Computer Science, Springer
Verlag, Vol. 524, 1991, pp. 227-252.

[7] K. Hasegawa, K. Takahashi and P. E. Miyagi, “Applica-
tion of the Mark Flow Graph to Represent Discrete Event
Production Systems and System Control,” Transactions
of the SICE, Vol. 24, No. 1, 1988, pp. 69-75.

[8] P. E. Miyagi, K. Hasegawa and K. Takahashi, “A Pro-
gramming Language for Discrete Event Production Sys-
tems Based on Production Flow Schema and Mark Flow
Graph,” Transactions of the SICE, Vol. 24, No. 2, 1988,
pp. 183-190.

[9] G. Yasuda, “Distributed Control of Multiple Cooperating
Robot Agents Using Multithreaded Programming,” Pro-
ceedings of the 16th International Conference on Produc-
tion Research, Prague, 2001.

[10] G.Yasuda, “Implementation of Distributed Cooperative
Control for Industrial Robot Systems Using Petri Nets,”
Preprints of the 9th IFAC Symposium on Robot Control,
Gifu, 2009, pp. 433-438.

J. Software Engineering & Applications, 2010, 3: 446-454
doi:10.4236/jsea.2010.35050 Published Online May 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

Experiences Analyzing Faults in a Hybrid
Distributed System with Access Only to
Sanitized Data*

Ronald J. Leach

Department of Systems & Computer Science Howard University, Washington DC, USA.
Email: rjl@scs.howard.edu

Received March 12th, 2010; revised March 26th, 2010; accepted March 28th, 2010.

ABSTRACT

In this paper we report on a work in progress assessing the faults observed and reported in a distributed, safety-critical,
largely embedded system with both electrical and mechanical components. We illustrate why standard software testing
techniques are not sufficient and indicate some of the technical and non-technical problems encountered in examining the
faults and the initial results obtained. While the application domain is elevator operation, the techniques described here
are general enough to apply to many other domains. Much of the data analyzed here would be considered imprecise in the
software industry if it were used in software testing or to help increase fault tolerance. The paper includes a discussion of
the use of multiple views of data, assessment of missing data, and analysis of informal information to produce its
conclusions about fault avoidance and fault tolerance.

Keywords: Distributed System, Safety-Critical Systems, Fault Tolerance, Remote Monitoring

1. Introduction

It is difficult to obtain useful information about the nature
and distribution of faults in an actual distributed system,
especially one that is safety-critical. Most companies and
government organizations do not allow such information
to be made available to external entities, even in sanitized
form.

This lack of data poses a potentially enormous problem
for researchers in fault-tolerance and distributed systems.
It is very important to provide insights for researchers who
might not have sufficient access to realistic data. With-
out such access, it is difficult to verify the practicality of
research hypotheses. Hopefully the process described here,
with a discussion of the analyses done, can provide insight
and advance the research in this important field.

In this paper, we report on an evaluation of the root
causes of faults in a safety-critical system and describe
some of the partial solutions that were obtained. Our ex-
perience illustrates the difficulty in obtaining useful, re-
alistic fault data from an operational safety-critical system.
The system studied included several elevators in a
high-rise building, with both internal and external moni-

toring and communications systems [1].
The situation examined in this paper is rather unusual

as an example in the fault-tolerance community, because
the fault and maintenance data analyzed was not reported
in any sort of form that would ordinarily be used for a
complete fault analysis, including analysis of either fault-
tolerance or fault-avoidance [2,3].

We also observe that the reliability of electro- me-
chanical systems such as elevators might exhibit some of
the characteristics of a “bathtub curve” typical in me-
chanical systems [4-6], or one more common in software
[7]. The book [8] is devoted to systems with mechanical
and electronic components, and the evolution of elevator
control software systems is discussed in [9].

A 1996 version of a NASA standards document, Facil-
ity System Safety Guidebook NASA-STD-8719.7 states
the following about software faults in hybrid systems
[10].

Software faults may take three forms:
 The so-called honest errors made by the program-

mer in coding the software specification. These are sim-
ple mistakes in the coding process that result in the soft-
ware behaving in a manner other than that which the
programmer intended.
 Faults due to incorrect software specifications or the

*This research was partially funded by the National Science Foundation
under grant number 0324818.

Experiences Analyzing Faults in a Hybrid Distributed System with Access Only to Sanitized Data

Copyright © 2010 SciRes. JSEA

447

programmer’s interpretation of these specifications.
These errors may result from system designer’s lack of
full understanding of system function or from the pro-
grammer’s failure to fully comprehend the manner in
which the software will be implemented or the instruc-
tions executed. In this type of fault the software state-
ments are written as intended by the programmer.
 Faults due to hardware failure. Hardware failures

may change software coding. Thus such software faults
are secondary in that they originate outside the software.

All these types of faults, as well as a considerable
amount of human error, are present in this system. We
note that a new draft standard STD-8719.7A is currently
under NASA review. Other relevant research on the reli-
ability of fault-tolerant, safety-critical; systems can be
found in [11,12].

As will be discussed later in this paper, an informal
verbal description of a problem with an on-site building
manager and a conversation with a service company rep-
resentative helped identify a set of faults that could be
removed easily, leaving the system with a greater degree
of resilience when other faults were encountered.

We note that some of the fault data was sanitized be-
fore it was made available to the author for the analysis
that is described in this paper. Even so, some conclusions
can be drawn about the major causes of faults, even with
incomplete data.

We have removed all references to the particular
companies that performed the initial installation and ser-
vice of the set of elevators described here. The distrib-
uted card and password security system that the elevator
access controls must interface with are described only at
the highest levels, also. We have also sanitized the nature
of any company database design in order to protect pro-
prietary information.

Of course, simulation of elevator behavior in terms of
picking up and letting off passengers is often used as a
teaching tool. One of the earliest readily available such
discussion is provided in Knuth [13]. A recent search on
Google for the terms “elevator simulation” and “assign-
ment” provided 517 matches.

2. The System Evaluated

The system evaluated in this work is a set of user- oper-
ated elevators that have multiple sets of controls, multi-
ple alarms, and the capability to communicate with a
remote monitoring device. All elevators are in the same
high-rise building complex. The system is integrated
with an access control system and electronic cards. The
system currently complies with all existing safety codes
in the geographical area.

The elevator system is over twenty years old and has
some problems of age, wear and tear, and unavailability
of parts.

Of course, it is not reasonable to expect that the pro-

grammers who wrote the original code for the micro-
processors and related subsystems will still be with the
company. In fact, there is no reason to expect that the
company that originally designed and installed the ele-
vator system is responsible for its maintenance. This is,
of course, a typical situation in the software maintenance
industry.

The entire system may be viewed as having several
distinct features, most of which are illustrated below in
Figure 1.
 The system contains a set of seven elevator cars that

are positioned in three banks of two elevators each, with
the remaining elevator essentially by itself, although an-
other nearby elevator could be used in an emergency.
The banks of elevators are several hundred feet apart.
 The alarm system in the elevators is audible to a lo-

cal human monitoring system, with monitoring at all
times of day and night. The on-site human monitor enters
all problems into a log book and can call the elevator
company’s service center.
 There are also phones inside each elevator to enable

a stranded user to contact the proper service personnel, or
the fire department.
 In the late evening, the elevators automatically re-

vert to limiting access to being controlled by electronic
access cards.
 These electronic control cards are integrated into a

building-wide security system with monitoring by the
aforementioned human monitors and with each access
entered into a database system.
 Microprocessors in each of the seven elevator cars

can interact with communications devices that are able to
transmit problem information to an off-site remote
monitoring system.
 The microprocessors use a custom design and should

Remote
monitor
system

Alarm
system

Hall buttons

Door
open/close

controls

Security
System

Elevator
(one of
several)

Figure 1. An OV-1, high-level view of the interaction be-
tween several of the elevator’s microprocessors and some of
the other relevant computer-controlled systems

Experiences Analyzing Faults in a Hybrid Distributed System with Access Only to Sanitized Data

Copyright © 2010 SciRes. JSEA

448

be thought of as ASICs (Application-Specific Integrated
Circuits). The lack of a standardized design makes the
error rates of processors difficult to compare with other
microprocessors of the same vintage. Hence it is impos-
sible to use fault microprocessor data – even if it were
made available – to determine if the reliability was typi-
cal of long-lived systems with high degrees of reuse.
 It appears that the microprocessors are not readily

available for replacement in all of the elevator com-
pany’s installed locations.
 Every call for elevator service is entered into a ser-

vice database at the elevator company’s central location.
The elevator company’s service supervisors can see this
database monitoring system. This system can be viewed,
in certain circumstances, by non-company personnel.

It is natural to ask why this system is an appropriate
example to serve as the basis for a paper on software
failures. Most modern elevators do not require a special
operator and are operated by individuals who are, almost
certainly, unaware of the safety, design, and control is-
sues involves with their safe operation. Hence, there are
multiple control and monitoring features, nearly all of
which are computer-based for the system described in
this paper.

There are microprocessors in several subsystems of
this set of elevators. The microprocessors are custom
designed and cannot be replaced easily by off-the-shelf
components. Each elevator has the following computer
components or computer system interfaces:
 Each elevator contains a microprocessor that selects

options, based on the buttons that have been pressed. The
microprocessor controls the operation of the doors (open,
closed), as well as floor selection, based on the buttons

pressed.
 Since there are separate controls on each side of the

elevator cab, each side must have its own microproces-
sor.
 For six of the seven elevators, the buttons are ren-

dered inoperable late at night by a security code set by a
human operator at an in-building control center until a
person uses their personal pre-assigned security code,
which is entered using the in-car buttons on the keypad.
Unless the code is entered correctly, the elevator car re-
turns to the ground floor.
 For some of the higher floors, access also requires

the swiping of an electronic security card.
 There are control units in sets of buttons, one for

each floor, that allow the elevator to be called. Each of
the control units contains a microprocessor for commu-
nication.
 There are sensors in each set of door panels. There

are both interior and exterior doors in each elevator.
These sensors make the doors stop closing if they en-
counter an obstacle, usually a human, but perhaps lug-
gage or a grocery cart. These are controlled by micro-
processors.
 Some doors have microprocessors to control

smooth opening and closing of doors in the event of se-
vere wind conditions affecting air flow within the eleva-
tor shafts. The elevator shafts have external air access,
due to elevator safety regulations.
 All programming of the microprocessors is done

off-site and, after testing, the microprocessors are de-
ployed. There is only a minimal amount of on- site pro-
gramming performed.

Figure 2. An OV-2 view of the system, showing need lines

Experiences Analyzing Faults in a Hybrid Distributed System with Access Only to Sanitized Data

Copyright © 2010 SciRes. JSEA

449

 Each elevator contains a microprocessor and a
communications path that sends a service code to the
elevator company’s central service location in the event
of a malfunction.
 The company’s central service location monitors all

service calls, whether called in by an authorized human
monitor or the electronic call system described above.
 There is a company proprietary database of service

calls. In certain circumstances, the database may be made
available for read-only access to selected customer rep-
resentatives.

3. Modeling the System

To help understand and model the system’s organization,
we used the Department of Defense Architectural Fram-
ework, DoDAF and created the models using the System
Architect for DoDAF tool from Telelogic. Representa-
tions of system operation were shown in what in DoDAF
terminology is called “Operational Views.” There are
several types of standardized operational views:
 OV-1 consists of an informal, graphical representa-

tion of operations as well as explanatory text. It is infor-
mal in the sense that information provided in it is not
included in any database or CASE tool. An OV-1 dia-
gram of the system is provided in Figure 1.
 OV-2 is intended to track the need to exchange in-

formation from specific operational nodes that play a key
role in the architecture to others. OV-2 does not depict
the connectivity between the nodes.
 OV-3 (Operational Information Interchange Matrix)

This view expresses the relationship between the three
basic architecture data elements of an OV (operational
activities, operational nodes, and information flow) in the
form of an Excel spreadsheet, with a focus on the spe-
cific aspects of the information flow and the information
content. This view is not provided in this paper, since it
is somewhat redundant to the information included in the
OV-2 and OV-5 diagrams.
 OV-4 (Organizational Relationships Chart) This

view clarifies the various relationships that can exist be-
tween organizations and sub-organizations within the
architecture and between internal and external organiza-
tions. Relevant organizations are the elevator service
company, the company that built and installed the opera-
tor, the elevator inspector, the building management
company, tenants, and, although informal, the organiza-
tion of elevator users. This view is not provided in this
paper, since it has been superceded by a new, somewhat
confidential, contractual relationship that was developed
as part of the analysis that was performed as a result of
this study.
 OV-5 (Operational Activity Diagrams) The dia-

grams provided in this view represents the various activi-
ties that are performed by major components of the ele-

vator management system. It is intended to do the fol-
lowing:
 Clearly delineate the lines of responsibility for ac-

tivities when coupled with OV-2
 Uncover unnecessary operational control activity

redundancy
 Make decisions about streamlining, combining, or

omitting activities
 Define or flag issues, opportunities, or operational

activities and their interactions (information flows among
the activities) that need to be scrutinized further
 Provide a necessary foundation for depicting activ-

ity sequencing and timing in OV-6a, OV-6b, and OV-6c
In Telelogic’s implementation of System Architect for

DoDAF, three distinct OV-5 diagrams are created: an
“Operational Activity Model Node Tree,” a top-level
“Node Activity Diagram,” and a child-level “Node Ac-
tivity Diagram.” Each of these diagrams is discussed in
detail. The methodology used in this diagram in System
Architect is known as IDEF0, which is used to reflect
data flows. The acronym IDEF stands for Integrated
Computer-Aided Manufacturing (ICAM) DEFinition.

The Operational Activity Model Node Tree Diagram
indicates the major components of the elevator manage-
ment system: human operation; elevator car operation;
remote monitoring operation; security system operation,
alarm system operation, and the phone system The tree
structure indicates the major operational activity de-
pendencies and their relation to the primary operational
activity-management of the elevator’s operation. For
simplicity, only a few of the child nodes are shown in
Figure 3.

For each of the nodes in an operational activity dia-
gram, a set of operations is allowed. We show a few of
these in Figure 4, where we have presented an ICOM
diagram. The acronym ICOM stands for Input Control
Output Mechanism. Arrows for a few of each of these
four types of interactions are shown in clockwise order,
beginning at the left hand side of the highest level opera-
tional activity named “Manage elevator” in Figure 4.
 OV-6 (Operational Activity Sequence and Timing

Descriptions) OV products discussed previously model
the static structure of the architecture elements and their
relationships. Many of the critical characteristics of a
software architecture are only discovered when the dy-
namic behavior of these elements is modeled to incorpo-
rate sequencing and timing aspects of the architecture.
Three standard types of sequence diagrams are in com-
mon use: Operational Rules Model (OV-6a), Operational
State Transition Description (OV-6b), and Operational
Event-Trace Description (OV-6c). Since our analysis of
the failure data indicated that timing considerations did
not appear to be a problem, these views are not discussed
in this paper.

Experiences Analyzing Faults in a Hybrid Distributed System with Access Only to Sanitized Data

Copyright © 2010 SciRes. JSEA

450

Figure 3. An OV-5 Operational Activity Diagram, showing parent and some of the child nodes

4. Relevant Non-Technical Issues

Elevators such as the ones described here are complex,
far more so than one that might be found in, say, an ex-
pensive city townhouse. Therefore, the number of com-
panies who can handle this type of installation is rela-
tively limited to large companies with sufficiently large
service staffs that can provide service at any time of the
day or night.

It is common practice, but not uniformly guaranteed,
that the company that performed the initial installation
may not be given the service maintenance contracts once
an initial warrantee period has expired. In order to pro-
tect confidentiality farther, we will always refer to two
separate companies in this paper, although that may or
may not be accurate in this particular situation, with the
possibility that all service work was performed by a sin-
gle company.

Figure 4. An OV-5 diagram showing an operational activity
with ICOM arrows

To insure income streams, elevator service companies
strongly prefer long-term service contracts. On the other
hand, once the service contract is in hand, there is an
incentive to not provide service beyond what is needed to
maintain minimal operational service. Fortunately, safety
is never ignored by any reputable elevator manufacturing
or service company. Elevator safety systems are highly
redundant; their designs resemble a multi-version pro-
gramming scheme [2] with constant rollback states [5].

Of course, there are political issues about who pays for
repairs beyond what is covered by these maintenance
contracts, and who monitors the availability of the repairs
of items not covered by these maintenance contracts.
These issues suggest a somewhat adversarial relationship
between customer and the elevator service company,
especially if major repairs are anticipated. Independent
analysis of faults by consultants is often of use. However,
the dearth of companies with sufficient expertise to
maintain elevator systems of this complexity encourages
all parties to work together.

There are several sources of information that extend
beyond the database discussed later. Either the building’s
manager or engineer, or both have been present during
most of the elevator service calls during the period being
examined. They have indicated verbally that some faults
requiring service calls may have been caused by envi-
ronmental conditions affecting microprocessors.

It is conceivable that some other problems may have
been caused by interference with control microprocessors
in individual elevator cars or near the hall buttons by cell
phones. The elevators are over twenty years old and the
design of the original shielding may not have considered
the potential for cell phone interference.

There is one other non-technical issue that affects the
analysis of the problem. It is conceivable that in certain

alarm

Experiences Analyzing Faults in a Hybrid Distributed System with Access Only to Sanitized Data

Copyright © 2010 SciRes. JSEA

451

instances, data in the aforementioned company’s pro-
prietary database of service calls may provide some con-
fidential information about failures of certain compo-
nents. That might give some competitors an unfair ad-
vantage when bidding for maintenance or major upgrade
contracts. This information must be kept within the secu-
rity standards of the company. Hence, such data is sani-
tized considerably before release to anyone not employed
by the company.

5. Current System Status

In Figure 5, we illustrate the availability of the individ-
ual elevators for service during a period of one year. The
period shown was ended before the analysis described in
this paper was undertaken. Of course, these percentages,
while high, are never high enough for the elevator user
who might be stuck in an elevator. The low availability
of the first elevator is clearly a cause for concern.

The graph shows real data, but information on specific
elevators has been deleted to preserve sensitive proprie-
tary information. The diagrams are screen dumps taken
directly from the elevator company’s website.

While it is difficult to appreciate the differences be-
tween the percentages indicated, simple arithmetic shows
that an elevator with an availability of 98.49% causes
difficulty for its users 5½ days per year on average. Even
the elevator with the highest availability was out of
commission over ¾ of a day per year, on average.

Data for individual elevators was available for further
analysis during the same reporting period. The results by
month for the first elevator (the one most troublesome in
Figure 5) are shown in Figure 6. Note that there was a
wide range in availability of this particular elevator,

which was the most troublesome of the elevators consid-
ered. Also, some of the other elevators had the desired
100% availability for multiple months.

Data for the other elevators has been omitted to save
space.

It is important to understand the meaning of the data
illustrated in Figures 5 and 6. A lack of availability
might mean that a unit could not stop on a particular
floor, that a hall button might not call the elevator unless
it was pushed several times, or that a security code
needed to be entered from a central location in the build-
ing. It did not mean that the elevator car was in any dan-
ger of falling. This does not happen on modern fail-safe
elevators.

6. Analysis

In addition to the overall data on availability of the ele-
vators during a one-year period illustrated in Figure 5
and the monthly report for the same year, illustrated in
Figure 6, data on this complex system were collected by
the elevator maintenance company over an approxi-
mately nine-month period. There were a total of 74 ser-
vice visits during that nine-month period. The results of
each visit were entered into the company’s service data-
base, which is in the form of a Microsoft Excel spread-
sheet. Since a spreadsheet normally contains less infor-
mation than a database, and is less easily queried, data
analysis is somewhat limited.

Initially, there was little concern about the discrepancy
between the nine-month period of the service visits and
the yearly data reported in Figures 5 and 6. This omis-
sion slowed down the analysis considerably, because it
could have pointed out one of the most serious problems

Figure 5. Percentage of availability of operation of the elevators during a recent one-year period

P
er

ce
n

ta
ge

 U
p

 T
im

e

Experiences Analyzing Faults in a Hybrid Distributed System with Access Only to Sanitized Data

Copyright © 2010 SciRes. JSEA

452

Figure 6. Percentage of availability of operation by month for the most troublesome elevator during a recent one-year period

immediately, had it been fully understood.

The entries in the database that, apparently, triggered
the technician’s maintenance service call are not very
illuminating from the perspective of providing insight
into computer faults. The categories indicated are limited
to the following:
 Door_performance
 Checked/adjusted elevator operation and phone
 Maintenance on controller/mr_equipment
 Ropes
 Motor_generator
 General_maintenance_procedure
 Brake_elevator
 Hall_buttons
 Door operation/car doors
 Maintnance_on_car_door/operator/car_top/emg_

light
There were other views of this data that were some-

what more informative. One was a listing of 43 of the 74
service calls on which specific items that needed to be
repaired or replaced were identified in more detail. These
specific items could be classified as follows in this list-
ing:
 There were 28 issues that required mechanical re-

pairs.
 There were 12 issues that required the replacement

of one or more specific mechanical parts.
 There were 5 issues that required computer hard-

ware repairs.

 There were 2 issues that required computer software
repairs.

In this listing, a few of the 43 service calls in which
specific items that needed to be repaired or replaced were
identified had multiple items, accounting for the 47 items
described in the above list.

It is now obvious that there are discrepancies between
the entries in the database of actions (repairs, replace-
ments, hardware-specific repairs, software-specific re-
pairs), the number of service calls, and, to some degree,
the periods of unavailability of the elevators. It is natural
to ask why there are such discrepancies.

One possibility that could be eliminated readily in the
analysis of this data is the possibility of the elevator ser-
vice company cutting corners. The elevators were under
a long-term maintenance contract and, under the terms of
the service contract, any unresolved issues would result
in an additional service call to the elevator service com-
pany. Since the service calls required transportation of
service personnel, it was in the elevator service com-
pany’s best interest to minimize unnecessary extra travel
trips. Hence, this possibility was rejected.

The elevator company’s central dispatch office as-
signed technicians when faults were either detected or
called in. Because of the redundancy in each of the ele-
vator banks, service calls received lower priority in the
dispatch office than locations with a single elevator. Oc-
casionally, junior technicians were dispatched. For these
reasons, it was felt that a statistical distribution of the
time to fix problems would not produce more meaningful

Experiences Analyzing Faults in a Hybrid Distributed System with Access Only to Sanitized Data

Copyright © 2010 SciRes. JSEA

453

data than simply reporting aggregated outages times.
It is clear that the entries in the technician’s database

(door_performance, hall buttons, checked/adjusted ele-
vator_operation and phone, ropes, etc.) were restricted to
match certain pre-defined categories. Thus, it is reason-
able to assume that they might not provide much infor-
mation on specific failures, especially for hardware and
software failures.

When examining the discrepancies, it was noted that
the time period were different. One set of data was for a
nine-month period, while the other was for one year. It
was important to know if the discrepancy was due to the
way the elevator service company sanitized the data, or
to the way data was collected. In particular, if the dis-
crepancy was due to a problem data collection process,
what caused this failure and did the result of this failure
cause a cascade of related faults?

The explanation for this discrepancy was quite simple.
Both the company’s database and what we have called
the secondary listing of which specific items that needed
to be repaired or replaced were accurate, but did not
show the failures at the times they were noted by human
users and monitors. The data from the technician’s ser-
vice call database was accurate and reflected what was
actually done (even though the codes were not always
very helpful).

What happened is that the remote monitoring of what
is called the “health and safety” of the elevators via the
communications path between the elevator microproces-
sors had not been activated during the entire period. Re-
initializing this communication allows microprocessors
to be reset automatically if there were failures, providing
much higher tolerance of hardware and software faults,
thereby increasing availability.

How was it determined that the remote monitoring of
elevator status was not working? (It was not clear from
the documentation provided to the building – the cus-
tomer – that there even was remote monitoring.) The
information was obtained from the elevator company’s
newly appointed service manager, who gracefully pro-
vided access to the data.

A follow-up interview with the building manager of
the building complex indicated another potential expla-
nation for what had seemed to be an overly large number
of microprocessor errors that required either resets or
hardware replacement. The cleaning fluid used to clean
the surfaces of both the in-elevator control panels and the
much simpler hall buttons in several cases had seeped
behind the decorative plates and caused electrical shorts.
A simple change in the cleaning procedures reduced the
number of observed faults.

The two actions–enabling the remote monitoring of
microprocessor status and enacting new procedures for
cleaning – caused a great reduction in faults, with almost
no down time when failures did occur as a result of these

remaining faults.

7. Conclusions and Suggestions for Future
Work

Obviously, this was an unusual situation when compared
to what is typically studied in the fault tolerance research
and community. However, it may be more relevant to the
practitioners of fault tolerance who are faced with solv-
ing a real-world problem.

The following techniques were especially useful in
helping to determine the root causes of faults that led to
system failures:
 While nearly all the reports in the maintenance ser-

vice databases used pre-defined categories that, at first
glance had little useful information, more detailed analy-
sis indicated certain commonalities of faults.
 Interviews with knowledgeable people, such as the

building’s manager and the elevator service company’s
service manager, led to information that resulted in new
policies (for keeping cleaning fluids and gels away from
the microprocessors) and the proper use of the remote
monitoring system.
 Unwritten information was useful, such as the exis-

tence of the remote monitoring database and the possibil-
ity of viewing this database by persons who are not em-
ployees of the elevator service company.
 Reasoning about missing things, such as the miss-

ing months in two different views of the maintenance
database, led to an understanding of a major lapse in the
use of the remote monitoring system.

It is likely that many of the lessons learned in this
analysis can be useful to practitioners of fault tolerance
who are faced with similar problems with the data avail-
able to them.

REFERENCES
[1] Unnamed elevator company, Unnamed Service Database,

2008.

[2] A. Avizienis and J. P. Kelly, “Fault Tolerance by Design
Diversity: Concepts and Experiments,” IEEE Computer,
Vol. 17, No. 8, August 1984, pp. 67-80.

[3] B. Randell, “System Structure for Software Fault Tole-
rance,” IEEE Transactions on Software Engineering, Vol.
11, No. 2, June 1975, pp. 220-232.

[4] R. Amuthakkannan, S. M. Kannan, K. Vijayalakshmi and
N. Ramaraj, “Reliability Analysis of Programmable
Mechatronics System Using Bayesian Approach,” Intern-
ational Journal of Industrial and Systems Engineering,
Vol. 4, No. 3, 2009, pp. 303-325.

[5] V. Dhudsia, “Guidelines for Equipment Reliability,”
Technical Publication, Sematech, Inc, 1997. http://www.
sematech.org/docubase/document/1014agen.pdf

[6] G. K. Fourlas, “An Approach towards Fault Tolerant
Hybrid Control Systems,” Control & Automation Mediter-

Experiences Analyzing Faults in a Hybrid Distributed System with Access Only to Sanitized Data

Copyright © 2010 SciRes. JSEA

454

ranean Conference on MED, Corsica, 27-29 June 2007, pp.
1-6.

[7] J. D. Musa, A. Iannino and K. Okumoto, “Software Relia-
bility: Measurement, Prediction, Application,” Mc-Graw-
Hill, Inc. New York, 1987.

[8] R. Isermann, “Mechatronic Systems Fundamentals,”
Springer, London. 2003.

[9] K. Lee, K. C. Kang, E. Koh, W. Chae, B. Kim and B. W.
Choi, “Domain-Oriented Engineering of Elevator Control
Software: A Product Line Practice,” Proceedings of the
First Software Product Line Conference, Denver, August
2000, pp. 3-22.

[10] “Facility System Safety Guidebook,” NASA-STD-8719.7,

National Aeronautics and Space Administration, 1996.

[11] “The use of Computers in Safety Critical Operations,”
Final Report of the Study Group on the Safety of Ope-
rational Computer Operations, Health and Safety
Commission, UK. http://www.hse.gov.uk/nuclear/compu
ters.pdf

[12] N. Leveson, “Software Safety: Why, What, and How,”
ACM Computing Surveys, Vol. 18, No. 2, June 1986, pp.
125-163.

[13] D. E. Knuth, “Fundamental Algorithms,” The Art of Com-
puter Programming, 3rd Edition, Addison-Wesley, Read-
ing, Massachusetts, Vol. 1, 1973.

J. Software Engineering & Applications, 2010, 3: 455-459
doi:10.4236/jsea.2010.35051 Published Online May 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

Variability-Based Models for Testability Analysis
of Frameworks

Divya Ranjan1, Anil Kumar Tripathi2

1Dept. of Computer Science, Faculty of Science, Banaras Hindu University, Varanasi, India; 2Dept. of Computer Engineering, Institute
of Technology, Banaras Hindu University, Varanasi, India.
Email: ranjan_divya@yahoo.co.in, aktripathi.cse@itbhu.ac.in

Received March 20th, 2010; revised April 3rd, 2010; accepted April 5th, 2010.

ABSTRACT

Frameworks are developed to capture the recurring design practices in terms of skeletons of software subsystems/
systems. They are designed ‘abstract’ and ‘incomplete’ and are designed with predefined points of variability, known as
hot spots, to be customized later at the time of framework reuse. Frameworks are reusable entities thus demand stricter
and rigorous testing in comparison to one-time use application. It would be advisable to guaranty the production of high
quality frameworks without incurring heavy costs for their rigorous testing. The overall cost of framework development
may be reduced by designing frameworks with high testability. This paper aims at discussing various metric models for
testability analysis of frameworks in an attempt to having quantitative data on testability to be used to plan and monitor
framework testing activities so that the framework testing effort and hence the overall framework development effort may
be brought down. The models considered herein particularly consider that frameworks are inherently abstract and
variable in nature.

Keywords: Object-Oriented Frameworks, Variability, Customizability and Testability

1. Introduction

Frameworks represent semi-codes for defining and im-
plementing time-tested highly reusable architectural
skeleton design experiences and hence become very use-
ful in development of software applications and systems.
As per Gamma et al. [1], famous in reuse literature as GoF,
an object-oriented framework is a set of cooperating
classes that make up a reusable design for a specific class
of software which provides architectural guidance by
partitioning the design into abstract classes and defining
their responsibilities and collaborations. Being a reusable
pre-implemented architecture, a framework is designed
‘abstract’ and ‘incomplete’ and is designed with prede-
fined points of variability, known as hot spots, to be cus-
tomized later at the time of framework reuse [2]. A hot
spot contains default and empty interfaces, known as hook
methods, to be implemented during customization [3,4].
Applications are built from frameworks by extending or
customizing the framework, while retaining the original
design. New code is attached to the framework through
hook methods to alter the behavior of the framework.
Hook descriptions provide guidance about how and where
to perform the changes in the hook method to fulfill some
requirement within the application being developed. With

the help of hook descriptions, the framework developer
passes his knowledge about what needs to be completed or
extended in the framework, or what choices need to be
made about parts of the framework in order to develop an
application using the framework to framework users so
that user is able to easily understand and use the hook.
During framework reuse, the variant implementations of
one or more hook methods, as needed, are created [5]. The
code that the framework reuser writes, in order to create
hook method implementations, is known as application
specific code or customized code.

Frameworks are developed to capture the recurring
design practices in terms of skeletons of software sub-
systems/ systems. It focuses mainly on the similarity
amongst skeletons by identifying commonalities amongst
them in terms of commonalities in the structure and
functionality exercised by the concerned structure making
use of the objects involved. It has been widely understood
that the possibilities of variations provided by the hot
spots and the corresponding hook methods etc. in the
semi-code make it possible for a framework to be reused
as extensively as permitted by the hot spots and the cor-
responding hook methods. The idea is simple that a
framework permits variations across the application/
systems and attempts to design and code the common

Variability-Based Models for Testability Analysis of Frameworks

Copyright © 2010 SciRes. JSEA

456

parts and aspects of the structure.
One has to be very careful about developing fault free

reusable frameworks because if the framework contains
defects, the defects will be passed on to the applications
developed from the framework [6]. The reusable frame-
work thus demands stricter and rigorous testing in com-
parison to one-time use application [7,8]. It would be
advisable to guaranty the production of high quality
frameworks without incurring heavy costs for rigorous
testing. This calls for analyzing testability of reusable
artifacts so as to reduce the overall cost of framework
based development.

Several techniques are specifically proposed to test
object-oriented frameworks [1,6,9-12] and their instan-
tiations [11,13-16].

There has been a little discussion upon the testability of
frameworks in literature. As per Jeon et al. [2], the four
factors that have direct influence upon framework test-
ability are: controllability, sensitivity, observability and
oracle availability. Ranjan and Tripathi [17] identified
various factors and sub factors that affect the testability of
frameworks so as to take care of those factors to bring
high testability in frameworks. As per their observations,
the factors that affect the testability of a framework are
related to the characteristics of documentation of a
framework, domain of a framework, design of a frame-
work and the test support available for the framework
testing like test tools, environments, reusable test artifacts
and built-in tests etc. The concept of built-in tests is
brought to frameworks with the intention of enhancing
their testability [2,11,12,18].

In spite of wide importance and promotion of frame-
works, over the last decades, a widely accepted set of
measures to quantify its characteristics has not been es-
tablished. Moreover, there is a complete lack of frame-
work testability metrics related studies in literature that
could produce quantitative data on testability to be used to
plan and monitor framework testing activities so that the
framework testing effort and hence the overall framework
development effort may be brought down. This paper
proposes framework testability models that consider that
frameworks are inherently abstract and variable in nature.

The paper is organized in four sections. Few important
reasons behind the need of framework testability analysis
are presented in Section 2, the proposed testability models
for software frameworks appear in Section 3 and finally
Section 4 presents conclusions.

2. Need of Framework Testability Analysis

Some obvious reasons for rigorous testability analysis of
a framework could be summarized as:

1) A testable framework ensures low testing cost and
helps in reduction of overall development cost of a
framework which has been designed and implemented as
a semi-code.

2) Frameworks are reusable entities and hence high
testability is essential. As a testable system is known to
provide increased reliability [19,20].

3) High testability brings high reusability. Many a
times a framework reuser will want to test few features to
assess its quality. If testing a framework is tough then
framework reuser will hesitate in testing and using the
framework and will seek to choose another framework or
go for development without deploying a framework.

4) To calm obvious scientific curiosity that while writ-
ing test cases for frameworks why it is tougher in some
case than the other cases or, so to say, why for one
framework we had to think very hard before we were
able to write a meaningful test suite, whereas for other
frameworks we could generate test cases in a straight-
forward way.

5) Testability holds a prominent place as part of the
maintainability characteristic in ISO 9126 quality model
ISO, 1991, so this study also increases our understanding
of software quality in general [21].

6) Framework testability analysis creates a base for
formulating the strategy for designing highly testable
frameworks i.e. framework design for test (FDFT).

3. Testability Models Considering Abstract
and Variable Nature of the Frameworks

This section aims at discussing various metric models for
testability analysis of software frameworks that consider
that frameworks are inherently abstract and variable in
nature and thereby they provide opportunity to develop
multiple applications with its reuse.

3.1 A Testability Model Considering the
Diversity/Commonality of Applications that
the Framework Represents

Frameworks represent a set of applications that share
commonalities. During design of a framework, the com-
mon aspects are concretely defined and are known as
fixed spots whereas the variable aspects are designed
abstract and are known as hot spots. This may not always
be easy to work out a framework definition in terms of
the variable aspects that it is going to deal with. However
a crude measure may suggest that as many would be the
variable aspects that difficult its testing is likely to be.
Thus,

TEFr = f(Variable Aspect Fraction) (1)

where,

Var

Var Com

Aspects
Variable Aspect Fraction

Aspects Aspects



(2)

VarAspects = Variable aspects in a framework;

ComAspects = Common aspects in a framework;

By variable aspect fraction, we mean the ratio of vari-

Variability-Based Models for Testability Analysis of Frameworks

Copyright © 2010 SciRes. JSEA

457

able aspects with respect to common aspects in the fra-
mework.

This fraction may be calculated before the design of
the framework to get an idea whether the candidate
framework will be testable or not.

1
FrTb

Variable Aspect Fraction
 (3)

This model is a preliminary one which just gives the
idea of testability of frameworks before proceeding for
its design. The next models give the idea of testability
after a framework is coded or at least designed.

3.2 A Testability Model Considering Variability
in terms of Hook Methods Provided by the
Frameworks

Only an idea can be formed about the testability of the
candidate framework through the above model. It can
better be judged once the design of the framework is
ready in terms of hot spots and the constituent hook
methods. Hot spots consist of hook methods which rep-
resent points of variability by providing the calling inter-
face to variable tasks [22]. Variability is number of pos-
sible variant implementations of framework’s abstract
behaviors. The variability within the family of architec-
tural skeletons is constituted into the hot spots of a
framework [4]. It is variability that makes one instantia-
tion of the framework different from others [22].

Variability of a framework may be determined by
summing up the measures of variability of each hot spot
in the framework. The variability of a hot spot depends
upon the number of possible alternative implementations
of each its constituent hook methods.

We, thus, can express variability of a framework as
below:

 
 
















Hotspots

i

HMi

j

IHMijFr

N N
NVAR

1 1

 (4)

where,
FrVAR = Variability of a framework;

HotspotsN = Total number of hot spots in the framework;
HMiN = Total number of hook methods in i th hot spot;
IHMijN = Total number of possible implementations

of j th hook method in i th hot spot;
A discussion that the variability how affects testability

of frameworks appears in [17]. Testing a framework re-
quires testing possible implementations [6]. Hence, more
the variability of a framework more the testing effort is
required. We can write,

FrFr VARTE  (5)

Therefore, combining (4) and (5), testability of a
framework is:

 
 
















Hotspots

i

HMi

j

IHMij

Fr
N N

N

Tb

1 1

1 (6)

The testability of frameworks, thus, is inversely pro-
portional to the total number of possible implementations
of all hook methods in all hot spots. Alternatively, more
the number of possible implementations of hook methods,
more the effort is required for the testing of the frame-
work.

Further, while calculating testing effort we find that
certain variations require less effort in their implementa-
tions and thus incur lesser share in testing effort. The
above model does not take this aspect into consideration
and thus a stronger model is required. The next testability
model which is based on the customizability of the
framework is a stronger model than the present one, as it
also considers the effort required for implementing vari-
ants of hook methods.

3.3 A Testability Model Considering
Customizability of Hook Methods
Provided by the Frameworks

Framework is customized by framework reusers to create
concrete application software systems. The customizabil-
ity of a framework may be interpreted by knowing how
easy it is to customize (tailor) the framework. A frame-
work is customized either by sub-classing (in case of
white-box frameworks) or by composing preexisting
components (in case of black-box frameworks). A test-
able framework should be highly customizable so that
during testing of the framework various instantiations
can be easily produced and subsequently tested. A dis-
cussion that the customizability how affects testability of
frameworks appears in [17]. The customization of a hook
method may require following:

1) Changing some object or method by the means of
the mechanisms like inheritance, extensions, configura-
tion, parameterization, template instantiation etc. [23].
What changes to make is defined in the changes section
of a hook method description and

2) Making assumptions regarding other objects or
methods and understanding the assumptions that other
objects or methods have to make regarding this hook
method. What assumptions are to make is defined in the
pre-condition constraints¸ post-condition constraints,
uses and participants sections of a hook method descrip-
tion.

Thus, we may express Customization Effort (CE) re-
quired for implementing a variant of a hook method, as
below:





AssumpChanges N

i

i

N

i

i loadAssumptionloadChangeCE
11

ImHM __ (7)

Variability-Based Models for Testability Analysis of Frameworks

Copyright © 2010 SciRes. JSEA

458

Table 1. Applicability/intention of the proposed framework testability metric models

S.No Category
Framework Testability Metric

Model
Applicability of the Model

1.
Testability models considering
abstract and variable nature of

frameworks

Testability Model Considering the
Diversity/Commonality of Applica-
tions that the Framework Represents

To have an idea about framework testability even
before starting the design of framework.

2. -- do--
Testability Model Considering

Variability in terms of Hook Methods
provided by the Frameworks

When framework variability is prominent during
design and development.

3. -- do--
Testability Model Considering Cus-
tomizability of Hook Methods pro-

vided by the Frameworks

When framework customizability is prominent
during design and development.

where,

ImHMCE = Customization Effort required for imple-
menting a variant of a hook method (HM);

ChangesN = Number of changes to be made in some
object or method during implementation of the hook
method;

iloadChange _ = Heaviness of i th change;

AssumpN = Number of assumptions involved regarding
objects and their interactions;

iloadAssumption _ = Heaviness of i th assumption;

It is for sure that in Equation (7) 


ChangesN

i

iloadChange
1

_ as

well as 


AssumpN

i

iloadAssumption
1

_ will never be zero because

customizing a hook method would require at least one
change and involve assumptions regarding at least one
participant.

Further the CE of one hook method, which consists of
customizing or implementing all its possible variants,
may be defined as following

1

IH M i

i

N
H M Im H M

i
C E C E


  (8)

where,
HMCE = Customization Effort (CE) for a hook method;

IHMiN = Total number of possible implementations
for the hook method;

ImHMiCE = CE required for i th implementation of the
hook method;

Now we will consider the CE of the framework itself.
It would consist of the CE of all the hook methods of all
the hot spots. This relation can be expressed as follows:

1 1 1

Hotspots ijHMi

ijk

IHM

Fr ImHM
i j k

N NN
CE CE

  

  
        

 (9)

where,
ijkImHMCE = Customization Effort for implementing k th

variant of j th hook method of i th hot spot;
ijIHMN = Total number of possible implementations of

j th hook method in the i th hot spot of the framework;
HMiN = Number of hook methods in i th hot spot of the

framework;
HotspotsN = Total number of hot spots in the framework;

Since, the testing effort of the framework depends
upon the customization effort of the framework. So, we
can get the framework testability model based on the
customizability of framework, from Equation (9) as be-
low:

1 1 1

1
Hotspots ijHMi

i jk

Fr
IHM

ImHM
i j k

Tb
N NN

CE
  


  

       

 (10)

Each of these testability metric models has different
intention or applicability which is discussed in the table
(Table 1) below, however, more than one model may
also be employed at the same time.

4. Conclusions

It is mainly the incomplete and abstract nature of
frameworks that makes it difficult to test than an ob-
ject-oriented software system. In the present paper we
proposed few preliminary framework testability models
that consider that frameworks are inherently abstract and
variable in nature. These models could produce quantita-
tive data on testability to be used to plan and monitor
framework testing activities so that the framework testing
effort and hence the overall framework development
effort may be brought down. Authors found a complete
lack of framework testability metrics related studies in
literature.

Variability-Based Models for Testability Analysis of Frameworks

Copyright © 2010 SciRes. JSEA

459

REFERENCES
[1] E. Gamma, R. Helm, R. Johnson and J. M. Vlissides,

“Design Patterns: Elements of Reusable Object-oriented
Software,” Addison-Wesley Professional Computing
Series, 1994.

[2] T. Jeon, S. Lee and H. Seung, “Increasing the Testability
of Object-oriented Frameworks with Built-in Tests,”
Lecture Notes in Computer Science, Vol. 2402, January
2002, pp. 873-881.

[3] G. Froehlich, H. J. Hoover, L. Liu and P. Sorenson,
“Designing Object-oriented Frameworks,” CRC Hand-
book of Object Technology, CRC Press, 1998, pp. (25)1-
21.

[4] W. Pree, “Design Patterns for Object-oriented Software
Development,” Addison-Wesley, 1995.

[5] H. A. Schmidt, “Systematic Framework Design by
Generalization,” Communications of the ACM, Vol. 40,
No. 10, October 1997, pp. 48-51.

[6] J. Al-Dallal and P. Sorenson, “System testing for
Object-oriented Frameworks Using Hook Technology,”
Proceedings of the 17th IEEE International Conference on
Automated Software Engineering, Edinburgh, September
2002, pp. 231-236.

[7] J. S. Poulin and J. M. Caruso, “Determining the Value of a
Corporate Reuse Program,” Proceedings of the IEEE
Computer Society International Software Metrics Sym-
posium, Baltimore, May 1993, pp. 16-27.

[8] E. J. Weyuker, “Testing Component-based Software: a
Cautionary Tale,” IEEE Software, Vol. 15, No. 5, Septem-
ber 1998, pp. 54-59.

[9] R. V. Binder, “Testing Object-oriented Systems: Models,
Patterns, and Tools,” Addison-Wesley Professional, 1999.

[10] M. E. Fayad and D. C. Schmidt, “Object-oriented Appli-
cation Frameworks,” Communications of the ACM, Vol.
40, No. 10, October 1997, pp. 32-38.

[11] Y. Wang, D. Patel, G. King, I. Court, G. Staples, M. Ross
and M. Fayad, “On Built-in Test Reuse in Object-oriented
Framework Design,” ACM Computing Surveys, Vol. 32,
No. 1, March 2000, pp. 7-12.

[12] T. Jeon, H. W. Seung and S. Lee, “Embedding Built-in
Tests in Hot Spots of an Object-oriented Framework,”

ACM Sigplan Notices, Vol. 37, No. 8, August 2002, pp.
25-34.

[13] J. Al-Dallal and P. Sorenson, “Estimating the Coverage of
the Framework Application Reusable Cluster-based Test
Cases,” Information and Software Technology, Vol. 50,
No. 6, May 2008, pp. 595-604.

[14] J. Al-Dallal and P. Sorenson, “Reusing Class-based Test
Cases for Testing Object-oriented Framework Interface
Classes,” Journal of Software Maintenance and Evolution:
Research and Practice, Vol. 17, No. 3, May 2005, pp. 169-
196.

[15] J. Al-Dallal and P. Sorenson, “Testing Software Assets of
Framework-based Product Families During Application
Engineering Stage,” Journal of Software, Vol. 3, No. 5,
May 2008, pp. 11-25.

[16] W. Tsai, Y. Tu, W. Shao and E. Ebner,“Testing Extensible
Design Patterns in Object-oriented Frameworks Through
Scenario Templates,” Proceeding of 23rd Annual Interna-
tional Computer Software and Applications Conference,
Phoenix, October 1999, pp. 166-171.

[17] D. Ranjan and A. K. Tripathi, “Testability Analysis of
Object-oriented Frameworks,” The Journal of Defense So-
ftware Engineering.

[18] M. E. Fayad, Y. Wang and G. King, “Built-in test reuse,”
In: M. E. Fayad, et al., Ed., The Building Application
Frameworks, John Wiley and Sons, 1999, pp.488-491.

[19] R. V. Binder, “Design for Testability in Object-oriented
Systems,” Communications of the ACM, Vol. 37, No. 9,
September 1994, pp. 87-101.

[20] J. M. Voas and K.W. Miller, “Software Testability: the
New Verification,” IEEE Software, Vol. 12, No. 3, May
1995, pp. 17-28.

[21] “Software Engineering-Product Quality,” ISO/IEC 9126,
2001.

[22] G. Succi, A. Valerio, T. Vernazza, M. Fenaroli and P.
Predonzani, “Framework Extraction with Domain Ana-
lysis,” ACM Computing Surveys, Vol. 32, No. 1, March
2000.

[23] G. Butler, “Object-oriented Frameworks,” 15th European
Conference on Object-Oriented Programming, Tutorial
Budapest, 2001.

J. Software Engineering & Applications, 2010, 3: 460-471
doi:10.4236/jsea.2010.35052 Published Online May 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

A Conflicts Detection Approach for Merging
Formal Specification Views

Fathi Taibi1, Fouad Mohammed Abbou2, Md. Jahangir Alam2

1University of Tun Abdul Razak, Malaysia; 2Multimedia University, Malaysia.
Email: 1taibi@unitar.edu.my, {fouad, md.jahangir.alam}@mmu.edu.my

Received April 20th, 2009; revised June 2nd, 2009; accepted June 10th, 2009.

ABSTRACT

Specifying software requirements is an important, complicated and error prone task. It involves the collaboration of
several people specifying requirements that are gathered through several stakeholders. During this process, developers
working in parallel introduce and make modifications to requirements until reaching a specification that satisfies the
stakeholders’ requirements. Merge conflicts are inevitable when integrating the modifications made by different
developers to a shared specification. Thus, detecting and resolving these conflicts is critical to ensure a consistent
resulting specification. A conflicts detection approach for merging Object-Oriented formal specifications is proposed in
this paper. Conflicts are classified, formally defined and detected based on the results of a proposed differencing
algorithm. The proposed approach has been empirically evaluated, and the experimental results are discussed in this
paper.

Keywords: Formal Specification, Object-Oriented, Collaboration, Merge Conflicts, Consistency

1. Introduction

The development of large-scale software systems requires
the collaboration [1] of hundreds of developers working
on different aspects of the same system. Often, this leads
to the creation of different but related documents. These
documents (views) could be in the form of design models,
software specifications, source code, etc. During a par-
ticular collaborative activity, a resulting local view needs
to be merged [2] with the version of the document avail-
able in a shared repository. The latter shared document
encloses all the modifications made locally and checked
(integrated) into the repository at that point in time. A
merging approach must integrate the changes made and
must ensure that the merging result is consistent by de-
tecting and resolving merge conflicts [3].

Specifying software requirements is an important,
complicated and error prone task that involves the col-
laboration of several peopled specifying requirements that
are gathered through several stakeholders. Studies have
shown that most of the problems with software projects
such as not meeting the needs of stakeholders, late deliv-
ery and budget overrun can be traced back to problems
with the requirements [4].

Merging requirements specified informally is unprac-
tical, inefficient, error prone, and time consuming due to

the ambiguous and imprecise nature of natural languages
and most of the graphical notations used. Formal methods
[5] offer a better alternative because of their precise and
accurate nature. Object-Oriented (OO) formal methods,
such as Object-Z [6], combine the strengths of two worlds:
the world of formal languages and the world of OO
methods. When used to specify software requirements,
they produce specifications that are precise, clear, and
highly reusable. Thus, making them suitable to be used
when developing specifications collaboratively why they
can be manipulated systematically.

Conflicts detection requires the calculation of the
delta(s) representing the modifications made locally
compared to a shared view. Analyzing these deltas allows
the detection of conflicts before integrating their content
with the shared view. Rules could be formally defined for
these conflicts to uniformly detect different type of viola-
tions such as those concerned with the loss of update, the
well formedness of the view, the avoidance of all kind of
redundancies, etc.

Efficient merging frameworks support collaboration
and distributed development, and when used at an early
phase of the software development such as when speci-
fying software requirements, they enable detecting con-
flicts that will cost higher to detect and resolve during
later stages of development.

A Conflicts Detection Approach for Merging Formal Specification Views

Copyright © 2010 SciRes. JSEA

461

Employing unique identifiers for the elements of the
merged documents, such as in [7], introduce tool de-
pendency. The latter term refers to approaches that are
dependent on the tools used to create and modify the
documents to be merged. In order to support the tool in-
dependence requirement [8], merging should not rely on
elements’ unique identifiers. Thus, a differencing ap-
proach is needed to produce a list of the created/deleted
and modified elements as well as the created/modified
relationships (or links) between the elements of the
specifications. Differencing two specifications should be
based their computed similarities (matches). The simi-
larities between the elements of two specifications could
be calculated accurately based on syntactic as well as
structural similarity.

Several existing work on model differencing and ver-
sion control such as CVS [9] adopts line-based (textual)
management. Textual merging tools have been used to
some extend in industry, and in [10] it has been reported
that around 90% of the changed file could be merged
without any problem. However, the remaining changes
cannot be merged automatically because there is no con-
sideration to the syntactic or semantic information of the
files. In order to manage the changes of specifications
there is a need to work at the granularity of a logical unit
component such as a class rather than at the granularity of
a line. Moreover, textual merging can only detect very
basic conflicts, as it does not take into account the specific
structure of the processed documents. Furthermore, it
gives rise to unimportant conflicts [11] such as code
comments that have been modified, line breaks, etc. Thus,
transforming specifications into a textual format used by
existing tools cannot solve the problem of merging
specifications.

Most of existing merging approaches process the ma-
nipulated documents as trees, which is restrictive and not
applicable to a large number of documents including
software requirements specifications. Moreover, most of
the surveyed approaches are inadequate for merging
specifications due to their limitations in uniformly defin-
ing conflicts, and accurately detecting and resolving them.
The domain independent approaches surveyed lack ac-
curacy when used to merge specifications, and to our
knowledge, there is no existing merging approach in-
tended specifically for Object-Oriented formal specifica-
tions.

In this paper, an approach is proposed to detect and
resolve conflicts when merging OO formal specifications.
The approach comprises three parts. The first part consists
of comparing specifications to produce deltas differenti-
ating them. The second part consist of integrating
(merging) the deltas into a shared specification and the
third part consists of checking the deltas against defined
consistency rules to detect and resolve any consistency
violations that might arise during merging. Collaborative

formal specification is discussed in the next section. This
is followed by proposing an algorithm for differencing
OO formal specifications. After that, an approach for
detecting and resolving merge conflicts is discussed. Then,
the proposed approach is empirically evaluated. This is
followed by discussing related work and the last section
concludes the paper and discusses future work.

2. Collaborative Development of Formal
Specifications

Software development is a collaborative activity as it
involves several people working on different aspects of
the same software project. Most often, collaboration is the
key to the success of a software project. During the
specification of software requirements, developers work-
ing in parallel add, remove, and modify requirements until
reaching a description of the system (or subsystem) that
satisfies the stakeholders’ requirements. This collabora-
tive nature raises the needs for frameworks to support the
merging of software specifications.

Asynchronous collaboration allows members of a
group to modify copies of a shared specification in isola-
tion, working in parallel and afterwards synchronizing
their copies to reestablish a common view. This gives a
great deal of flexibility, and matches the needs of col-
laborative requirements specification. In such environ-
ments, three basic operations are applied on a shared
repository of specifications: check-out, modify, and
check-in. The check-out operation consists of importing a
copy of the latest version (for example at time t0) of a
shared specification (SBase) from the repository in order to
perform some modifications on it. These modifications
represent new requirements that have yet to be specified
or different views on the requirements that have already
been specified. The modifications made lead to the crea-
tion of a new version SLocal of the shared specification SBase.
Check-out is not applicable to the first developer creating
the first version of a given specification and checking it
into the repository. However, later on, he/she can perform
a check-out operation to make any new changes if needed.
In case at time t1 (t1> t0), the shared specification has
evolved into a new version SRep after undergoing some
changes made by a different developer. The check-in
operation consists of merging the local and shared ver-
sions of the specification in case of two-way merging. In
case of three-way merging, the modifications made lo-
cally need to be adjusted according to those who have
already been integrated in SRep, i.e. using two specifica-
tions (SLocal and SRep) and their ancestor (SBase) in the
merge. Integrating all the modifications made with the
base specification is possible after that. The following
figure illustrates the basic operations of this collaborative
environment:

A developer ‘X’ imports (check-out) a shared specifi-
cation (SBase) from a Specification repository. He/she

A Conflicts Detection Approach for Merging Formal Specification Views

Copyright © 2010 SciRes. JSEA

462

Figure 1. The operations supporting collaboration

performs some modifications on it locally. These modi-
fications lead to the creation of a new version (SLocal) of
the specification. For X to check-in SLocal into the speci-
fication repository, there is a need to discover the exact
modifications (delta) made. The operations contained in
this delta allow detecting the conflicts that might arise
during the merge. In case of three-way merging, there is
a need to identify the exact modifications made locally
and those that have evolved SBase into SRep because of
some parallel modifications made and integrated by a
different developer ‘Y’. In addition to the latest version
of the shared specification, a history of all the deltas ap-
plied to it is also stored in the repository. Thus,
re-obtaining SBase from which SRep originates is achieved
by reversing the effect of the last integrated delta. Using
SBase and the two deltas, a three-way merging could take
place where conflicts caused by the parallel modifica-
tions need to be detected and resolved before integrating
them.

The proposed framework incorporates three approa-
ches to perform the required tasks. The first approach
“Differentiate” is intended to differentiate between the
to-be-merged specifications. The differentiation process
involves the production of deltas containing the exact
modifications (operations) made. The latter deltas are
obtained using the computed similarities that exist be-
tween the specifications’ elements. Merging based on
differencing is referred to as operation-based merging
[11] and is efficient in case of large models as the num-
ber of operations that transform a version into another
one is statistically smaller than the number of model
elements. Furthermore, it provides a better platform for
conflicts detection and resolution. The second approach
“Merge” is intended to merge the modifications made

with the shared specification. The specification obtained
through this process must be consistent. Thus, the third
approach “Verify” is intended to detect and resolve
merge conflicts. The differencing and verifying ap-
proaches are discussed in detail in sections 3 and 4.

3. Differencing Object-Oriented Formal
Specifications

Given a basic set S of all the specifications, differencing
between two specifications S1 and S2 is the process of
identifying the exact set of operations (transformations)
that allow obtaining S2 from S1. As a motivation example,
consider the following classes representing a shared
specification, and two versions representing some paral-
lel modifications made to it by two different developers.
Object-Z notation has been used to specify the three ver-
sions.

The class Professor includes two operations New and
Affiliate that are the only elements visible outside the
class. The operation New is used to assign values to the
state attributes Id, Name and Expertise, which represents
a professor’s personal data. The operation Affiliate is
used to assign a value to the state attribute Faculty. The
classes Academician and TeachingStaff are the result of
some parallel modifications made to the class Professor
by two different developers. In the class Academician, in
addition to the class name that has been changed, the
operation Affiliate has been removed and its functionality
has been delegated to the operation New that is the only
class’ element visible. In the class TeachingStaff, in addi-
tion to the class name that has been modified, the attrib-
ute Expertise has been removed while the operations
New and Affiliate have been renamed as Add and Join
respectively. In addition, the operation New has been

A Conflicts Detection Approach for Merging Formal Specification Views

Copyright © 2010 SciRes. JSEA

463

Figure 2. Three versions of an Object-Z class

modified by removing the part dealing with the deleted
attribute Expertise.

The systematic identification of the exact differences
that exist between the class Professor and the classes
Academician and TeachingStaff respectively requires a
formal definition of the change undergone by a specifica-
tion. An algorithm to precisely compute this change can
then be developed. Table 1 shows the proposed opera-
tions defining a difference between any two given speci-
fications.

In addition to the precise and accurate representation
of a difference between two given specifications, the
above operations could also be used to represent specifi-
cations’ creation process itself. Moreover, the effect of a

delta’s operations can be inversed to obtain the old ver-
sion of a specification. This is enabled by keeping track
of old and new values (e.g. Rename and Modify), and the
complementarity that exists between insertion and dele-
tion operations, i.e. to revert the insertion of an element,
we only need to delete it and vise versa.

The insertion of a node is concerned about four major
meta-classes: Class, Variable, Operation and Predicate.
In case of OO formal specifications, the Variable meta-
class has three sub-classes. They are the Attribute (global
and state attributes) of a class, the Input and the Output
of an operation. Moreover, the Predicate meta- class has
four sub-classes. They are Invariant, Initialization, Pre-
condition and Postcondition.

Table 1. Operations for differencing specifications

Operation Effect
insertNode(e, t) Inserts a new node e where t is the node’s type. t={Class, Variable, Operation, Predicate}.

setNodeProperty(e, p, v) Assigns for the 1st time a value v to the property p of the element e.

insertLink(k, e1, e2 , t)
Creates and inserts a new link k between the elements e1 and e2 where t is the link type,

t={aggregated_by, derived_from, associated_with, declared_in, used_by}.

deleteLink(k) Removes the link k.

deleteAllLink(e) Removes all links and references associated with the element e.

deleteNode(e) Removes the node e.

Rename(e, oldname ,newname)
Renames the element e (named oldname) with newname and updates (with newname) all

references made to e in the specification.

Modify(e, p, v1, v2)
Modifies the content of e by changing the values of a set of properties p (excluding the

name) whose values are in v1 with a set of new values v2.

A Conflicts Detection Approach for Merging Formal Specification Views

Copyright © 2010 SciRes. JSEA

464

Renaming a specification’s element requires updating
all references made to it with its new name. For example,
if a variable has been renamed, this name change is
propagated to all elements that refer to this variable such
as initialization, invariant, and pre (post) condition predi-
cates. The same rule is applied when renaming classes
and operations. Removing a specification’s element re-
quires removing its associated links, and all the refer-
ences made to it as well (deleteAllLink operation). Fur-
thermore, the operation Modify applies to both specifica-
tions’ elements and links where a link’s type (p) could be
changed from v1 to v2. This reduces the number of opera-
tions in a delta by avoiding the removal of a link typed v1

and the insertion of a link typed v2. Table 2 highlights
the different attributes of the meta-classes representing
specifications’ elements:

Most of the attributes of Table 2 are self-explanatory.
However, there is a need to highlight the attributes visi-
bility and changes. Visibility is similar to public; it ap-
plies to operations, some variables as well as some
predicates. In case the visibility attribute is not applicable,
the proposed value used is “n/a”, such as in the case of
inputs and outputs as well pre and post conditions. If an
element needs to be visible outside the class the value
“yes” is used otherwise “no” is used. The default visibil-
ity in Object-Z is “no”, i.e. anything that needs to be
visible outside the class has to be explicitly included in
the visibility list. The changes attribute contains a set of
variables that are changed by an operation. In case of a
query operation, i.e. an operation that does not change
the value(s) of the class variables it manipulates, the
changes attribute is “empty”.

Differencing is concerned about three classes of
change. The insertion of elements/links, the modification
of elements’ contents, the modification of links’ types,
and the deletion of elements/links. We propose a differ-
encing algorithm that is not based on elements’ identifi-
ers but rather on matching results. Using accurate
matching results, differences between specifications can
be precisely computed. Matched elements with different
content are updates, matched elements with different
links shows adding/removal of links and unmatched ele-

ments show adding/removal of elements.
The similarities that exist between specifications’ ele-

ments are stored in a matching function:

Match : ELEMENT × ELEMENT × TYPE → R

The returned value of Match is a real number (between
0 and 1) representing the exact similarity that exist be-
tween the two compared elements. The similarity scor-
ings are added to Match if they are greater than or equal
to a chosen threshold. The latter is a real number between
0 and 1 that defines the strictness of the matching process
[12].

Each input specification is treated as a graph whose
nodes are the specification’s elements. Each link has a
source and a target element as well as a type. For exam-
ple in case of an operation O defined in a class A, a link
is created to represent this relation. The link’s source and
target are O and A respectively, and its type is “de-
clared_in” as in defined in Table 1. The difference be-
tween two given specifications is produced using the
following algorithm. Given two specifications S1 and S2

representing by sets of nodes (N1 and N2) and sets of
links (L1 and L2), the algorithm generates the exact set of
transformation operations (delta) that allow obtaining S2

from S1. The algorithm starts by analyzing the un-
matched elements of the two specifications. The un-
matched elements of S1 are added to delta as being de-
leted (lines 2-4). In this case, the nodes as well as their
associated links are deleted. The unmatched elements of
S2 are added to delta as being newly inserted elements.
Thus, all their associated properties and links are also
added to delta (lines 5-7). The matched elements with
different names are added to delta as renames (lines
9-11). For these elements, if they are not exact matches
(i.e. similarity scoring < 1) then there is a possibility that
their contents (other than names) have been modified,
new links have been attached to them or that some of
their links have been removed. The algorithm addresses
this by detecting the changed properties other than names
and adding them to delta (line 13). It also detects any
new inserted links to them (line 14) and any removed
links (line 15) and adds the changes to delta.

Table 2. The attributes of specifications’ elements

Element Attributes
Class - name: the class’ name

Variable
- name: the variable’s name
- data_type: is in the types supported by the formal language including class names.
- visibility is in {yes, no, n/a}

Operation
- name: the operation’s name
- changes: is in {{some variable}, empty-set}
- visibility is in {yes, no}

Predicate
- value: the predicate content is a set of String
- visibility is in {yes, no, n/a}

Link - type: the link’s type is in {aggregated_by, derived_from, associated_with, declared_in, used_by}

A Conflicts Detection Approach for Merging Formal Specification Views

Copyright © 2010 SciRes. JSEA

465

 1. delta=Ø
2. for all nodes n in N1 that are not in the domain of Match do
3. add “delete” operation to delta removing the node n and all the links associated with it
4. end for
5. for all nodes m in N2 that are not in the domain of Match do
6. add “insert” operation to delta inserting the node m, setting its properties, and inserting the links associated with it
7. end for
8. for all x=(e1,e2,type) in domain of Match do
9. if (e1.name≠e2.name) then
10. add“rename” operation to delta renaming e1 with e2.name
11. end if
12. if Match(x) < 1 then
13. select the properties (other than name) of e2 with values different from e1, add “modify” operations to delta
14. select all links to/from e2 with no matching link to/from e1, add “insert” operations to delta
15. select all links to/from e1 with no matching link to/from e2, add “delete” operations to delta
16. end if
17. end for
18. return delta

Figure 3. Differentiate algorithm

Low similarity thresholds lead to a high rate of false
matches while being able to detect most of the correct
matches. High thresholds lead to few or no false matches
while producing a high rate of missed matches. In [12],
empirical results have shown that a reasonable threshold
value (around 0.7) produces the most balanced results,
which leads to a more precise delta calculation.

4. Detection and Resolution of Merge
Conflicts

Detection and resolution of conflicts are treated as two
separated phases. This is to allow each one of them to be
fined-tuned without an influence on the other one. Con-
flicts detection should be systematic while conflict reso-
lution might require some user interaction. Given two
deltas (delta1 and delta2) and a base specification from

which both originate, conflicts detection in concerned
about discovering conflicts that might arise when the
modifications contained in the deltas are integrated with
the base specification. The goal of the approach is to
produce a conflict-free delta whose operations are the
unification of delta1 and delta2. The operations contained
in this delta are then applied to the base specification to
perform the merge.

4.1 A Formal Definition of Conflicts

The goal of merging is to combine the modifications
made and preserve their intensions. Conflicts should be
resolved accordingly. Tables 3 and 4 show a classifica-
tion and a formal definition of the most frequent conflicts
observed and their causes. In these tables, p refers to a
property or a list of properties, v (vi) refers to a value or

Table 3. Lost update conflicts

Conflict rule How the confilict happens?

Rule 1:
modify-deleted-element

 e, p, v1≠v2: Modify(e, p, v1,v2) and deleteNode(e)
An element e is modified in one delta while it is deleted in the other one.

Rule 2:
modify-deleted-link

 k, p=“type”, v1≠v2: Modify(k, p, v1,v2) and deleteLink(k)
The type of a link k is modified in one delta while it is deleted in the other one.

Rule 3:
rename-deleted-element

 e, v1≠v2: Rename(e, v1,v2) and deleteNode(e)
An element e is renamed in one delta while it is deleted in the other one.

Rule 4:
concurrent-update

 e, p, v1≠v2≠v3: Modify(e, p, v1,v2) and Modify (e, p, v1,v3)
An element e undergoes different modifications in the two deltas.

Rule 5:
concurrent -renaming

 e, v1≠v2≠v3: Rename(e, v1,v2) and Rename (e, v1,v3)
An element e undergoes different renaming in the two deltas.

Rule 6:
modify-moved-element

 e, p, v1≠v2: Modify(e, p, v1,v2) and Move(e)
An element e is modified in one delta while it is moved in the other one.

Rule 7:
rename-moved-element

 e, v1≠v2: Rename(e, v1,v2) and Move(e)
An element e is renamed in one delta while it is moved in the other one.

Rule 8:
concurrent-moving

 e, e1≠e2≠e3: Move(e)=(e1 , e2) and Move(e)=(e1, e2)
An element e undergoes different moving in the two deltas.

Rule 9:
move-deleted-element

 e: Move(e) and deleteNode(e)
An element e is moved in one delta while it is deleted in the other one..

A Conflicts Detection Approach for Merging Formal Specification Views

Copyright © 2010 SciRes. JSEA

466

Table 4. Structural conflicts

Conflict rule How the confilict happens?

Rule 10:
modify-source-class

A, A1, p, v1≠v2, k, v: Modify(A, p, v1,v2) and insertLink(k, A, A1, v)
An class A is modified in one delta while it is the source of a new link in the other one.

Rule 11:
modify-target-class

A, A1, p, v1≠v2, k, v: Modify(A, p, v1,v2) and insertLink(k, A, A1, v)
An class A is modified in one delta while it is the target of a new link in the other one.

Rule 12:
link-without-source

 e, e1, k, v: deleteNode(e) and insertLink(k, e, e1, v)
An element e is removed in one delta while it is the source of a new link in the other one.

Rule 13:
link-without-target

 e, e1, k, v: deleteNode(e) and insertLink(k, e, e1, v)
An element e is removed in one delta while it is the target of a new link in the other one.

Rule 14:
double-containment

 k, e, e1, v= “declared_in”:insertLink (k, e, e1, v) and ( k1:k1.source=k.source ∧ k1.target≠
k.target ∧ k1.type=k.type)
An element e is linked through a “declared_in” relation with an element e1, in one of the deltas
while it is linked through the same type of relation with another element in the base specification.

Rule 15:
symmetric-link

 k, e, e1,v in {“derived_from”, “declared_in”, “used_by”}: insertLink(k, e, e1,v) and( k1:
k1.source=k.target ∧ k1.target=k.source ∧ k1.type=k.type)
An element e is linked through a “derived_from”, “declared_in” or “used_by” relation with an
element e1, in one of the deltas while e1 is linked to e through the same type of relation in the base
specification.

Rule 16:
cyclic-class-link

A, A1, k, v: insertLink(k, A1, A, v) and ( TransitiveClosurev(A, A1))
An new link between two classes A1 and A is inserted in one of the deltas while there a transitive
closure between A and A1 in the base specification.

Rule 17:
redundant-link

A, A1, k, v: insertLink(k, A, A1, v) and ( TransitiveClosurev (A, A1))
An new link between two classes A and A1 is inserted in one of the deltas while there a transitive
closure between those classes in the base specification.

Rule 18:
unwanted-reachability

 k, k1, e, e1, e2, v: insertLink(k, e, e1, v) and insertLink(k, e1, e2, v)
An new link between two elements e and e1 is inserted in one delta while a new link of the same
type is inserted in the other one conneting e1 to an elememt e2 leading to a transitive reachability
between e and e2.

Rule 19:
redundant-element

 k, e, e1, e2, v= “declared_in”: insertLink(k, e2, e, v) and ( k1: k1.source=e1 ∧ k1.target=k.target
∧ k1.type=k.type ∧ e2 name=e1.name)
An element e2 is linked through a “declared_in”relation with an element e in one of the deltas
while there is an elememt e1, with the same name as e2 that is linked with e through the same type
of relation in the base specification.

Rule 20
double-definition

 e1, v1≠v2:Rename(e1, v2,v1) and ( e:e.name=v1)
An element e1 is renamed in one of the deltas while the name is already being used in the base
specification for a different element e.

to a list of values, e (ei) refers to specifications’ elements,
A (Ai) refers to classes, and k (ki) refers to links between
elements.

The conflicts have been classified under two catego-
ries.The first category is concerned about lost updates,
which happens when the effect of the modifications
made in one delta forbid those in the other one. Nine
rules have been formally defined to allow the precise
detection of this type of conflicts. The second category is
concerned about the structural consistency of the speci-
fication obtained after integrating the modifications made
in the delta(s), where eleven rules were formally defined.
Structural consistency is a prerequisite to ensuring other
forms of consistency such as those related to specifica-
tions’ semantics. In fact, consistency checking, such as
model checking in case of formal specifications, pro-
duces meaningful results only when applied to specifica-

tions that are well formed.
Several conflicts under the lost update category origi-

nate because of moving elements, thus, it is important to
have a mechanism that detects moved elements based on
the modifications made in a delta. A potential moved
element is a Variable, an Operation or a Class. A Vari-
able or an Operation is moved if a new added link k2 of
type “declared_in” connects it to a new class B and a link
k1 of the same type with an old class A is removed. A
Class is moved if a new added link k2 of type “de-
rived_from”, “aggregated_by” or “associated_with”
connects it to a new class B and a link k1 of the same type
with an old class A is removed. An operation Move is
used to perform the above verification; it accepts a delta
containing a list of operations and a specification element
E as parameters and returns an object containing the two
elements representing the old and new link ends or a

A Conflicts Detection Approach for Merging Formal Specification Views

Copyright © 2010 SciRes. JSEA

467

“null” object if no moving has taken place. Formally, this
verification can be written as:

 k1, k2, E, A, B, t in {declared_in, derived_from, aggregated_
by, associated_with},{insertLink(k2, E, B, t), deleteLink(k1)}∈
delta: k2.type= k1.type∧ k2.source= k1.source=E∧ k2.targe≠k1.
target

Finally, in order to detect some structural conflicts
such as cyclic-class-link and redundant-link, an operation
TransitiveClosurev is used. Given any two classes A1 and
A2, the operation is used to verify the existence (True or
False) of a path (of more than two links) between A1 and
A2 whose links are all of type v. This can be formally
written as:

 ki: i in [1…n] where n>=2 and i : ki.type=v,  Bj:j in
[1…m] where m=n-1: (k1.source=A1∧ k1.target=B1∧ k2.source=
B1∧ k2.target= B2∧ …∧ kn.source=Bn-1∧ kn.target=A2)

4.2 Conflicts Detection

The proposed approach accepts as input a base specifica-
tion (SBase) and two deltas (delta1 and delta2) representing
the parallel modifications made. Based on the formal
definitions proposed previously, the approach generates a
list C containing the details of all the conflicts discovered.
Figure 4 shows the algorithm used to discover these con-
flicts.

The elements of delta1 and delta2 are traversed to dis-
cover conflicting operations according to pre-defined
rules (e.g. rules 1 to 20 of Tables 3 and 4). In case such
operations are found, an object containing the indexes of
the operations causing the conflict in delta1 and delta2,
the type of conflict, and a conflict resolution (if any) is
added to the conflict list C (line 9). Unlike lost updates,
which are caused by two operations, structural conflicts
may originate because of one operation only (from one of
the deltas) or two operations (from both deltas). Thus, the
conflict object added to C in this case may include only
one index identifying the operation causing the conflict

and a “null” value is assigned for the second index (lines
2-3 and lines 6-7). At the end of this process, the conflict
list C will be storing the details of all discovered con-
flicts.

It is important to note that the most frequent structural
conflicts originate mainly because of the creation of new
links and modifying (including renaming) the elements
of a base specification, and that it is possible to reduce
the number of conflicts detected by enforcing conflict
rules only to a specific high-level granularity such as the
Class level.

4.3 Resolving Conflicts

A Conflict resolution is a set of transformation applied to
the delta(s) so that a conflict is resolved. For example in
case of a visibility attribute undergoes different modifica-
tions, a resolution is to keep the most restrictive one.
Most often, a resolution consists of dropping or altering
one of the conflicting operations. Manual conflict resolu-
tion is a tedious, error prone and time-consuming process
especially for large specifications. Moreover, the inter-
pretation of conflicts can differ from one developer to
another one. Thus, there is a need for an approach to
support the systematic resolution of as many conflicts as
possible. Interacting with developers only when several
(or no) resolutions are possible and a choice need to be
made.

Let Nx be a reference to every specification elements
named x and Ki (i=1...n) the new links inserted (if any).
Table 5 shows the deltas and the conflict list C associ-
ated with the classes of Figure 2.

Four lost update conflicts were discovered through the
application of the proposed conflicts detection approach.
The first conflict is a concurrent-renaming originating
because of two different renaming of the class Professor.
A resolution to this conflict consists of dropping the re-
naming operation of delta2. The second conflict is a rename

Input: A base specification SBase and two deltas delta1 and delta2

Output: A conflict list C
1. for all operations op1 in delta1 {
2. if (effect of op1 on SBase causes a conflict) then
3. C=C ∪ {New Conflict(indexOf(op1),0, getConflictType(),getResolution())}
4. if delta2 ≠Ø then {
5. for all operations op2 in delta2 {
6. if (effect of op2 on SBase causes a conflict) then
7. C=C ∪{New Conflict(O, indexOf(op2), getConflictType(),getResolution())}
8. if (combined effect of op1 and op2 on SBase causes a conflict) then
9. C=C ∪{New Conflict(indexOf(op1), indexOf(op2), getConflictType(),getResolution())}
10. }
11. }
12.}
13. return C

Figure 4. Verify algorithm

A Conflicts Detection Approach for Merging Formal Specification Views

Copyright © 2010 SciRes. JSEA

468

Table 5. A conflict list of two deltas

delta1

0) Rename(NProfessor, “Professor”, “Academician”)
1) deleteAllLink(NAffiliate)
2) deleteNode(NAffiliate)
3) Modify(NNew, changes, “{Id,Name,Expertise}”, “{Id,Name,Expertise,Faculty}”)
4) insertLink(K1, NFaculty , NNew, “used_by”)
5) insertLink(K2, Nf? , NNew, “declared_in”)
6) Modify(NpostNew, value,“{Id’=i?, Name’=n?, Expertise’=e?}”, “{Id’=i?, Name’=n?, Expertise’=e?,

Faculty’=f?}”)

delta2

0) Rename(NProfessor, “Professor”, “TeachingStaff”)
1) deleteAllLink(NExpertise)
2) deleteNode(NExpertise)
3) Rename(NNew, “New”, “Add”)
4) Modify(NNew, changes, “{Id,Name,Expertise}”, “{Id,Name}”)
5) deleteAllLink(Ne?)
6) deleteNode(Ne?)
7) Modify(NpostNew, value, “{Id’=i?, Name’=n?, Expertise’=e?}”, “{Id’=i?, Name’=n?}”)
8) Rename(NAffiliate, “Affiliate”, “Join”)

Conflicts

C1:{0,0, concurrent-renaming}
C2:{2,8, rename-deleted-element}
C3:{3,4, concurrent-update}
C4:{6,7, concurrent-update}

-deleted-element originating because the operation Affili-
ate has been removed in delta1 while it has been renamed
in delta2. A resolution to this conflict could be to remove
Affiliate (i.e. the renaming operation of delta2 is dropped)
as the task associated with it has been delegated to the
operation New through the modifications made in delta1.
Clearly, this resolution requires user intervention. An-
other possible resolution to this conflict consists of drop-
ping the delete operation of delta1 that is causing the
conflict. The third conflict is a concurrent-update origi-
nating because of concurrent modifications of the attrib-
ute changes of the operation New. Since the modified
attribute is a set, it is possible to resolve this kind of con-
flicts by checking if one of the values is a subset of the
other one, which is the case in this example. Dropping
the update operation of delta2 resolves this conflict. The
last conflict is a concurrent-update originating because
of concurrent modifications of the attribute value of the
post-condition of the operation New. If a predicate is
written as a conjunction of clauses, then it is possible to
treat it as a set containing these clauses. Consequently,
we could resolve this conflict by verifying if one of the
values is a subset of the other, which is the case here.
Dropping the update operation of delta2 resolves this
conflict.

Systematic conflicts resolutions based on operations’
priorities could be applied. These priorities are chosen by
users, which allow resolving a large number of conflicts.
For example, in case of conflicts originating because of
removals (e.g. modify-deleted-element, modify-deleted-
link, rename-deleted-element, move-deleted-element,link-
without-source, and link-without-target), a removal could
be considered as an operation with less priority compared

to an insertion, a modification or a renaming. Conse-
quently, a resolution to all these conflicts is drop the de-
lete operations causing them. The same heuristic could
be used with other conflicts such as rename-moved-ele-
ment and modify-moved-element if a moving operation is
given a higher priority compared to a renaming or modi-
fication operation.

4.4 Merging

Merging is a direct process that consists of integrating (or
applying) the changes made in the delta(s) after all con-
flicts have been discovered and resolved. Thus, merging
is only possible when there is a resolution attached to
every conflict discovered. These resolutions may require
some user-interaction. Moreover, the order of operations
in a delta is important to allow some changes to take
place. For example, a rename operation involving an
element e should always take place after any other modi-
fications involving e. Merging consists of applying the
operations contained in a unified and conflict-free delta
to a specification. This delta is obtained through a proc-
ess that involves combining the operations contained in
two deltas while resolving the conflicts associated with
them. Figure 5 shows a possible result of merging the
modifications made to the class Professor of Figure 2.

The above merge class integrates the modifications
made after adopting specific conflict resolutions. The
removal of the attribute Expertise does not satisfy the
intension of the modifications made in one delta while
the removal of the operation Affiliate does not satisfy the
intension of the modifications made in the other delta.
However, they have to be done to resolve the conflicts
associated with these elements. Systematic conflict reso

A Conflicts Detection Approach for Merging Formal Specification Views

Copyright © 2010 SciRes. JSEA

469

Figure 5. The result of merging two classes

lution saves time and effort and to some extend can pre-
serve intensions. On the other hand, manual resolution
provide a better platform for preserving intensions but
they are time (and effort) consuming and are based on
particular interpretations, which may lead to new incon-
sistencies in the merge results. Techniques to minimize
conflicts could be used based on the idea of restricting
the type of modifications a particular group of developers
can make. Such as restricting modifications to addition
only, creation of links only, etc. Thus, leading either to a
reduction in the number of conflicts or to classes of con-
flicts that can be resolved easily and systematically.

5. Empirical Evaluation

A Java tool has been developed to evaluate and validate
the proposed approach. It incorporates three major com-
ponents. The first component processes a given OO for-
mal specification and parses it into a graph. Currently,
only Object-Z specifications are supported. The second
component differentiates between two specifications
represented as graphs after computing their similarities to
produce a set of operations representing their delta. The
third component integrates the edit operations contained
in a unified delta to a base specification. This unified
delta is obtained after combining the operations con-
tained in two deltas according to the resolutions of the
detected conflicts.

Merging is concerned about obtaining a consistent
specification after the modifications contained in the
delta(s) are integrated. Thus, it is critical to be able to
detect and resolve as many conflicts as possible. Con-
flicts detection is dependent on the differencing algo-
rithm used and the later is dependent on the accuracy of
the similarity detection approach adopted. The proposed
approach has been tested with three major case studies.
They include a university management system, a hotel
management system and an online purchase system. Ta-
ble 6 summarizes the details of the base version (V) of
each specification as well as the modifications made to it
(V1 and V2) and the actual number of conflicts arising

because of the modifications made to the base specifica-
tions. Two different domain experts were in charge of
modifying the base specifications according to require-
ments they think should be taken into consideration. The
modifications made produced the specifications V1 and
V2 respectively.

The combined base specifications contain a total
number of 247 elements and links. The first versions of
the specifications were obtained after performing 67
delta operations and the second versions were obtained
through 82 delta operations made to the base specifica-
tions respectively. These modifications led to a total of
58 different conflicts.

The conflict detection and resolution approach was
validated through the number of correct conflicts de-
tected (positives), the number of all conflicts detected
(positives and false positive) and the actual number of
conflict that arise as a result of the modifications made
(58 in the experiments made). Precision and recall met-
rics were used in the evaluation. Precision measures
quality and is the ratio of the number of correct conflicts
detected and resolved to the total number of conflicts
detected. Recall measures coverage and is the ratio of the
correct conflicts detected and resolved to the total num-
ber of correct conflicts. Figure 6 shows the results ob-
tained based on similarity threshold ranging from 0.5 to
0.9.

Perfect recall (100%) combined with a good precision
(87%-98%) were obtained for thresholds raging from 0.5
to 0.7. Moreover, perfect recall (100%) combined with
perfect precision (100%) were obtained for threshold
ranging from 0.75 to 0.8. Furthermore, average to good
recall (53%-86%) combined with perfect precision
(100%) were obtained for thresholds ranging from 0.85
to 0.9. Out of 58 actual conflicts, only 8 conflicts were
not detected for a high threshold of 0.85. These unidenti-
fied conflicts originate because of too many concurrent
modifications and moving made to two classes namely
transactionInfo and shoppingCart (and their elements),
which led to many concurrent-update (4 cases), concur-
rent-renaming (2 case), modify-moved-element (1 case),
and concurrent-moving (1 case) conflicts not being de-
tected. For a threshold equals to 0.9, only 31 conflicts

0%
10%

20%
30%

40%
50%

60%
70%

80%
90%

100%

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Recall

Precision

Figure 6. Experimental results

A Conflicts Detection Approach for Merging Formal Specification Views

Copyright © 2010 SciRes. JSEA

470

Table 6. Details of the experiments

 V V1 V2

 #Element #Link #Insertion #Deletion #Modification #Insertion #Deletion #Modification

Case 1 28 27 13 0 3 15 2 7

Case 2 32 29 0 6 10 22 1 6

Case 3 71 60 4 22 9 4 22 3

Total 247 67 82

#Conflicts - 58

were identified out of the actual 58 cases, which is indi-
cated by the sharp drop of the recall. Consequently, if a
high rate of positives is preferred while tolerating some
negatives, a threshold value of 0.7 provides the best re-
sults.

The employed approach scales up well in terms of ef-
ficiency (performance and memory usage) as the size of
the specifications increases. This is due to three main
reasons. Firstly, the approach used to detect the similari-
ties between specifications has an acceptable complexity
bounded by O(nm) where n and m are the number of
elements of the specifications. In addition, only compati-
ble elements are compared, i.e. classes with classes,
variables with variables, etc. Thus, the actual number of
comparison is far smaller than n*m. Secondly, during
delta calculation only the difference between the specifi-
cations is calculated and stored, which leads to a more
efficient memory usage. Finally, the proposed approach
is operation-based which leads to a better performance
because conflicts detection compares the operations con-
tained in the deltas rather than comparing the input
specifications themselves. Knowing that the number of
operations a delta can have is statistically smaller than
the number of specifications’ elements.

6. Related Work

In [13], an approach is proposed to detect the changes to
XML documents. The proposed approach uses a delta
that includes insertions, deletions and updates. Moving
and renaming were not considered in the delta definition,
thus, leading to the detection of conflicts that originate
only because of deletions and updates. Moreover, the
proposed approach is based on tree representation of the
analyzed documents, which restricts its applicability to
documents that can be represented as trees.

In [14], model merging was used to check the struc-
tural consistency of homogenous conceptual models de-
scribed as graphs. The proposed approach constructs a
merge model using given mapping information that
equates the correspondences between the elements of the
two graphs to be merged. Then, verifies it against some
consistency constraints of interest. Consistency checking
rules were described using the Relational Manipulation

Language (RML). The consistency diagnostics obtained
over the merge are projected back to the original models
and their relationships. Lost update conflicts were not
considered as structural conflicts were the main focus of
the work. The presented work did not include experi-
mental data on the rate of the discovered inconsistencies
in terms of precision and recall.

In [15], structural and methodological model inconsis-
tency is verified. The proposed approach does not sup-
port model merging but rather defines a model as a set of
elementary construction operations, and consistency
rules are defined and verified based on the type of opera-
tion involved and the effect an operation has on the
model. Inconsistency rules were translated to Prolog
queries and model construction operations to Prolog facts.
The approach is tool supported were an XMI file con-
taining a model is parsed into a sequence of model con-
struction operations then a check engine is responsible of
detecting elementary operations violating consistency
rules within the sequence. The validation process used
employed large UML models, and the results provided
are mainly about time factors, i.e. efficiency and scal-
ability.

In [16], a differencing algorithm is proposed to detect
the structural changes between the designs of subsequent
versions of OO software. The algorithm reports the dif-
ferences between them in terms of additions / removals,
moves, and renaming of program elements such as
packages and classes. The differencing algorithm com-
putes an overall similarity based on name and structure
similarity metrics. The proposed algorithm assumes that
enough design entities remain the “same” between the
two consecutive versions of the system. The latter as-
sumption is weak as there is no guarantee that the devel-
opers of the new version of the system do not make too
many modifications. The experimental results obtained
reported limitations in detecting moved fields and meth-
ods. Moreover, any mistakenly identified renaming or
moving of an entity is propagated to the class or the in-
terface that contains it, and the latter will be reported as
changed as well.

In [17] an algorithm is proposed to detect changes in
XML documents. As a mean to improve change results,
unordered tree representation of the analyzed models

A Conflicts Detection Approach for Merging Formal Specification Views

Copyright © 2010 SciRes. JSEA

471

were used. The matching part of the approach uses nodes
signatures and prevents matching child nodes with dif-
ferent ancestors. This restriction affects the change de-
tection by limiting the recognition of moved nodes. The
experimental results obtained showed a slow running
time while improving the accuracy of the change detec-
tion compared to the algorithm proposed in [18]. Finally,
similar differencing algorithms were proposed in [19-21]
to deal with different kind of software documents.

7. Conclusions and Future Work

An approach is proposed in this paper to detect and re-
solve conflicts that may occur when merging OO formal
specifications. The differences between specifications are
precisely calculated before a merge could take place. The
difference is defined using primitive operations, acting
on one element at a time, and containing traceability in-
formation enabling the reversal of their effects. The pro-
posed approach deals with two major groups of conflicts:
lost update and structural conflicts. Conflicts have been
classified and formally defined as rules and a systematic
approach is used to verify the calculated differences
against these rules to detect any conflicts that may occur
when integrating the changes made to a base specifica-
tion. For every identified conflict a resolution is either
derived systematically (pre-defined resolutions), or
through user interaction (e.g. choosing among possible
resolutions, etc). The experimental results obtained have
validated the correctness and efficiency of the proposed
approach as the majority of the conflicts contained in the
studied specifications were systematically and cheaply
(time and space) discovered. As an improvement to the
proposed approach, optimizing the delta calculation and
providing means to compress its content could be ex-
plored as it leads to a better efficiency. Finally, it is im-
portant to run more experiments using larger specifica-
tions.

REFERENCES
[1] P. Sriplakich, X. Blanc and M. P. Gervais, “Supporting

Collaborative Development in an Open MDA Envir-
onment,” Proceedings of 22nd IEEE International Con-
ference on Software Maintenance, Los Alamitos, 2006, pp.
244-253.

[2] A. Boronat, J. A. Carsi, I. Ramos and P. Letelier, “Formal
Model Merging Applied to Class Diagram Integration,”
Electronic Notes in Theoretical Computer Science, Vol.
166, No. 1, 2007, pp. 5-26.

[3] C. L. Ignat and M. C. Norrie, “Flexible Definition and
Resolution of Conflicts through Multi-level Editing,”
Proceedings of IEEE 2nd International Conference on
Collaborative Computing, Atlanta, 2006, pp. 10-19.

[4] G. Kontonya and I. Sommerville, “Requirements Engin-
eering Process and Techniques,” John Wiley, UK, 2002.

[5] M. G. Hinchey, “Industrial-Strength Formal Methods in
Practice,” Springer, 2008.

[6] G. Smith, “The Object-Z Specification Language,” Klu-
wer Academic Publishers, 2000.

[7] A. Mehra, J. Grundy and J. A Hosking, “Generic App-
roach to Supporting Diagram Differencing and Merging
for Collaborative Design,” Proceedings of ACM/IEEE
International Conference on Automated Software Engi-
neering, Long Beach, 2005, pp 204-213.

[8] S. Fortsch and B. Westfechtel, “Differencing and Merging
of Software Diagrams-State of the Art and Challenges,”
Proceedings of International Conference on Software and
Data Technologies, Barcelona, 2007, pp. 90-99.

[9] K. Fogel and M. Bar, “Open Source Development with
CVS,” 3rd Edition, Paraglyph Press, 2003.

[10] D. E. Perry, H. P. Siy and L. G. Votta, “Parallel Changes
in Large Scale Software Development: An Observational
Case Study,” Proceedings of International Conference on
Software Engineering, Kyoto, 1998, pp. 251-260.

[11] T. A Mens, “State of the Art Survey on Software
Merging,” IEEE Transactions on Software Engineering,
Vol. 28, No. 5, 2002, pp. 449-462.

[12] F. Taibi, F. M. Abbou and M. D. Alam, “A Matching
Approach for Object-Oriented Formal Specifications,”
Journal of Object Technology, Vol. 7, No. 8, 2008, pp.
139-153.

[13] S. Ronnau, C. Pauli and U. M. Borghoff, “Merging Chan-
ges in XML Documents Using Reliable Context Finger-
prints,” Proceedings of 8th ACM symposium on Document
Engineering, Sao Paulo, 2008, pp. 52-61.

[14] M. Sabetzadeh, S. Nejati, S. Liaskos, S. Easterbrook and
M. Chechik, “Consistency Checking of Conceptual
Models Via Model Merging,” Proceedings of 15th IEEE
International Requirements Engineering Conference, New
Delhi, 2007, pp. 221-230.

[15] X. Blanc, I. Mounier, A. Mougenot and T. Mens, “Detec-
ting Model Inconsistency through Operation-Based Model
Construction,” Proceedings of International Conference
on Software Engineering, Leipzig, 2008, pp. 511-519.

[16] Z. Xing and E. Stroulia, “Differencing logical UML
models,” Journal of Automated Software Engineering, Vol.
14, No. 2, 2007, pp.215-259.

[17] Y. Wang, “X-Diff: An Efficient Change Detection
Algorithm for XML Documents,” Proceeding of 19th
International Conference on Data Engineering, Bangalore,
2003, pp. 519-530.

[18] A. Marian, “Detecting Changes in XML Documents,”
Proceedings of 18th International Conference on Data
Engineering, San Jose, 2002, pp. 41-52.

[19] P. Apiwattanapong, N. Orso and M. J. Harrold, “A Diff-
erencing Algorithm for Object-Oriented Programs,” Proc-
eedings of 19th International Conference on Automated
Software Engineering, Linz, 2007, pp. 2-13.

[20] U. Kelter, J. Wehren and J. Niere, “A Generic Difference
Algorithm for UML Models,” Proceedings of Software
Engineering Conference, Brisbane, 2005, pp. 105-116.

[21] T. Oda and M. Saeki, “Generative Technique for Version
Control Systems for Software Diagrams,” Proceedings of
International Conference on Software Maintenance,
Budapest, 2005, pp. 515-524.

J. Software Engineering & Applications, 2010, 3: 472-476
doi:10.4236/jsea.2010.35053 Published Online May 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

A Novel Efficient Mode Selection Approach for
H.264

Lu Lu, Wei Zhou

School of Computer Science & Engineering, South China University of Technology, Guangzhou, China.
Email: lul@scut.edu.cn

Received March 11th, 2010; revised April 2nd, 2010; accepted April 3rd, 2010.

ABSTRACT

H.264 video coding standard introduces motion estimation with multiple block sizes to achieve a considerably higher
coding efficiency than other video coding algorithms. However, this comes at the greatly increased computing complexity
at the encoder. In this paper, a method is proposed to eliminate some redundant coding modes that contribute very little
coding gain. The simulation results show that the algorithm can remarkably decrease the complexity at the encoder while
keeping satisfying coding efficiency.

Keywords: Video Coding, H.264, Mode Selection

1. Introduction

The JVT (Joint Video Team) introduced a number of
advanced features in H.264 or MPEG-4 AVC. These
improvements achieve significant gains in encoder and
decoder performances [1-3]. One of the new features is
multi-mode selection, which is the subject of this paper. In
the H.264 coding algorithm, blockmatching motion esti-
mation is an essential part of the encoder to reduce the
temporal redundancy between frames. H.264 supports
motion estimation and compensation using different block
sizes ranging from 16 × 16 to 4 × 4 luminance samples,
which is shown in Figure 1, with many options between
the two. The luminance component of each macroblock
can be split by four ways: 16 × 16, 16 × 8, 8 × 16 and 8 × 8.
Each of the submacroblock partitions is called a macrob-
lock partition. If the 8 × 8 mode is chosen, each of 8x8
macroblock partitions within the macroblock can be fur-
ther split by four ways: 8 × 8, 8 × 4, 4 × 8 or 4 × 4, which are
called macroblock sub-partitions. These partitions and
subpartitions give rise to a lager number of possible
combinations within each macroblock.1

H.264 standard uses computationally intensive La-
grangian rate-distortion (RD) optimization to choose the
best block size for a macroblock. The general equation of
Lagrangian RD optimization is given as:

mod mode eJ D R  λ (1)

where Jmode is the rate-distortion cost (RD cost) and

Jmode is the Lagrangian multiplier; D is the distortion
measurement between original macroblock and recon-
structed macroblock located in the previous coded frame,
and R reflects the number of bits associated with choosing
the mode and macroblock quantizer value, Qp, including
the bits for the macroblock header, the motion vector(s)
and all the DCT residue blocks [4,5].

The computational complexity required by motion es-
timation, however, increases linearly with the number of
used block types because block matching needs to be
performed for each of them. In JVT reference software
JM75C[6], it adopts full search method for each block
type and selects the optimal block type as the final coding
mode based on the RD cost function. Though it provides
the best coding efficiency, the computational complexity
is obviously much too high. In order to reduce the inten-
sive computational requirement, Andy Cbang etc. pro-
posed fast multi-block motion estimation [7]. They adopt
an approach of early termination by skipping searching
for mode 16 × 8 and mode 8 × 16, if the performance of
mode 16 × 16 is “good enough”, otherwise all coding
modes will be performed. This method only considers
three coding modes which are 16 × 16, 16 × 8 and 8 × 16
inter coding modes. Another approach, proposed by Andy
C. Yu, is based on estimating block detail complexity [8].
It is an effective way judging by his simulation results, but
there is more a critical factor, texture direction, which he
does not think about but also can be useful to significantly
improve coding efficiency.

In this paper, we propose a effective method to elimi-
nate some redundant coding modes in mode selection.

1This paper is supported by Guangdong Technology Project
(2009B010800048) and Guangzhou Technology Major Project.

A Novel Efficient Mode Selection Approach for H.264

Copyright © 2010 SciRes. JSEA

473

Figure 1. Inter-prediction modes

The paper will be organized as follows. The proposed

algorithm will be described in detail in Section 2. Section
3 shows the simulation and the results. Finally, a conclu-
sion will be given in Section 4.

2. Proposed Algorithm

2.1 Block details

Table 1 shows the observations on how selected modes
relate sequence characteristics.
The choice of partition size has a significant impact on
compression performance. In general, according to Table
1, large partition sizes are appropriate for homogeneous
areas of the frame and small partition sizes may be bene-
ficial for detailed areas.

We derive an approach based on summing the total
energy of the AC coefficients to estimate the block detail.
The AC coefficients can be obtained from the DCT coef-
ficients of each block. The definition is:

1 1

1 1

(
M N

AC
u v

E F
 

 

  2(,))u v (2)

From (2), EAC, the total energy of the AC components of
an M × N block is the sum of all the DCT coefficients,
F(u,v), except for the DC component, u = 0 and v = 0.

1 1

0 0

(,) () ()

(2 1) (2 1)
(,)cos[]cos[]

16 16

M N

x y

F u v c u c v

x u y v
f x y

  

 



  (3)

where,

1 1
, , 0

2 2
, , 0

(), ()
for u v

M N

for u v
M N

c u c v




 


 (4)

According to the energy conservation principle, the
total energy of an M × N block is equal to the accumulated
energy of its DCT coefficients. Thus, (3) can be further
simplified as

1 1 1 1
2 2

0 0 0 0

1
((,)) [(,)]

M N M N

AC
x y x y

E f x y f x y
MN

   

   

   (5)

where the first term is the total energy of the image
intensities within an M × N block, and the second term
represents the mean square intensity. Equation (5) clearly
shows that the energy of the AC components of a mac-
roblock can be represented by the variance.

Evaluating the maximum sum of the AC components is
the next target. By definition, the largest variance is ob-
tained from the block comprising checkerboard pattern in
which every adjacent pixel is the permissible maximum
and minimum value. Thus, Emax, the maximum sum of AC
components of an M×N block is

2 2
max min

max

2
max min

(,) (,)

2

[(,) (,)]
4

f x y f x y
E MN

MN
f x y f x y




 
 (6)

Note that Emax can be calculated in advance. Then the
criterion to assess the complexity of a macroblock detail is

max

ln()

ln()
AC

d

E
r

E
 (7)

In total, 7 different block sizes are recommended by
H.264 for P-frames, namely, 16 × 16, 16 × 8, 8 × 16, 8 × 8, 8
× 4, 4 × 8, 4 × 4 as well as SKIP, and other two INTRA
prediction modes, I4MB and I16MB. However, in our
complexity measurement, there are only 3 categories,
which are denoted as MD16 category, MD8 category, and
MD4 category, respectively.

The proposed algorithm provides a recursive way to
decide the complexity of each macroblock. Firstly, a
macroblock of 16 × 16 pixels is examined with the first

Table 1. Selected modes for different sequences

Sequence Skip 16×16 16×8 8×16 8×8 Intra16 Intra4

Container 75.8 10.4 3.5 2.7 7.3 0.3 0.0

Foreman 23.7 39.9 39.9 7.3 7.6 7.3 9.3

Bus 3.5 22.0 12.1 14.4 40.5 1.0 5.5

Mobile 4.5 31.3 7.1 6.1 6.1 49.7 0.3

IPPP, 5 reference frames, CABAC, CIF Format

A Novel Efficient Mode Selection Approach for H.264

Copyright © 2010 SciRes. JSEA

474

piecewise equation in (7). An LDB category is given if it
is recognized as being a homogenous macroblock. Oth-
erwise, the macroblock is decomposed into 4 blocks of 8 ×

8 pixels. Note that an 8 × 8 block is recognized as
high-detailed if it satisfies two conditions: 1) the RB in (7)
is greater than 0.7, and it is decomposed into four 4 × 4
block, and 2) one of its four decomposed 4 × 4 blocks is
highdetailed as well. If an 8 × 8 block satisfies the first
condition but not the second, it is still recognized as
low-detailed. After checking all the 8 × 8 blocks, an MDB
category is given to a macroblock which possesses more
than two high-detailed blocks, otherwise the HDB cate-
gory is assigned. Table 2 displays the relationship be-
tween the three categories in the proposed algorithm and
the 9 inter-frame prediction modes. It is observed that the
LDB category covers the least number of prediction
modes, whereas the HDB category contains all the avai-
lable modes. The table further indicates that the higher
detailed the macroblocks are, the more prediction modes
the proposed algorithm has to check.

The function of the natural logarithm is to linearize both
Emax and EAC such that the range of rd can be uniformly
split into 10 subgroups. In our evaluation, a macroblock
that has the rd >0.7, is considered to be a high-detailed
block.

2.2 Object Movement

More than one object is contained in a macroblock and is
moving in different directions. This included objects
moving over a background with different velocity. For
example, in Figure 2 the object is moving against a static
background. In this case, the current block should be
divided into two 8 × 16 sub-blocks whereas sub-block 0
should have a zero motion vector and sub-block 1 should
have a motion vector such that the cost function can be
minimized.

2.3 Texture Regions

When the edge of texture aligned perfectly with the sensor
boundaries at a particular time instant, the texture edge is
clear and sharp. We will describe this texture as having
“integer-pixel location”. When the texture undergoes an
integer-pixel translational motion, the texture will look
exactly the same in the two consecutive frames except that
one is a translation to another. And the moved texture can
be predicted perfectly by integer-pixel motion estimation.

If the edges of texture have a half-pixel offset relative to
the senor, the edges may be blurred as shown in Figure
3(b) and said to have “half-pixel location”. The original
zero-pixel-wide (sharp) edge now becomes one pixel-
wide (blurred). The pixel at the blurred edges may have
only half the intensity of the original one, which can lead
to difficulty in motion estimation.

Similarly, if the edges have a quarter-pixel offset it may

Table 2. Block categories and corresponding modes

Detail Level Enabled Modes

LDB 16×16
MDB 16×16, 16×8, 8×16, 8×8
HDB 8×8, 8×4, 4×8, 4×4

Figure 2. Example of an object moving on a static back-
ground

be blurred as shown in Figure 3(c). We will describe this
texture as having “quarter-pixel location”. The zero-
pixel-wide (sharp) object edge becomes one pixel-wide
(blurred). The pixels at the blurred edges may have 3/4 or
1/4 of the intensity. The use of sub-pixel motion estima-
tion algorithm, like half-pixel or quarter-pixel estimation,
uses interpolation to predict the sub-pixel shift of texture
relative to the sampling grid.

Different type of texture (integer, half or quarter) has a
different response to fractional motion estimation. For
example, the texture in Figure 3(b) (half) can be predicted
perfectly by the texture in Figure 3(a) (integer) using
half-pixel motion estimation but not vice verse. Since it is
possible for a macroblock to contain more than one kind
of texture, using only one integer, half or quarter pixel
motion vector will not be sufficient to describe the texture
content. For example, a macroblock may contain two 8 ×

16 sub-blocks where sub-block 0 contains “half-pixel”
texture and sub-block 1 contains “integer-pixel” texture.
In this case, the current macroblock should be divided into
two 8 × 16 sub-blocks in which half-pixel motion vector
should be used for sub-block 0 and integer-pixel motion
vector for sub-block 1.

2.4 Algorithm

Former results [9] show that, often, about 70% of the
macroblocks will choose mode 1 (16 × 16) as their final
block type. In the proposed algorithm it determines the
macroblock detail-level and analysis the information
obtained from 8 × 8 block size ME to predict the mode 1
macroblock in advance, if possible, the optimal motion
vector. If the macroblock is predicted to be mode 1 mac-
roblock, searching will be stopped immediately.

As a result, computation can be saved for mode 2 and
mode 3 block size ME and in some situation mode 1 as
well. Three decisions are set up in handling different

A Novel Efficient Mode Selection Approach for H.264

Copyright © 2010 SciRes. JSEA

475

Figure 3. (a) Integer-pixel texture; (b) Half-pixel texture; (c) Quarter-pixel texture

video area-general area, slow moving area and fast mov-
ing area.

Step1: If rd<0.3 then
- Select 16 × 16 as the only enabled mode (LDB)
Else if 0.3<rd<0.7 then
- Disable 8 × 8, 4 × 8, 4 × 4 (MDB)
Else if If rd>0.7 then
- Enable all of the modes (HDB)
Defining MV0, MV1, MV2, MV3 be the motion vector

of 8 × 8 subblock of the current macroblock. Two condi-
tions are checked:

Step2:
C1: If MV0=MV1=MV2=MV3 then
- choose mode 1 (16 × 16) as final block type
- no ME will be further performed
- 16 × 16 MV = 8 × 8 MV0
C2: If three subblock MV are the same AND
the forth unequal MV only differ by one quarter pixel

(1/4)
distance
then
- choose mode 1 (16 × 16) as final block type
- no ME will be further performed
- 16 × 16 MV = dominated 8 × 8 MV
C3: If collocate MB in previous frame is mode1 AND

{MV0, MV1, MV2, MV3} < 4 (i.e. one integer pixel
distance) AND MV0, MV1, MV2, MV3 has the same

direction then
- choose mode 1 (16 × 16) as final block type
- 8 point local search around MV = {0, 0}
C4: If all magnitude of 8 × 8 MVx >= 3 integer distance

OR all magnitude of 8 × 8 MVy >= 3 integer distance
- choose mode 1 (16 × 16) as final block type
- local search for surrounding 24 points of MV0
The reason for all the 8 × 8 motion vector having the

same direction in decision C3 can be illustrated using
Figure 4(a). Suppose a macroblock is undergoing small
rotational motion as shown in Figure 4(a). The motion
vector at the left size of macroblock will be downward and
the right side will be upward. As a result, there is a high
potential for the current macroblock segmented vertically
even the magnitude of motion vector is very small.

Figure 5 shows the performance of C1 + C2 + C3 + C4.
We can see the hit rate increase for the fast panning part of
foreman sequence which is much closer to the optimal one.

3. Simulation Results

The proposed algorithm was implemented in the ref-
erence JVT software.JM75C. We have tested our pro-
posed method over a series of testing sequence with dif-
ferent resolution.

In this paper, two QCIF (176 × 144) sequences, “Fore-
man” and “Stefan” are selected to show the result. In the
simulation, the sequences are encoded at 30 fps with qp =
10 to 20 with step size of two. The PSNR and bitrate
comparison between proposed algorithm and full search is
shown in Table 3.

Figure 4. Example of rotational motion in Macroblock that
cause segmentation (a) vertical segmentation; (b) horizontal
segmentation

Figure 5. Performance using Decision C1 + C2 + C3 +C4
using foreman QCIF sequence

A Novel Efficient Mode Selection Approach for H.264

Copyright © 2010 SciRes. JSEA

476

Table 3. PSNR and Bitrate Comparison between the proposed algorithm and FS with QP = 10 to 20; (a) Stefan QCIF; (b)
Foreman QCIF

Stefan QCIF ForemanQCIF

 FMFME Full Search FMFME Full Search

QP
Psnr
(dB)

BR
(kbits)

Psnr
(dB)

BR
(kbits)

Gain
(dB)

BR
Gain

QP
Psnr
(dB)

BR
(kbits)

Psnr
(dB)

BR
(kbits)

Gain
(dB)

BR
Gain

10 49.48 2602.9
4

49.48 2600.0
2

0 -0.11% 10 49.69 1457.1 49.69 1455.0
2

0 -0.15%

12 47.64 2203.3
1

47.64 2201.3
4

0 -0.09% 12 47.97 1149.2
1

47.97 1146.8 0 -0.21%

14 46.13 1891.5
3

46.14 1889.5
8

-0.01 -0.10% 14 46.5 923.26 46.5 921.76 0 -0.16%

16 44.48 1611.5 44.48 1608.4
8

0 -0.19% 16 44.89 732.14 44.9 729.57 -0.01 -0.35%

18 42.58 1323.5
3

42.58 1321.5
7

0 -0.15% 18 43.11 552.33 43.12 550.69 -0.01 -0.30%

20 40.89 1095.2
1

40.89 1092.2
3

0 -0.27% 20 41.52 422.31 41.53 419.7 -0.01 -0.62%

22 39.3 903.06 39.3 900.83 0 -0.25% 22 40.03 328.54 40.03 326.17 0 -0.73%

24 37.36 707.5 37.36 705.61 0 -0.27% 24 38.32 241.99 38.33 238.92 -0.01 -1.28%

26 35.65 557.72 35.66 555.8 -0.01 -0.35% 26 36.83 180.03 36.85 178.54 -0.02 -0.83%

28 33.95 432.34 33.96 430.4 -0.01 -0.45% 28 35.48 136.92 35.49 135.35 -0.01 -1.16%

30 32.06 322.08 32.07 320.79 -0.01 -0.40% 30 33.99 103.02 34 101.24 -0.01 -1.76%

32 30.34 238.65 30.34 236.84 0 -0.76% 32 32.57 77.65 32.58 76.58 -0.01 -1.40%

34 28.79 177.98 28.8 177.61 -0.01 -0.21% 34 31.3 60.67 31.34 59.62 -0.04 -1.76%

36 27.13 127.37 27.13 127.04 0 -0.26% 36 29.96 45.86 30.03 45.43 -0.07 -0.95%

38 25.66 94.1 25.68 93.35 -0.02 -0.80% 38 28.63 35.55 28.71 35.47 -0.08 -0.23%

40 24.33 70.58 24.36 70.35 -0.03 -0.50% 40 27.49 28.63 27.53 28.3 -0.04 -1.17%

 Average -0.00625 -0.32% Average -0.02 -0.82%

(a) (b)

The complexity is shown in Table 3. The proposed

algorithm can reduce computational cost by 58% on av-
erage (equivalent complexity of performing motion esti-
mation on 1.7 block types instead of 4 block types) with
negligibly small PSNR degradation (0.013dB) and slight-
increase in bit rate (0.57%).

4. Conclusions

In this paper, we propose a method to eliminate some
redundant coding modes, which speeds up the process of
multi-mode selection. The simulation results show that the
algorithm can remarkably decrease the complexity at the
encoder while keeping satisfying coding efficiency.

REFERENCES
[1] “Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T

VCEG: Draft Text of Final Draft International Standard
for Advanced Video Coding,” H. 264|ISO/IEC 14496-10
AVC, ITU-T.

[2] M. Ghanbari, “Standard Codecs: Image Compression to
Advanced Video Coding,” IEE Publishing, 2002.

[3] E. G. Iain and Richardson, “H.264 and MPEG-4 Video
Compression,” Wiley, 2003.

[4] F. S. Yan, “Fast mode selection based on texture analysis
and local motion activity in H.264/AVC,” 2004 Inter-
national Conference of Communications, Circuits and
Systems, Chengdu, Vol. 1, 27-29 June 2004, pp. 539-542.

[5] G. W. Teng, Z. Y. Zhang, Y. J. Zhang and W. J. Zhang,
“Fast Mode Decision Algorithm in Inter Pictures Based on
H. 264/ AVC,” Journal of Optoelectronics·Laser, Vol. 16,
No. 7, July 2005, pp. 866-870.

[6] “JVT Reference Software JM75C”. http://bs.hhi.de/~sueh
ring/tm

[7] A. Chang, O. C. Au and Y. M. Yeung, “A Novel Approach
to Fast Multi-block Motion Estimation for H.264 Video
Coding,” Proceedings 2003 International Conference on
Multimedia and Expo, Maryland, Vol. 1, 6-9 July 2003, pp.
539-542.

[8] A. C. Yu, “Efficient Block-size Selection Algorithm for
Inter-Frame Coding in H.264/MPEG-4 AVC,” 2004 IEEE
International Conference on Acoustics, Speech and Signal
Processing, Montreal, Vol. 3, 17-21 May 2004, pp.69-72.

[9] Y. S. Cui, D. G. Duan and Z. L. Deng, “Fast Motion
Estimation Algorithm on H.264,” Journal of Liaoning
Institute of Technology, Vol. 24, No. 5, October 2004, pp.
12-15.

J. Software Engineering & Applications, 2010, 3: 477-486
doi:10.4236/jsea.2010.35054 Published Online May 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

Test Cost Optimization Using Tabu Search

Anu Sharma*, Arpita Jadhav, Praveen Ranjan Srivastava, Renu Goyal

Computer Science and Information System Group, Birla Institute of Technology and Science, Pilani, India.
Email: {*anu11sharma1123, arpitajadhav, praveenrsrivastava}@gmail.com

Received January 5th, 2010; revised February 21st, 2010; accepted February 25th, 2010.

ABSTRACT

In order to deliver a complete reliable software product, testing is performed. As testing phase carries on, cost of testing
process increases and it directly affects the overall project cost. Many a times it happens that the actual cost becomes
more than the estimated cost. Cost is considered as the most important parameter with respect to software testing, in
software industry. In recent year’s researchers have done a variety of work in the area of Cost optimization by using
various concepts like Genetic Algorithm, simulated annealing and Automation in generation of test data etc. This paper
proposes an efficient cost effective approach for optimizing the cost of testing using Tabu Search (TS), which will provide
maximum code coverage along with the concepts of Dijkstra’s Algorithm which will be implemented in Aspiration criteria
of Tabu Search in order to optimize the cost and generate a minimum cost path with maximum coverage.

Keywords: Tabu Search, Test Cost Optimization, Dijikstra’s Algorithm

1. Introduction

Software engineering is not just to develop new software
but also that product should be more reliable and cost
effective so that client can effectively use that. According
to Bezier B [1], Software testing is an important factor in
software development life cycle in which one-third to
one-half of the total cost of the product is consumed only
on the testing process. Software testing is a process to
trace out the errors in software that intended to meet the
desired result of the programmer by satisfying all the pre
condition factors setup by the tester. Since, software
testing is becoming more popular and demanding area in
the software development industry in past few years [2].
Resulting product is very reliable if testing covers
maximum errors. But on the contrary, during testing the
cost can increase more than the expected value due to
inappropriate test cases. These inappropriate test cases
cause wastage of organizational resources as well as time.
There is a need to minimize the cost for getting an ac-
ceptable product.

In order to deal with the above issue and also to provide
good quality software within desired time and least cost
Researchers have applied several techniques on minimi-
zation of cost in testing of product, such as fuzzy logic,
automatically generation of test data [3]. But here we are
using Tabu Search [4]. Tabu Search will choose appro-
priate test paths and concepts of Dijkstra algorithm will be
implemented in Aspiration Criteria to optimize the cost. If
any test case does not provide maximum coverage, pro-

posed algorithm will backtrack and starts with a new path.
This paper is organized as follow:
Section 2 describes the general introduction to software

testing, Section 3 shows historical detail of the tabu search
in testing area, Section 4 describes about the tabu search,
Section 5 shows dijkstra algorithm used in proposed ap-
proach, Section 6 is the proposed technique which uses
tabu search with dijkstra algorithm, Section 7 is showing
experimental illustration of the proposed algorithm Sec-
tion VIII is conclusion and further work.

2. Software Testing

Although crucial to software quality and widely deployed
by programmers and testers, software testing still remains
an art, due to limited understanding of the principles of
software [1,2]. The software testing strategy is an impor-
tant process in case of software development lifecycle
model [2]. Testing is a process which leads delivery of
higher quality products, low cost, more accurate and re-
liable results of developed computer software. The pur-
pose of testing includes quality assurance, verification and
validation, or reliability estimation. If all shortest paths
which can be measured by plotting the control flow graph
[2], with maximum coverage are known to the tester,
estimated cost taken by testing process can be reduced.

3. Related Work

Organizations facing the challenge of solving testing cost
problems. Classical approaches often suggested solution

Test Cost Optimization Using Tabu Search

Copyright © 2010 SciRes. JSEA

478

to the coverage problem but there is very less number of
solutions that control the cost while providing the rea-
sonable quality to the software. On tabu search research is
going on rapidly but no method exists to control the cost
of testing, Even if we do the automation there should be
some criteria to select the appropriate test cases.

Several attempts have been made over the years to
develop such an algorithm for the Optimization of the cost
to find out an efficient path automatically.

Research has applied many approaches for the same
purpose [5]. The basic algorithm of Tabu Search is ex-
plained in [6]. The concept of Tabu Search has also been
applied to optimize the Cost of the program with maxi-
mum code coverage [6]. Previously the work has been
done on the automation of test cases using Tabu search
algorithm on complex programs under test and large
number of input variables. Using these automation tools
cost can be reduced and saves the time [3,7]. Another
approach suggests the use of tabu search algorithm for
generation of structural software tests [4]. It also com-
bines the use of memory with a backtracking process to
avoid getting stuck in local minima [8]. To explore the
regions and to avoid the revisiting of candidate list a po-
sition guided tabu search based on metric search space has
been covered. To improve the intensification (search the
local optimal solution) and diversification (exploring new
regions)[9] ITS based approach has been used in a re-
search Tabu search implemented to “genetic” methods
and evolutionary method, to deal with the complex path
tabu search have adaptive memory structure so it can also
be applied to the neural networks. Tabu Search has been
also applied to solve the Job Shop Scheduling problem
using Genetic Algorithms [10]. Most of the scheduling
problems require either exponential time or space to
generate an optimal answer. Many researchers have been
done for identifying the infeasible paths of a program [11].
Different algorithms and techniques have been proposed
by the researchers to detect optimized paths
[12,13].Generating test data automatically and identifying
infeasible paths reduces the testing cost, time and effort
[14].

Since cost and code coverage play an important role in
testing. But not much of work has been suggested for cost
optimization with maximum code coverage. This paper
provides the solution for the above problem. Which em-
ploy Tabu Search algorithm with the concept of greedy
approach to provide a minimum cost path by covering
most of the nodes and storing the best path solution into
memory.

4. Tabu Search [6]

Tabu search is a metaheuristic approach which is used to
solve the optimization problems, [6,15]. It is designed to
guide other methods to escape the trap of local optimality,
also called local minima.

Overview of Tabu Search:
Three primary themes form the basis of Tabu search:
1) Flexible attribute-based memory structure: It is de-

signed in such a way so that the evaluation criteria as well
as historical search information can be exploited more
thoroughly than by rigid memory structures (as in branch
bound) or by memory less systems (as in case of simulated
annealing).

2) An associated mechanism of control is embodied for
employing the memory structures, which are based on the
interplay between conditions that constrain the search
process.

3) At different time spans, the incorporation of memory
functions, from short term to long term, as well as to im-
plement strategies for intensifying and diversifying the
search process to give optimal results.

a) Intensification strategies, helps in reinforcing and
moving combinations and solution features historically
that are found good.

b) Diversification strategies, drives the search process
into new regions as to explore every possible area and
region.

Distinguishable Features:
Short-term Memory and Aggressive Search:
Short-term memory constitutes a form for aggressive

exploration and captures the best move possible under
tabu restrictions. Tabu restrictions prevent the reversal
and repetition of certain moves by rendering selected
attributes covered in previous moves (forbidden). Primary
goal of tabu restriction is to permit the method to go be-
yond the points of local optimality during its iterations.
Tabu restrictions help in preventing cycles and induce the
search to follow a new trajectory, in case if cycling occurs.

Tabu Restriction [15]:
These are certain conditions which are imposed on

moves that make some of the moves forbidden. These
forbidden moves, in-turn are listed to a certain size called
as tabu. And this list is considered as “tabu list”. The
reason behind to denote a move as forbidden is to prevent
cycling and avoiding returning to the local optimum that
has been visited. In order to identify a good tabu list size,
simply watch the occurrence of cycling (if it occurs) when
the size of the list is too small and deteriorate the quality
of solution when the size of the list is too large which is
caused by forbidding too many moves. Remember, that
the size of tabu list should grow with the size of the
problem. Also it prevents the added edges from being
dropped as well as it prevents the dropped edges from
being added.

A general approach for the tabu search [3,15] is as shown
in Figure 1 and the basic elements of TS are as follows:

1) Current solution: it comprises a set of the optimized
parameter values for a given iteration. It plays a crucial
role in order to generate the neighbor trial solutions.

2) Moves: These are related to current solution and

Test Cost Optimization Using Tabu Search

Copyright © 2010 SciRes. JSEA

479

characterize the process of generating the trial solutions.
3) Set of candidate moves: It comprises the set of all

possible moves or may be trial solutions.
4) Aspiration Criterion: It is a rule for overriding the

tabu restrictions, for example if certain move is forbidden
by tabu restriction, aspiration criterion has to be satisfied,
once it is satisfied, it can only make this move allowable.
One we considered here is to override the tabu status of a
move if this particular move yields a solution which has
better objective function (let it be J), than the one that was
obtained earlier within the same move. The phenomenon
behind using aspiration criterion is to add flexibility in the
tabu search by directing it towards better moves.

5) Long Term and Short Term Memory: Tabu incor-
porate two type of memory long term memory and short
term memory. Short term memory stores more recent
moves and long term memory keeps all the related moves.

6) Stopping Criterion: When best solution already
reached, maximum iterations have been performed and
when certain conditions are not meet.

5. Dijkstra Algorithm

Dijkstra’s algorithm [16] is a graph search algorithm, that
traverses all the nodes and it helps in providing minimum
cost path from source to destination node. It is also known
as greedy approach and it finds the shortest path between
single source to all other nodes.

That’s why sometime it is also called as single source
shortest path problem. It can also be used for finding costs
of shortest paths from a single source node to a single
destination node by stopping the algorithm once the
shortest path to the destination has been determined. For
example: in case of city problem, in which the vertices of
the graph represent cities and edge represents the distance
between the cities.

6. Proposed Solution (Tabu Search with
Dijkstra Algorithm)

Since cost and coverage are two important factors in case
of testing. Here in our proposed algorithm we are using
the Tabu Search concept to resolve both of the issues.

The algorithm as shown in the Figure 3. Which we
have developed uses tabu search [3,6,15] with the con-
cepts of Dijkstra’s Algorithm [16] which will be imple-
mented in Aspiration criteria of Tabu Search in order to
optimize the cost and generate a minimum cost path with
maximum coverage.

For fulfilling the desired purpose we are require to
inspect the program thoroughly to check the aspiration
criteria. For this our software will generates the control
flow graph of the statement automatically. Where node
represents the statement and link represents the flow of
control between the statements.

Our algorithm states that in case of fulfilment of all the

begin
 Initialise some current solution

 Calculate the cost of current solution and store it as best cost

 Store current solution as new solution

 Add new solution to tabu list

 do

 Calculate neighbourhood candidates

 Calculate the cost of candidates

 Store the best candidate as new solution

 Add new solution to tabu list

 if (the cost of new solution<best cost) then

 Store new solution as best solution

 Store the cost of new solution as best cost

 endif

 Store new solution as current solution

 while NOT Stop Criteria

end

Figure 1. Basic tabu search algorithm [3]

three conditions given in aspiration criteria will move
further to next iteration otherwise system goes in
backtracking stage. The flow of all related activities is as
depicted in Figure 2.

7. General Illustration of Proposed
Algorithm

In this section we have presented a simple program for the
calculation of the ship charge that depends on amount, tax
and rush charge. And then we have made its correspond-
ing control flow graph. This control graph is taken as input
for the software. In the graph, the nodes represent the
statements and the edges represent the flow between the
statements. The cost for several edges can be calculated
by using Halsted’s Software Science [2] or with the prior
experience of developer for the application.

Case Study: To test the proposed approach we have
applied that to the program given in Figure 4, and we will
check the solution iteration by iteration. At the end tabu
List store the best optimized path in its memory.

1) Figure 5. represents the intial control flow graph.
Here node ‘a’, represents the starting node and n repre-
sents ending node. Any graph can be provided as input.
This algorithm will provide minimum cost and maximum
code coverage.

2) Once the algorithm starts, here node ‘b’ is selected to
be the next node as its cost is minimum.Same criteria will
be used with respect to all other nodes.

3) Here the next node will be chosen as ‘c’ as c is the
other node with minimum cost.

4) Here the next node will be chosen as ‘d’.
5) Here the next node will be chosen as ‘n’.
6) In this step the algorithm will backtrack since the

path through ‘d’ did not give the least cost path. The next
node will be chosen as ‘e’.

Test Cost Optimization Using Tabu Search

Copyright © 2010 SciRes. JSEA

480

Start

Initialize Tabu list

Make candidate list

Apply Aspiration Criteria

Put recent moves (Short term memory), Put Rest all
moves (long term memory)

Does it give max
coverage in min

cost?

Back track (stopping criteria)

Does it satisfy any
two conditions of

AC?

Enters into
Tabu list

Enters into Tabu
list

Figure 2. Flow graph

7) Here the next node will be chosen as ‘f’.
8) Here the next node will be chosen as ‘n’. In this step

this algorithm will backtrack since the path through ‘f’ did
not give the least cost path. The next node will be chosen
as ‘g’.

9) Here the next node will be chosen as ‘h’.

1. Start algorithm
For(N:=1; N<=candidate list C1; N++)
If

2. Aspiration criteria(Ac)(max. coverage && min. cost &&
reach to subgoal)

3. Calculate cost

4. Enter in the tabu list

Else

5. Backtracking beginning
Stopping Criteria (SC)[(max coverage && min. cost)!! (Max.
coverage && reach to subgoal)

6. Calculate cost

7. Enter in the tabu list

End

Figure 3. Proposed algorithm

Public double calculate(int amount)

{

Double rushcharge=0;

If(nextday.equals(“yes”)){

Rushcharge=14.50; }

Double tax=amount*.0725;

If(amount>=1000){

Shipcharge=amount*.06+rushcharge; }

Elseif(amount>=200) {

Shipcharge=amount*.08+rushcharge; }

Elseif(amount>=100) {

Shipcharge=13.25+rushcharge; }

Elseif(amount>=50) {

Shipcharge=9.95+rushcharge; }

Elseif(amount>=25) {

Shipcharge=7.25+rushcharge; }

Else {

Shipcharge=5.25+rushcharge; }

Total=amount+tax+shipcharge;

Return total;

End calculate

Figure 4. Sample program

10) Here the next node will be chosen as ‘n’. In this step
the algorithm will backtrack since the path through ‘h’did
not give the least cost path. The next node will be chosen
as ‘i’.

11) Here the next node will be chosen as ‘j’.
12) Here the next node will be chosen as ‘n’.In this step

the algorithm will backtrack since the path through ‘j’ did
not give the least cost path. The next node will be chosen
as ‘k’.

Test Cost Optimization Using Tabu Search

Copyright © 2010 SciRes. JSEA

481

Figure 5. Initial control flow graph

Figure 6. Cost at node b

Figure 7. Cost at node c

Figure 8. Cost at node d

Test Cost Optimization Using Tabu Search

Copyright © 2010 SciRes. JSEA

482

Figure 9. Cost at node n

Figure 10. Cost at node e

Figure 11. Cost at node e

Figure 12. Cost at node f

Test Cost Optimization Using Tabu Search

Copyright © 2010 SciRes. JSEA

483

Figure13. Cost at node g

Figure14. Cost at node h

Figure15. Cost at node i

Figure16. Cost at node j

Test Cost Optimization Using Tabu Search

Copyright © 2010 SciRes. JSEA

484

Figure17. Cost at node k

Figure18. Cost at node l

Figure19. Cost at node m

13) Here the next node will be chosen as ‘l’.
14) Here the next node will be chosen as ‘n’. In this step

the algorithm will backtrack since the path through ‘l’ did
not give the least cost path. The next node will be chosen
as ‘m’.

15) Here the next node will be chosen as ‘n’.
Hence in accordance, with the above illustration we

conclude that proposed algorithm gives maximum code
coverage along with least cost.

Hence from the table we can see that in the long term
memory all paths have been tested. Tabu list will provide
least cost path with maximum coverage in the future if the
similar type of module comes for the development then
only tabu path can be tested.

8. Conclusions and Further Work

This paper presents a meta-heuristic search technique that
depends upon the neighborhood solution. There are a lot
of real world problems that have been solved by tabu
search. Many authors have published their work on tabu
search in area of software testing. But this is unique kind
of work what we have proposed in this paper solves the
problem of cost optimization in software testing. This
paper presents use of tabu search with dijksra algorithm (a
greedy approach) to provide an efficient path with maxi-
mum code coverage and minimum cost.

The structure of the paper shows that tabu search de-

Test Cost Optimization Using Tabu Search

Copyright © 2010 SciRes. JSEA

485

Table 1. Table for calculation of tabu path

Iteration
Long Term

Memory
Short Term
 Memory

Tabu
List

Cost

1.
a-b (2)
a-c (26)

a-b (2) Nil 2

2.
a-b-c(12)
a-c (26)

a-b- (12) Nil 12

3.
a-b-c-d (18)
a-b-c-e (19)

a-b-c-d (18) Nil 18

4.
a-d-c-d-n (82)
a-b-c-e (19)

a-b-c-e (19) Nil 19

5.
a-b-c-e-g(28)
a-b-c-e-f (26)

a-b-c-e-f (26) Nil 26

6.
a-b-c-e-f-n

(82)
a-b-c-e-g (28)

a-b-c-e-g(28) Nil 28

7.

a-b-c-e-g-h
(40)

a-b-c-e-g-i
(42)

a-b-c-e-g-h
(40)

Nil 40

8.

a-b-c-e-g-h-n
(77)

a-b-c-e-g-i
(42)

a-b-c-e-g-i
(42)

Nil 42

9.

a-b-c-e-g-i-j
(52)

a-b-c-e-g-i-k
(58)

a-b-c-e-g-i-j
(52)

Nil 52

10.

a-b-c-e-g-i-j-n
(97)

a-b-c-e-g-i-k
(58)

a-b-c-e-g-i-k
(58)

Nil 58

11.

a-b-c-e-g-i-k-l
(71)

a-b-c-e-g-i-k-
m (72)

a-b-c-e-g-i-k-
l (71)

Nil 71

12.

a-b-c-e-g-i-k-l
-n (121)

a-b-c-e-g-i-k-
m (72)

a-b-c-e-g-i-k-
m (72)

Nil 72

13.

a-b-c-e-g-i-k-
m-n (82)

a-b-c-e-g-h-n
(77)

a-b-c-e-g-h-n
(77)

Path is
a-b-c-e-

g-h-n
(77)

77

pends upon searching the neighboring nodes and memo-
rizing the best solution in its short term memory. All other
related solutions are memorized in long term memory of
the system which makes tabu search simple to apply in the
problem, that is maximizing code coverage with minimum
cost.

Furthermore, we have also introduced the concept of
backtracking to distinguish those solutions that trapped us
towards local minima. We tried to cover the uncovered
nodes and the conditions in the program .The system have
been tested for several examples. Furthermore the ex-
perimental results for one of them are detailed above what
we have obtained with the proposed algorithm making it
an effective technique in coverage area (branch, path,
condition). There is further scope for future work because
this strategy is applicable at low level and the moderate
level of testing. More work in this area can be carried out
to use this technique for projects dealing with complex
level testing issues.

REFERENCES

[1] B. Beizer, “Software Testing Techniques,” 2nd Edition,
van Nostrand Reinhold, New York, 1990.

[2] I. Sommerville, “Software Engineering, Pearson Educa-
tion,” 7th Edition, Tata Mc-Graw Hill, India, 2005.

[3] E. Diaz, J. Tuya and R. blanco “Automatic Software
Testing Using a Metaheuristic Technique Based on Tabu
Search,” Proceedings 18th IEEE International Conference
on Automated Software Engineering, Montreal, 2003, pp.
301-313.

[4] E. Díaz, J. Tuya, R. Blanco and J. J. Dolado, “A Tabu
Search Algorithms for Structural Software Testing,” ACM
proceeding, Vol. 35, No. 10, October 2008, pp. 3052-
3072.

[5] P. McMinn, “Search-based Software Test Data Generation:
A Survey”, Software Testing, Verification and Reliability,
ACM library, Vol. 14, No. 2, 2004, pp 105-106.

[6] F. Glover, “Tabu Search Part I,” ORSA Journal on
Computing, Vol. 1, No. 3, 1989, pp. 190-206.

[7] E. Díaz, J. Tuya, R. Blanco. “A Modular Tool for
Automated Coverage in Software Testing,” Proceedings
of the 7th Annual International Workshop on Software
Technology and Engineering Practice, Amsterdam, 2003,
pp. 241-246.

[8] R. Blanco, J. Tuya and B. A. Diaz, “Automated Test Data
Generation Using a Scatter Search Approach,” Infor-
mation and Software Technology, Vol. 51, No. 4, 2009, pp.
708-720.

[9] A. Misevičius, “Using Iterated Tabu Search for the
Travelling Salesman Problem,” Information Technology
and Control, Vol. 32, No. 3, 2004, pp.29-40.

[10] R. Thamilselvan, D. P. Balasubramanie, “Integrating
Genetic Algorithm, Tabu Search Approach for Job Shop
Scheduling,” IJCSIS Transactions on Software Enginee-
ring, Vol. 2, No. 1, 2009, pp. 134-139.

[11] J. Gustafsson, A. Ermedahl, and B. Lisper, “Algorithms
for Infeasible Path Calculation,” 6th International
Conference on Worst-Case Execution Time, Dresden,
Euromicro Conference on Real-Time Systems, 2006.

[12] R. Jasper, M. Brennan, K. Williamson and B. Currier,
“Test Data Generation and Feasible Path Analysis,” Pro-

Test Cost Optimization Using Tabu Search

Copyright © 2010 SciRes. JSEA

486

ceeding of the International Symposium on Software
Testing and Analysis, Seattle, ACM, 1994, pp.95-107.

[13] J. Carlos, M. Alberto and Francisco, “A strategy for
Evaluating Feasible and Unfeasible Test Cases for The
Evolutionary Testing of Object-oriented Software,” 30th
International Conference on Software Engineering, Leip-
zig, 2008, pp. 85-92.

[14] J. C. Lin and P. L. Yeh, “Automatic Test Data Generation
for Path Testing Using GAs,” Information Sciences, Vol.
131, No. 1-4, 2006, pp. 2380-2401.

[15] F. Glover and M. Laguna, “Tabu Search,” Kluwer Aca-
demic Publishers, 1997.

[16] “Dijkstra’s Algorithm,” Wikipedia. http://en.wikipedia.
org/wiki/Dijkstra’s_algorithm

J. Software Engineering & Applications, 2010, 3: 487-494
doi:10.4236/jsea.2010.35055 Published Online May 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

Research on Knowledge Creation in Software
Requirement Development*

Jiangping Wan1,2, Hui Zhang1, Dan Wan1, Deyi Huang3

1School of Business Administration, South China University of Technology, Guangzhou, China; 2Institute of Emerging Industrializa-
tion Development South China University of Technology, Guangzhou, China; 3E-jing Technologies, Hong Kong Science Park Shatin,
Hong Kong SAR.
Email: {scutwjp, dandanwan42}@126.com, shidelan@163.com, huangdy3816@tom.com

Received February 3rd, 2010; revised March 15th, 2010; accepted March 17th, 2010.

ABSTRACT

After field survey and literature review, we found that software requirement development (SRD) is a knowledge creation
process, and knowledge creation theory of Nonaka is appropriate for analyzing knowledge creating of SRD. The
characteristics of knowledge in requirement elicitation process are analyzed, and dissymmetric knowledge of SRD is
discussed. Experts on requirement are introduced into SRD process as a third knowledge entity. In addition, a knowledge
creation model of SRD is put forward and the knowledge flow and the relationship of entities of this model are illustrated.
Case study findings are illustrated in the following: 1) The necessary diversity of the project team can facilitate the
implementation of the SRD. 2) The introduction of experts on requirement can achieve the transformation of knowledge
effectively, thus helping to carry out the SRD. 3) Methodology and related technologies are important for carrying out the
SRD.

Keywords: Requirement Engineering, Knowledge Creation, Dissymmetric Knowledge, Knowledge Conversion, Experts

on Requirement, Methodology

1. Introduction

Michael Polanyi divided knowledge into tacit knowledge
and explicit knowledge [1]. Tacit knowledge exists in
human brains, which is the knowledge that people don’t
know, in other words people don’t know what they know.
Verna Allee thought that tacit knowledge which exists in
individuals is private and has its own special background,
and it also depends on experience, intuition and discern-
ment [2]. Nonaka figured that organizations create and
make use of knowledge via the interaction of tacit
knowledge and explicit knowledge, which is called
knowledge conversion process [3]. Li Xiao-Ming et al.
analyzed the requirement elicitation process (REP) in the
view of knowledge management and put forward the
countermeasures. In our understanding, it is necessary to
discuss how knowledge is converted during REP in details,
and present an embodying knowledge conversion pattern
[4].Wan Jiangping researched on the knowledge integra-
tion support structure of quality software production [5],
and established knowledge transfer model of software

process improvement (SPI) and the conceptual framework
of influencing factors [6].

This paper is organization as following: we firstly
analyze the characteristics of knowledge during REP; then
based on characteristics of SECI (socialization, exter-
nalization, combination, and internalization) knowledge
spiral model, dissymmetric knowledge flow theory and
knowledge communication, a knowledge conversion mo-
del is put forward, which is used to analyze the require-
ments development process of the NY Company’s cost
accounting system.

2. Literature Review

2.1 Tacit Knowledge and Knowledge Conversion

Organizational knowledge creation is the process of
making available and amplifying knowledge created by
individuals as well as crystallizing and connecting it to an
organization’s knowledge system. The concept of “tacit
knowledge” is a cornerstone in organizational knowledge
creation theory and covers knowledge that is unarticulated
and tied to the senses, movement skills, physical experi-
ences, intuition, or implicit rules of thumb. Knowledge of
wine tasting, crafting a violin, or interpreting a complex

*This research was supported by Key Project of Guangdong Province
Education Office (06JDXM63002), NSF of China (70471091), and
QualiPSo (IST- FP6-IP-034763)

Research on Knowledge Creation in Software Requirement Development

Copyright © 2010 SciRes. JSEA

488

seismic printout of an oil reservoir are well-known ex-
amples of tacit knowledge. The concept of “knowledge
conversion” explains how tacit and explicit knowledge
interact along a continuum. Nonaka argued that knowl-
edge is created and used in organization through knowl-
edge is transformed process, including four patterns: so-
cialization, externalization, combination, and internaliza-
tion. All four of these patterns exist in dynamic interaction.
Knowledge is really and truly created and used effectively
and effectively depending on dynamic business system is
established [3,7].

There nine questions are put forward in the following
[8]: 1) What is the status of “truth” in the definition of
knowledge? 2) Do tacit and explicit knowledge fall along
a continuum? 3) Is the tacit/explicit knowledge distinction
along the continuum valuable for organization science? 4)
What is the conceptual basis of knowledge conversion? 5)
Given the relationship between tacit knowledge and social
practices, how can the concept of knowledge conversion
be upheld? 6) What is the outcome of knowledge con-
version? 7) What is the relationship between organiza-
tional knowledge creation and social practices in organi-
zations? 8) When and why do social practices contribute
to the conservation of existing tacit knowledge and ex-
isting routine rather than organizational knowledge crea-
tion and innovation? 9) How can leadership motivate and
enable individuals to contribute to organizational know-
ledge creation by transcending social practices?

2.2 Enabling Knowledge Creation

There five knowledge enablers in the following: 1) Instill
a knowledge vision, 2) Manage conversations, 3) Mobi-
lize knowledge activists, 4) Create the right context, and 5)
Globalize local knowledge. The effective knowledge
creation depends on an enable context. What we mean by
enabling context is shared space that fosters emerging
relationships. This definition of context is connected to
our first two points: knowledge is dynamic, relational, and
rather than on absolute truth or hard facts. The essential
thing for managers to remember is that all knowledge, as
opposed to information or data, depends on its context.
There are the five knowledge-creation steps in the fol-
lowing: 1) Sharing tacit knowledge, 2) Creating concepts,
3) Justifying concepts, 4) Building a prototype, and 5)
Cross leveling knowledge [9].

2.3 Software Requirements Engineering

Requirements engineering (RE) is the branch of software
engineering concerned with the real-world goals for,
functions of, and constraints on software systems. It is
also concerned with the relationship of these factors to
precise specifications of software behavior, and to their
evolution over time and across software families [10].
There are five core RE activities in the following: 1)
Eliciting requirements, 2) Modeling and analyzing re-

quirements, 3) Communicating requirements, 4) Agree-
ing requirements, and 5) Evolving requirements. This
paper analyzes the eliciting requirements.

2.4 Characteristics of Knowledge in
Software REP

REP is actually a process of developing conditions that
satisfied people in the following: 1) Understanding re-
quirements; 2) Participating in this project (in most cases);
3) Understanding how to work effectively as a team
[11].The generic process of requirement elicitation is
illustrated in Figure 1. First, we work with our customers
to elicit the requirement, by asking questions, demon-
strating similar systems, or even developing prototypes of
all or part of the proposed system. Next, we capture those
requirements in a document or database. Then, the re-
quirements are often rewritten, usually in a more mathe-
matical representation, so that the designers can transform
the requirements into a good system design. A verification
and validation step makes sure that the requirements are
complete, correct, consistent, and the requirements are
what the customer intends to [12].

In software REP, besides the requirements that clients
or users are able to bring forward, they also have re-
quirements that could not be clearly expressed. The
characteristics of software tacit requirements are summed
up in the following: 1) Tacit requirements are hard to
express, convert, communicate and share; 2) Tacit re-
quirements are often related to application domain; 3)
Tacit requirements are often users’ tacit knowledge; 4)
Tacit requirements are experiential knowledge which
developing team accumulates step by step in practice
during a long period of time; 5) Tacit requirements are
hard to encode and articulate; 6) Tacit requirements can
be expressed hazily and crudely.

3. Establishment Knowledge Creation
in Software REP

3.1 Software REP in the View of SECI
Knowledge Spiral Model

SECI Knowledge Spiral Model illustrates the relationship
between tacit knowledge and explicit knowledge and how
they convert into each other, and it also illustrates the way
tacit knowledge and explicit knowledge convert and share.
Finally new knowledge is created in this conversion
process.

1) Socialization: It is tacit knowledge from individual
to individual, and in the process people actualizes the
expression and conversion of knowledge by means of
observation, imitation, etc. In software REP, knowledge
socialization includes the internal conversion between
users’ knowledge, which is the principal part and the
external conversion of tacit knowledge among users,

Research on Knowledge Creation in Software Requirement Development

Copyright © 2010 SciRes. JSEA

489

Problem analysis

Problem description

Prototyping and

testing

Documentation and validation

Requirement elicitation and analysis

Have we captured all the
user need?

Are we using the right
techniques or views?

Is this function feasible?
How we captured what the

user expects?

Requirement definition and
specification

Figure 1. Software REP

experts on requirement, and developers. Finally they all
reach consensus.

2) Externalization: It is the conversion from tacit
knowledge to explicit knowledge, expressing tacit know-
ledge written down or stored in computer, etc. In software
REP, mainly with the help of experts on requirement or
consultants, knowledge externalization is the process in
which users’ tacit knowledge is converted into explicit
knowledge, which could be directly accepted by devel-
opers.

3) Combination: It is the process from separate ex-
plicit knowledge to systematic explicit knowledge in
which explicit knowledge is further systematized and
complicated. It involves different kinds of external ex-
plicit knowledge system. In software REP, with knowl-
edge of experts on requirement further systematized,
developers integrate their own knowledge to make the
requirements specification.

4) Internalization: It is the process from explicit
knowledge to tacit knowledge; in the process individuals
digest and adsorb the knowledge from different mediums,
and make it into their own abilities. In software REP,
experts on requirement pass the combined explicit
knowledge (requirements specification or prototype) to
users who may consequently have a further understanding
of the system.

3.2 Analysis of Dissymmetric Knowledge Flow

Because of dissymmetric knowledge, knowledge flows
from high knowledge level to low knowledge level
(Figure 2). There are two main knowledge flows: the one
from users to developers is mainly knowledge in business
domain and other users’ tacit knowledge, while the other
one from developers to users is knowledge in software
domain and system performance requirements, etc.

The flow of dissymmetric knowledge makes the con-
version of knowledge type, namely integrating the
knowledge of developers and users and making users’
tacit knowledge articulate to form their very requirements,
which are the critical parts of REP. After feeding back, the
integrated knowledge flows to users, and then when it is
confirmed, REP is initially finished. But this does not
imply that the REP is ended; on the contrary, during the
whole process, software requirements are gradually up-

dated along with feedbacks of information from different
stages [13].

Software REP is the process in which users, experts on
requirement, developers and other demand sources
communicate their information and knowledge, and it is
also the process in which the knowledge of users, experts
on requirement and software developers are integrated.
Because of users’ participation, experts on requirement
and developers may absorb users’ information to make it
into knowledge, and update their knowledge with their
experience, cooperation value, project goals and business
principles, which may reach the goal of requirement
elicitation. Therefore, REP is the process of knowledge
flow, integration and innovation. Meanwhile, users im-
prove themselves continuously in the process of knowl-
edge flow.

3.3 Conditions for Knowledge Conversion

In software REP, the face-to-face communication which is
aimed at knowledge conversion is different from generic
communication [14], firstly, the two parties are quite
dissymmetric in knowledge; then the communication is to
elicit users’ tacit knowledge and show developers’ soft-
ware knowledge; finally, the process of communication is
an iterative negotiation process.

In the communication for requirement elicitation, users,
experts on requirement, developers and relevant personnel
should clearly understand each element in successful
knowledge conversion, and only the honest speakers who
own knowledge and listeners who trust and understand
speakers may interact to reach the goal of knowledge
conversion and tacit knowledge elicitation[15].

3.4 Model of Knowledge Conversion in REP
Based on SECI

The model of knowledge conversion in REP based on
SECI is illustrated in Figure 3.

In software REP, the externalization process of tacit
requirements is the process in which users and developers
communicate via experts on requirement. As the central
part in REP, experts on requirement not only listen atten-
tively to users’ requirements and developers’ description
of technologies and computer, but also win the trust of
users and developers as authorities and able persons,

Research on Knowledge Creation in Software Requirement Development

Copyright © 2010 SciRes. JSEA

490

 Developers’ tacit knowledge

Developers

Expression of
knowledge in software

domain

Integrated requirements
 accumulating, tacit

 knowledge articulating

Users’ tacit knowledge

Expression of knowledge in
business domain Users

Feedbacks
from

developers

Feedbacks
from users

Themselves
Improvement

Figure 2. Flows of dissymmetric knowledge

Externalization Socialization

Combination Internalization

Experts on requirement and
system analysts

Developers

Requirements specification or prototype and
develops’ knowledge

Experts on requirement and

system analysts

Users

Feedback

Explicit
requirements and
users’ knowledge

Requirements
specification and

developers’
knowledge

Users’ requirements and knowledge

Figure 3. Model of knowledge conversion in REP

based on which they put forward users’ tacit requirements
in a way that developers can easily understand and accept,
and present developers’ solution in a way that users can
easily understand and accept.

REP is a multi-stage process of knowledge conversion
and implementation. In this iterative conversion process,
experts on requirement who master “logic” domain
knowledge face users and developers. They may perform
concept design, decomposition and requirement integra-
tion for users, while performing consistency analysis,
knowledge optimization and flexibility processing for
developers. Owning to the dissymmetry of knowledge
level, high-level knowledge flows to low-level knowledge,
users’ business domain knowledge and other tacit
knowledge to developers, and developers’ software do-
main knowledge to users. Experts on requirement bring
users’ knowledge to developers. Developers analyze re-
quirements, feed back to users and experts on requirement,
accept their feedbacks, and finally produce requirements
specification, making the process of combination. After
requirements specification is formed, experts on re-

quirement make explanation to users and provide relevant
training, making the process of knowledge internalization.
In each step of SECI, participations should apply other
four steps to creative thinking in the following: prepara-
tion, incubation, illumination, and verification [16].

3.5 Keys to Model of knowledge Conversion in
REP Based on SECI

When using the model of knowledge conversion in REP
based on SECI to guide requirement elicitation, there is
something should be paid attention to in the following: 1)
Choose the experts on requirement who are familiar with
users’ business domain and are trusted by both developers
and users. 2) Users should take part in the REP actively, at
least appointing customer representatives, including user
mouthpieces and system users, etc. 3) Experts on re-
quirement should make an observation and have a dis-
cussion with both users and developers on the spot. 4) The
requirements specifications made by experts on require-
ment should be the negotiation by the three parties and be
validated by users and developers. 5) Experts on re-

Research on Knowledge Creation in Software Requirement Development

Copyright © 2010 SciRes. JSEA

491

quirement should participate in the whole process of re-
quirement elicitation, and harmonize all kinds of conflicts
between users and developers. 6) All activities require a
right context, called “Ba” in Japanese [9], such as creative
workshops [16], meeting, and so on.

4. Case Study

4.1 Overview

The NY Company was founded in 1986 and has two
branches now. In November 2006, NY Company’s top
executives contacted managers of JZ Company and ini-
tially established the project through the communication
of the two sides. JZ Company was committed to achieve
the initial system within 3 months and chose the branch as
a pilot test run.

4.2 Asymmetry of the Project Knowledge

The NY Company is not satisfied with the system vision
and planning established by the software providers. This
issue is largely from software provider’s deficient under-
standing of the business processes of the catering industry,
particularly in its cost accounting processes. On the other
hand, NY Company has deficient or inaccurate under-
standing of the software (Table 1).

4.3 The Requiring Expert of the Project

The project was officially approved by the project team in
November 2006, including the NY Company as the cus-
tomer, the JZ Company as the experts on requirement, and
the SY Company as the developer. The knowledge traits
of the three parties in the project team are illustrated in
Table 2.

Firstly, JZ Company determines what system that NY
Company needs and what system SY company should
provide. JZ Company further deepens the requirements
NY Company proposed. They analyze the project in the
view of the entire company and identify the cost ac-
counting containing operating costs, inventory costs,
purchasing costs, as well as costs monitoring and budg-
eting, not just a simple ordering system or accounting
analysis. Secondly, JZ Company also needs to analyze
clearly what software system is compatible with the NY
Company, transforming the enterprise business processes

into a computer system processing and the computer’s
function modules into enterprise business functions.

4.4 Knowledge Creation Process in the Project

4.4.1 Situation of the Project Team
JZ organizes formal meetings within the project team
actively, such as project-startup meeting, various seminars,
weekly meetings, periodic meetings, etc. And the experts
on requirements will keep a record for each meeting and
store them into the project database as backup.

4.4.2 Project Process
NY Company introduced their initial requirements to JZ
Company, including cost management businessprocess
diagrams and related reporting requirements, and clarified
them in depth and carried out business training.

JZ Company investigated respectively inspecting de-
partment, financial department, administrant department
and had in-depth interviews with relevant personnel. JZ
Company’s staff has a good knowledge of accounting,
business management knowledge, and system planning
knowledge, so during the interview process they could
soon be able to reach a consensus with the NY company
personnel to develop the “Investigation and Analysis
Specification of NY Company’s Cost Accounting Sys-
tem.” The specification clearly identified the main objec-
tive of the system, outlined the NY Company’s organiza-
tional structure, identified the enterprise’s overall opera-
tional processes, analyzed carefully the management of
the catering industry and established the internal proc-
esses of the cost-accounting system (Figure 4), which
divided the system into six modules, i.e. namely data
collection, cost data, report output, initialization, query,
system management and also encoded the information in
the processes. After communication with the general
manager of NY Company, it was clarified that the system
would be used by the inspecting department, while the
financial department would only use it for data queryand
the administrant department would collect data. System
requirements would be mainly determined by the in-
specting department.

JZ Company exchanged ideas with NY Company and
illustrated the figure so that both the two parties could
understand and accept it. At the same time, the “NY

Table 1. Asymmetry of the project knowledge

 Customer Developer

Asymmetry of
direction

1. A system contributing to control the cost.
1. It is not started from the information systems of the entire enterprise.
2. The goal of the system is not defined correctly, thinking it is just an
ordering system.

Asymmetry of
distance

1. What the software system can do for cost control is not
clearly learnt.
2. Lack the computer system knowledge.
3. Clear about the daily operating processes of the ca-
tering industry.

1. Deficient understanding of the cost management in catering industry;
Unclear about how to control the cost and which part to control.
2. Lack the cost management business processes knowledge.
3. Well-informed of the software development

Research on Knowledge Creation in Software Requirement Development

Copyright © 2010 SciRes. JSEA

492

Educed receipts Educed stocktaking bill Educed material
Requisition form

Treat leading material
requisition form as
warehouse-moving bill

Collect and dispose materials counted by type, e.g. vegetable, meat

Keep accounts

Calculate warehouse's cost of goods
sold

Calculate each stall's revenue
 and cost

Calculate each stall's material
using amount

Calculating form
of converting

primary material to
the secondary

material

Sales data of menu

Primary material consuming
dosage of menu

Record sum of primary
material converted to
secondary material

Subsection cost
adjustment Calculate each stall's actual cost of goods sold

Subsection cost
consuming table Calculate each stall's cost of menu

Calculate the disparity between planned cost and actual cost

Figure 4. Internal processes of cost accounting system

Table 2. Knowledge traits of the three parties in the project team

 Knowledge traits

Customer（ ）NY Operating and cost management knowledge of catering industry

Developer（ ）SY Software and system developing knowledge

Requirements ex-
perts（ ）JZ

Organization management knowledge, cost-control knowledge, system design and developing knowledge , project
management knowledge and ability, requirements acquiring knowledge and ability

Company’s Cost Accounting System Design Specifica-
tion V1.0” and simple system prototype, which included
the interface, the core module and so on, were completed.

JZ company and SY company further refined the re-
quirements, forming the “NY Company’s Cost Account-
ing System Design Specification V2.0” and the improved
system prototype, and trained the customers. The three
parties signed on the “NY Company’s Cost Accounting
System Requirements Specification” and “NY Com-
pany’s Cost Accounting System Design Specification”,
confirming the system entering into construction phase.

The key to effectively realizing requirements’ trans-
formation and requirements’ knowledge creation are il-
lustrated in Table 3(a) & Table 3(b). 1) The three parties
of the project should have mutual trust and actively par-
ticipate in the project process, and basing on a clear pro-

ject objective carry out the project with a detailed project
plan. The appropriate methodology and technology
should be adopted rather than merely seeking advancing.
Face to face communication is mainly used while
thoughts can be expressed in the form of prototype, en-
suring effective communication and avoiding unnecessary
confusion. 2) JZ Company needs to construct a platform
for requirements’ transformation and lead the entire pro-
ject process. JZ Company conducts a comprehensive and
in-depth analysis to NY company, including organiza-
tional structure, status of existing enterprises’ information
technology and so on, understands the cost accounting
systems in the view of the whole organization and pro-
poses extensible project blue print. Meanwhile, it should
integrate professional knowledge of cost accounting,
business operating knowledge and computer knowledge

Research on Knowledge Creation in Software Requirement Development

Copyright © 2010 SciRes. JSEA

493

Table 3(a). Requirements creation process

Project phase
Project
proposing

Project
preparation

Project initiation
Relevant data
collection

Requirements
educing

Requirements
classification

Participators Customer
Customer, other
software
providers

Customer, experts on
requirements,
developers

Experts on
requirements,
customer

Experts on
requirements,
customer

Experts on
requirements ,
developer

Requirements
statement

Meeting
consensus

Relevant
document

Project objectives,
initial cost
management business
process

Organizational
structure,
“NY company’s
proposal of
informationization”

“Survey and
analysis of NY
company’s cost
accounting
system”, “
General plan of
NY company’s
cost accounting
system project”

“Resolution to
NY company’s
cost accounting
system”, “
Interface
specification of
NY company’s
cost accounting
system”

Knowledge phase
Customer internalization and
socialization

Project socialization Internalization and socialization Externalization

Key problems

Enterprise
development
needs,
executives
strongly
demand

In-depth learning
about system
through several
contacts with
software
providers

Guidance for experts
on requirement,
acquiring customer’s
trust

Comprehensive
investigation on
company’s struc-
ture, culture, exist-
ing systems, busi-
ness processes, etc.

Adopt some
requirements
educing
technology, e.g.
Old system
analysis,
seminar,
questionnaire
survey,
interview, etc.

Identify
functional
requirements
and
nonfunctional
requirements,
such as
restriction,
performance,
revisability and
so on

Table 3(b). Requirements creation process

Project phase
Initial
modeling

Requirements
discussion

Model
refinement

Requirements
validation

System
realization

System
test-run

Requirements
alteration

Participators
Customer,
requirements
experts

Experts on
requirements,
developer,
customer

Experts on
requirements,
developer

Experts on
requirements,
developer,
customer

Developer

Experts on
requirements,
developer,
customer

Experts on
requirements,
developer,
customer

Requirements
statement

“NY
company’s
cost
accounting
system design
specification
V1.0”, simple
system
proto-type,
including the
inter-face, the
core module,
etc.

“Summary
specification of
NY company’s
cost accounting
system discus-
sion”

“NY
company’s
cost
accounting
system design
specification
V2.0”,
the improved
system
prototype

“NY company’s
cost accounting
system
requirements
specification”,
“NY company’s
cost accounting
system design
specification”

NY
company’s
cost
accountting
management
system, “test
report”,
“specifiction
of system
installation,
setting,
uninstall or
upgrading”
and relevant
document

“NY
company’s
cost
accounting
system’s user
manual”,
“NY
company’s
cost
accounting
system’s
test-run
report”

“NY company’s
cost accounting
system
requirements
alteration
specification”

Knowledge
trans- forming

phase
Combination

Combination,
externalization,
internalization

Combination Internalization
Combination
(realization)

Internaliza-
tion

Requirements’
transformation

Key problems
Use dynamic
displaying
document

Arrange special
seminars to
discuss the
topics

Develop
workable
prototype,
perfect
system design
specification

Take the
requirements
specification
and system
design as the
original source
to validate the
project

Experts on
requirements
monitor the
system
realization as
customer
representa-
tives

Research on Knowledge Creation in Software Requirement Development

Copyright © 2010 SciRes. JSEA

494

and ability, and reduce the knowledge asymmetry be-
tween NY Company and SY Company.

4.5 Summary

The conclusions are in the following: 1) Friendly project
environment. The three parties were very friendly, and in
the course of the project gradually established a mutual
trust relationship. 2) Executives’ high consideration and
the relevant members’ active participation in the project.
As customer exactly knew the project objectives and was
very concerned about this project, so they actively par-
ticipated in the project and cooperated with other mem-
bers well. 3) Clear project objectives and plan. Face to
face communication was mainly used to communicate the
project so as to avoid unnecessary chaos and individual
blind autonomy. The project team also encouraged in-
formal communication, and the communication process
should be recorded and summarized. 4) Introduction of
requiring expert reduces knowledge asymmetry. Special-
ists are knowledgeable, well-informed of accounting
knowledge, business management knowledge and soft-
ware knowledge, so they play a role of knowledge com-
munication platform. 5) Appropriate project management
methodology and technology. If the team is wild about
advanced methodology in the really critical project, the
project will often end up with failure. That is because
introduction of advanced methods and concepts is often a
gradual process that requires adaptation. Furthermore,
experts on requirement are good at project management,
helping to carry out the project orderly.

5. Conclusions

In software REP, the knowledge of both the users and
developers can be divided into explicit knowledge and
tacit knowledge, and REP is an iterative process of
knowledge socialization, externalization, combination
and internalization. Knowledge dissymmetry is one of the
forces that drive knowledge conversion. The model of
knowledge conversion in REP based on SECI is put for-
ward. Depending on experts on requirement, this model
can reduce knowledge dissymmetry, and realize knowl-
edge conversion and share more effectively and effi-
ciently. This model is used to analyze the requirements
development project of the NY Company’s cost ac-
counting system. Case study findings are in the following:
1) It can facilitate the implementation of the project to
have the necessary diversity of the project team. 2) The
introduction of requiring expert can achieve the trans-
formation of knowledge effectively, thus helping to carry
out the SRD. 3) Methodology and related technologies are
important for carrying out the SRD.

6. Acknowledgements

Thank for helpful discussion with Mr. Li Jiangzhang, Mr.

Chen Zhening, Mr. Wang Shuwen, Mr. Liu Bing, Brenda
Huang etc.

REFERENCES
[1] M. Polanyi, “Personal knowledge,” University of Chicago

Press, Chicago, 1958.

[2] V. Allee, “The Knowledge Evolution: Expanding Organi-
zational Intelligence,” Butterworth Heinemann, Boston,
1997.

[3] I. Nonaka, “The Knowledge Creating Company,” Harvard
Business Review, Vol. 69, No. 6, 1991, pp. 96-104.

[4] X. M. Li, et al. “Research on Software Requirement
Management based on Knowledge Management,” R&D
Management, Vol. 2, 2005, pp. 28-39.

[5] J. P. Wan, “Research on Software Product Support
Structure,” Journal of Software Engineering and Appli-
cations, Vol. 2, No. 3, 2009, pp. 174-194.

[6] J. P. Wan et al., “Research on Knowledge Transfer
Influencing Factors in Software Process Improvement,”
Journal of Software Engineering and Applications, 2010,
Vol. 3, No. 2, 2010, pp. 134-140.

[7] I. Nonaka, “A Dynamic Theory of Organizational Kno-
wledge Creation,” Organization Science, Vol. 5, No. 1,
1994, pp.14-37.

[8] I. Nonaka and V. K. Georg, “Perspective—Tacit
Knowledge and Knowledge Conversion: Controversy and
Advancement in Organizational Knowledge Creation
Theory,” Organization Science, Vol. 20, No. 3, 2009, pp.
635-652.

[9] V. K. Georg, et al. “Enabling Knowledge Creation: How
to Unlock the Mystery of Tacit Knowledge and Release
the Power of Innovation,” Oxford University Press, New
York, 2000.

[10] P. Zave, “Classification of Research Efforts in Requi-
rements Engineering,” ACM Computing Surveys, Vol. 29,
No. 4, 1997, pp. 315-321.

[11] D. C. Gause and G. M. Weinberg, “Exploring Requi-
rements: Quality before Design,” Dorset House Publishing
Co., Inc, Vancouver, 1989.

[12] S. L. Pfleeger, “Software Engineering: Theory and
Practice,” 2nd Edition, Higher Education Press, Beijing,
2002.

[13] S. Alshawi and W. A. Karaghouli, “Managing Know-
ledge in Business Requirements Identification,” Logistics
Information Management, Vol. 16, No. 3, 2003, pp. 341-
349.

[14] Q. F. Shi, et al. “Characteristics and Modal Analysis of
Implicit Knowledge Transfer,” Studies in Dialectics of
Nature, Vol. 20, No. 2, 2004, pp. 62-68.

[15] X. J. Xv, “On the Transmission of Knowledge,” Studies in
Science of Science, Vol. 23, No. 3, 2005, pp. 298-303.

[16] N. Maiden, et al. “Provoking Creativity: Imagine What
Your Requirements Could be Like,” IEEE Software, Vol.
21, No. 5, 2004, pp. 68-75.

J. Software Engineering & Applications, 2010, 3: 495-502
doi:10.4236/jsea.2010.35056 Published Online May 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

Raising Awareness of the Constituents of Software
Design – The Case of Documentation

Lavy Ilana, Yadin Aharon

Management Information Systems, Emek Yezreel Academic College, Emek Yezreel, Israel.
Email: {ilanal, Aharony}@yvc.ac.il

Received December 6th, 2009; revised December 21st, 2009; accepted December 23rd, 2009.

ABSTRACT

This research was performed within a software engineering workshop for Computer Science students. For addressing the
soft skills issues required by the industry, the course was delivered as a workshop with various (inter and intra) team
based activities. An additional objective of outlining the importance of software maintainability issues was achieved
through team-based role play. There were three assignments in which each team had to continue the work performed by
another team, thus creating a dependency between the teams as might happen during maintenance. The main research
study objective was to examine the effect of employing this kind of a team-based role-play peer-review on the students’
learning process regarding maintainability. Data referring to the students’ perceptions is presented and analyzed in
addition to student reflections on the workshop which demonstrate their expanded understanding of the design and
application process.

Keywords: Team-Based Role Play, Software Engineering, Peer Review, Maintainability

1. Introduction

The term software engineering appeared first at a NATO
conference in 1968 [1] and it was intended to ignite dis-
cussions on the process of developing correct, testable,
and understandable computer programs. At that time, the
“software crisis”, that was partially caused by the rapid
developments in computer technologies combined with
more, complex user requirements, and the lack of “engi-
neering” methodologies for software development [2].
Since then the process of software engineering has ma-
tured and is accepted as a proven learning discipline. The
Software Engineering course is an important part of the
Computer Science (CS) and Information Systems (IS)
curricula, however many students regard it as less appli-
cable in their future careers [3]. Information systems and
software based systems in general, require follow-up
maintenance due to the existence of potential bugs that
will have to be corrected, the high likelihood of functional
enhancements to be introduced to the programs. For
lowering the costs associated with these ever increasing
needs for software maintenance adoption of proper soft-
ware engineering methodologies is required. Thus soft-
ware maintainability plays a critical function in the soft-
ware engineering process, not unlike the role of software
development itself.

Cognizant of the students’ difficulties regarding non-

technical knowledge such as critical thinking, interper-
sonal and team based skills, the Software Engineering
workshop structure employs many inter-team and in-
tra-team activities. Furthermore, to raise the students’
awareness to the importance of documentation and the
role it plays in maintainability, the workshop employs an
incremental life-cycle involving each team in three ac-
tivities: design (including documentation), development,
and testing. However, unlike the ordinary software de-
velopment life-cycle, in which each team performs the
three activities for the same project the workshop struc-
ture employs a team-based role play. By team-based role
play we mean that the design, development and testing is
swapped among the teams. Initially all the teams are given
the same project, and each team prepares his own design.
The second assignment consists of developing the system
according to the design specifications, but each team
develops a system that was designed by a different team
and not the system it has designed. The third assignment
consists of defining the test specifications and testing the
system, however, once again, each team tests a system
designed by one team and developed by another. When
proceeding to the next assignment, the team is required to
ignore their prior knowledge or ideas and to concentrate
only on the system as it has been designed (or developed)
by another team of their peers.

Raising Awareness of the Constituents of Software Design – The Case of Documentation

Copyright © 2010 SciRes. JSEA

496

The main research study objective was to examine the
effect of employing this kind of a team-based peer-review
on the students’ learning process in a software engineer-
ing workshop with special emphasis on their perception
regarding documentation. This paper describes the work-
shop structure and the quantitative and qualitative results
obtained from employing it.

2. Theoretical Background

Software development is a collaborative task that employs
teams of developers working together [4]. To enhance
software readability and maintainability, software engi-
neering practitioners have been striving to improve ex-
isting tools and methodologies. Among these various
practices, documentation - used to describe the required
software, its structure, logic and performance - is high on
the list [5,6]. Without the proper documentation, the fu-
ture maintainer will find it extremely difficult to under-
stand the system or its processes. Poor and missing
documentation is a major contributor to software quality
degradation and aging, compounding an increase in
maintenance costs [7]. In spite of this, many students fail
to recognize the importance of documentation on main-
tainability [3].

Software engineering is an integration of many prac-
tices, methodologies and tools.. One of the initial practices
is software documentation. However, even at present
many systems are still developed and released without
proper documentation [8]. In response, several method-
ologies have been developed to address the unsolved
problem of the documentation lag [9]. The Agile Mani-
festo, for example, puts greater emphasis on the devel-
oped product while ignoring detailed documentation. This
methodology welcomes change and stresses fast delivery
of useful software, based on the close collaboration be-
tween developers and customers.

Software documentation is a general term that refers to
two types of documentation: 1) documenting the user
requirements that provide the basis for designing the
system to be developed, and 2) documenting the software
to be developed, or that was developed, for aiding de-
velopment or future maintenance activities. These main-
tenance activities, according to many studies, are the most
expensive part in the software development life-cycle [10].
The Agile methodology is helpful in reducing the amount
of work needed during the first documentation process
(requirement elicitation and project development). How-
ever, for future maintenance of the developed software,
proper documentation is still required. For that reason, the
documentation required to the Agile methodology is done
at the end of the project and remains inadequate for
maintenance purposes [11]. For years educators and
practitioners have stressed the importance of documenta-
tion (during the design phase or after project completion),
however many projects are still released without proper

maintenance documentation.

2.1 Software Maintenance

A common definition for maintenance is that it is per-
formed after product delivery. Software maintenance, as
well, refers to the activities carried out after the devel-
opment’s completion. However, software maintenance is
very different from “ordinary” equipment maintenance.
While in other engineering disciplines maintenance in
intended to fix a problem [12] and keep the equipment
running so it will continue to provide the original func-
tionality, software maintenance, in many cases is required
to enhance the functionality based on the ever changing
requirements due to the operational environment, the
competition, and the business climate. Meeting these new
and changing requirements is unique and basic software
characteristic, as defined in Lehman’s laws of software
evolution [13,14]. Furthermore, software is constantly
being modified to utilize new hardware equipment and for
integration into new environments.

Introduction of the software development life-cycle has
led several researchers to consider activities related to
software maintenance, which are initialized while the
software is being developed and not only after delivery.
Additionally, some researchers emphasize that starting the
maintenance activities after completing development
leads to an unnecessarily more complex and costly task
[15,16]. Others define software maintenance as a mix of
activities, some performed after delivery and some per-
formed during development. The pre-delivery activities
include the necessary planning for the post-delivery ac-
tivities [17].

2.2 Students’ Perception Regarding Maintenance

There has been a great deal of improvement in software
development over the last decade. Many new techniques,
methodologies, languages and tools have been created to
advance the development processes. Software mainte-
nance, however, lags behind mainly due to its reactive
nature. Introducing systemic approaches to software
maintenance is inherently problematic [18]. The required
software maintenance (error corrections or introductions
of new features) cannot be postponed or circumvented. By
nature software maintenance is a disorganized process
which deteriorates the software’s architecture (Lehman’s
second law of software evolution [13]). This deterioration
is due in part to missing knowledge which is required for
maintenance. In addition, any changes introduced dete-
riorate the system architecture further, making future
maintenance even more difficult. The lack of correct and
updated documentation is one of the main causes for this
missing knowledge.

During their first and second years of study, students
become acquainted with these facts, however in spite of
the lecturers’ efforts; software documentation continues to

Raising Awareness of the Constituents of Software Design – The Case of Documentation

Copyright © 2010 SciRes. JSEA

497

be insufficient. More troubling is the fact that students do
not assimilate the need for, and importance of, proper
documentation [3]. Many students consider the develop-
ment stage as the most important activity in the software
development life cycle, totally ignoring the fact that suc-
cessful software will have to be maintained for a long
time.

2.3 Peer Review in Higher Education

Peer review is a form of external evaluation carried out by
professional colleagues [19]. Peers can be experts in the
field but can also be classmates who poses the same level
of knowledge and assess the work of fellow students. Peer
review is a widely practiced form of certifying quality in
higher education [20], and has been described as a for-
mative evaluation process in which participants work
collaboratively to strengthen a product [21]. Peer review
is generally said to encourage critical examination, pro-
mote the exchange of ideas, reduce non-academic inter-
ference, guide academic discourse, and reinforce aca-
demic values [22]. Peer review assumes the existence of
norms by which a peer’s work may be judged. Through
critical examination, norms are used to compare a peer’s
work to accepted practices. If a peer’s work deviates sig-
nificantly from accepted norms, then an attempt to correct
it will likely occur. Being aware of the advantages of peer
review, it has been incorporated as an integral part of the
workshop. The inter-team and intra-team peer review was
used to enhance the students’ learning abilities and to
enforce critical thinking. However, In addition to the
common peer review, the workshop requires the students
not only to evaluate and assess their peers work, but also
build on it. The students’ success in performing their
assignments depends on their ability to understand the
work or their peers. This elevates the assessment process
to a new and more important level.

3. The Study

In what follows we discuss the study performed while
addressing the participating students’ the workshop’s
structure including the assignments and the grading
scheme.

3.1 About the Study Participants

The workshop is a mandatory course taken during the
second year of study. A total of twenty-six college stu-
dents participated in the present study. In the workshop
the students were divided into seven teams (five teams of
four students and two teams of three students). At this
stage the students have already learned software modeling,
UML usage, etc. In addition to the standard topics of the
software engineering course, one of the workshop’s im-
portant objectives is to prepare the students for their Final
Project and the real world challenges they will face.

3.2 The Course

The systems engineering workshop’s general objectives
are to introduce software development life cycle concepts
to the students while enhancing their understanding of
documentation and product maintainability. Since soft-
ware is considered one of the most complex systems
produced by humans [23], students have to adopt proper
working procedures for lowering the development risks
and the high maintenance barriers. Documenting their
ideas and thoughts during the design phase is crucial for
future understanding of the software to be developed.

Other objectives relate to 1) practical understanding of
the software development stages required for develop-
ment of a modern Information System; 2) implementing
these stages in a small project; 3) understanding the
problems associated and caused by working in teams, and
4) developing the required “soft skills” (critical thinking,
team work, interpersonal relationships, etc). For that
reason, the workshop augments knowledge and under-
standing gained in current and previous courses, and is
practical, “hands-on,” and team-based.

All seven teams received and worked on an identical
project. The project was a general description of a re-
quired system that was to be developed (an Internet based
electronic auctions, or e-bidding system). As part of the
first assignment, the students had to study the existing
systems, address and assess various alternatives, and
suggest ways (and a software based system) of providing
an agreed upon functionality. The workshop structure
followed the software development life-cycle and was
based on three incremental assignments.

Each assignment required personal and individual work
followed by team activities (in person or by using various
collaborative tools).The students had four weeks for each
assignment throughout the process the students consulted
their instructor (via email, the workshop web site, and
personal meetings) on various issues related to their as-
signment. In order to reinforce the importance of docu-
mentation and maintainability, the teams were engaged in
role-based development in which the teams shared all
responsibility for their success. While a specific project
was designed by one team, developed by another team and
tested by a third team, in the end each team had to work
not only on the three stages of the assignment but on each
one of the three design solutions (Figure 1). This way,
each team was involved in developing a system designed
by another team while trying to understand some of the
undocumented intentions expressed in the design. This
forced them to seek help from the designing team. On the
other hand, this developing team had to help another team
that was trying to develop the system based on their de-
sign document. The interdependence of these stages was
stressed and made apparent to all teams. This workshop
structure was designed to enhance the students’ under-

Raising Awareness of the Constituents of Software Design – The Case of Documentation

Copyright © 2010 SciRes. JSEA

498

standing regarding the importance of documentation
through their own experience.

Figure 1 depicts the workshop’s structure. The long
horizontal rectangles represent the seven versions of the
same project, while the three vertical columns represent
the assignments (A1, A2 and A3). As can be seen, each
project consists of the three assignments performed by
three different teams. Each team, on the other hand,
worked on all three assignments, each one belonging to a
different project.

The workshop requirements included two types of de-
liverables: 1) team assignments, and 2) a personal as-
signment.

3.2.1 Team Assignments
The software development life-cycle activities were di-
vided into three team based assignments: 1) project defi-
nition and design; 2) project development, and 3) project
testing.

3.2.1.1 Project Definition and Design
The first assignment started with a very brief description
of the project, the functionality and the required devel-
opment activities. The students studied available e-bid-
ding systems, documenting their functionality, and used
them as a basis for the system they were required to de-
velop. Since such a large project cannot be completed
during the semester, the students had to identify at least
five different users to be supported by the system and for
each user a set of Use-Cases had to be defined. In addition
to the Sequence Diagrams supporting these Use-Cases,
the students had to define the non-functional requirements
associated with these Use-Cases. The system analysis
phase (which is part of this assignment) included a high
level design (System architecture and the Class Diagram)
as well as a detailed design (Activity Diagram followed by
a Program Design Language definition for the described
functionality). All these activities required a great deal of
individual work as well as collaborative work in which
each student assessed and approved the work performed
by other team members.

3.2.1.2 Project Development
The second assignment consisted of the development of
the system according to the Project Definition and design
document (the first assignment). However, instead of
developing the system according to their own design, each
team had to develop the system as it was defined by an-
other team. The developing team had to carefully follow
the document they received, ignoring all their prior
knowledge or ideas they may have expressed in their first
assignment. Small code modifications were permitted,
provided that the definition in the document they received
was erroneous and could not be implemented. After
completing the development, each team had to compile a
‘difference’ document, outlining the changes between the

Figure 1. The Workshop’s Structure

implementation and the document as received, with spe-
cial emphasis placed on the reason behind these changes.
At this stage stress is not placed on enhancing the product
to be developed, but rather on developing it according to
the exact specifications outlined in the definition docu-
ment. An additional document which was part of this as-
signment was a short evaluation of the first assignment’s
quality as it was reflected in the implementation. The last
document to be submitted as part of this assignment was a
Unit Test Plan for each of the methods developed.

3.2.1.3 Project Testing
The third assignment consists mainly of the testing phase.
The students have to implement the Unit Test Plan as was
designed by the previous team. Due to time constraints the
workshop addresses only part of the required project de-
velopment, so for testing the software pieces developed by
the previous team, the testing team had to include addi-
tional developments (a test generator and a stub). These
additional developments were required for building the
testing infrastructure for the developed software pieces.
As part of this assignment the team is required to correct
mistakes that were discovered during the testing. The
corrected code has to be tested once again. This process is
repeated until everything runs according to the specifica-
tions, as outlined in the project definition document (the
first assignment of this project). This third assignment
also includes the testing report that summarizes the
problems discovered and their corrections. In addition,
this assignment includes a system test plan with at least
ten detailed test cases. This plan is for the Quality As-
surance staff, so it has to be detailed and based on the
system functionality as derived from the project definition
document (first assignment). The last part of this assign-
ment is a quality test plan that concentrates on the
non-functional attributes of the system, with a special

Team 6 Team 7 Team 2

Team 5 Team 3 Team 7

Team 4 Team 6 Team 1

Team 7 Team 1 Team 4

Team 3 Team 5 Team 6

Project 5

Team 1 Team 2 Team 3

Team 2 Team 4 Team 5

Project 3

A1: Project
design

A2:Develop
-ment

A3: Testing

Project 1

Project 2

Project 4

Project 6

Project 7

Raising Awareness of the Constituents of Software Design – The Case of Documentation

Copyright © 2010 SciRes. JSEA

499

emphasis on the metrics to be used or defined.

3.2.2 Personal Assignment
The personal assignment is mainly an activity summary
report, in which each student describes 1) the work done
during every stage of the project; 2) his/her part in these
activities; 3) the problems they (as a team) encountered
during the project and 4) the problems he/she encountered
personally. There is also a short reflection on the work-
shop, as well as a one sentence summary about the
workshop’s results. The last part reflects on the work
distribution among the team members (100 points that the
student divides between the other team members to ex-
press their relative contribution toward each of the three
assignments).

3.3 The Workshop Grading Scheme

Since one of the important workshop goals is to strengthen
team work, most of the grades are based on the team’s
activities. Each of the first two assignments makes up
33% of the grade, while the third, which is simpler, com-
prises 24%. The personal report, including the short re-
flection, contributes an additional 10%.

The grading scheme took into consideration the work
distribution as was described by each team member. Five
points (out of the 90 points allocated for team activities)
were used as floating points among the team members,
based on their average contribution to the team’s success

4. Learning Process Evaluation Methodology

The evaluation method included a comparison between
two questionnaires. The first questionnaire was part of a
survey conducted during the workshop’s first lecture, in
which students were asked to rate their perception re-
garding the relative importance of the three project phases
expressed by the planned assignments. A similar survey
was conducted during the last lecture producing the sec-
ond questionnaire. Since the end of semester question-
naire was identical to the questionnaire used in the first
lecture, its intention was to measure the workshop’s in-
fluence regarding the perceived importance of the three
phases and especially the importance of documentation
and testing on the software engineering activities. In ad-
dition, the evaluation process analyzed the student’s re-
flections on their workshop experiences.

For implementing a successful inter-team role play, the
workshop was highly structured. In addition, pre-defined
templates were used for all the team based assignments.
However, in contrast to these pre-defined templates the
personal reports were composed of free style answers. The
only data provided were the points to be addressed in
these reflections. This open format encouraged students to
concentrate on the issues s/he felt were important and
offered a better understanding of the students’ achieve-
ments during the workshop.

5. Results and Discussion

In what follows we present data and discuss the effect of
the workshop’s structure on the students’ perceptions
regarding the importance of documentation on the pro-
ject’s success, as well as their reflections regarding the
benefits of the workshop.

5.1 The Assignment’s Relative Importance

The first questionnaire results are outlined by Figure 2. It
is no surprise that CS students regarded development as
the most important activity (70% of the project). Testing
was perceived to be of secondary importance (16%) and
documenting the design phase was perceived to be the
least important (14%) in the design and development of
software.

The students explained the relatively low importance of
documentation by citing the fact that the methodology and
the tools used (UML – Unified Modeling Language as
well as the code itself) provide all the necessary docu-
mentation. The results obtained in this survey were no
different when compared to the results from the previous
year. These consistent results were the trigger for the
workshop structure and one of its objectives was to con-
vince students, through their own practical experience
about the importance of documentation.

As was demonstrated by the first questionnaire (Figure
2), most students view development as the most important
activity of a project (70%). However, the second ques-
tionnaire revealed that the students began to realize the
importance of the subsequent components and the role
they play in determining the project’s success. Therefore,
by the semester’s end, development’s perceived impor-
tance was reduced by 31% (to 48% of the project), while
the relative importance of the documentation assignment
increased by 59% (from 14% in the first questionnaire to
23% in the second questionnaire). Testing’s perceived
importance also increased - by 83% (from 16% in first
questionnaire to 29% in the second).

Figure 2. Relative Assignment Importance (1st Lecture)

Ducumentation

Development

Testing

Raising Awareness of the Constituents of Software Design – The Case of Documentation

Copyright © 2010 SciRes. JSEA

500

Figure 3. Relative Assignment Importance (Last Lecture)

There are many factors affecting the relative importance
of the various life cycle stages and the amount of time
required for each one. These factors, for example may
include customer requirements, project type, the software
development life cycle methodology, the programming
languages and CASE tools, etc. In most cases the devel-
opment stage requires less than 30% of the project esti-
mated time. Glass [24] uses 20% for requirements elici-
tation, 20% for design, 20% for coding and 40% for test-
ing. The requirements elicitation is not part of this work-
shop since the project and its general requirements were
predefined and the students had to study available solu-
tions and decide which parts to design and implement. At
the end of the semester, the students still regard coding
(development) as the most important component, but it is
significantly (31%) less than its importance at the begin-
ning of the semester. The end of semester percentages are
closer to the numbers used by researchers and practicing
software engineers.

The change in the students’ perception regarding the
relative importance of the various project components is
directly linked to the workshop’s structure. There were
many instances during the second stage of the workshop,
in which the students were trying to drop the design spe-
cifications they received from the previous team, claiming
these specifications will not produce a viable solution and
the project cannot be developed. In all cases it proved to
be wrong. The solutions described in these design speci-
fications provided a workable solution, however they
were not properly documented, which hampered the stu-
dents understanding. After discussing the design specifi-
cations with the responsible team, the project was devel-
oped as intended, with some minor modifications. This
misunderstanding was repeated on the third stage, in
which students had to design and execute the system
testing. However, for designing the test environment and
the test scenarios a full project understanding was re-
quired. In addition to the extra work needed due to the
missing documentation it also changed the students’ per-
ception regarding the importance of the non-development

activities.
The significant increase in the perceived testing im-

portance (83%) can be explained by the fact that during
the third stage the student had to design and develop the
stub and the scenarios for the system to be checked. In all
cases where the system did not function according to the
specifications, the testing team had to correct the code and
run it once again. This means that the testing team had to
be familiar with the design specifications as well as with
the developed code. The testing students acted as the
“gate-keepers” making sure that only the fully functional
system is released. Performing this task properly, in the
workshop, requires some additional analytical skills for
finding and correcting various bugs which may have been
introduced during the development or the design stages.
Unlike the real world situation, where in case of problems,
Quality Assurance people usually return the system to the
developers, here the testing team had to fix it by them-
selves, which led to their higher appreciation of the testing
task and its elevated importance in the development
process.

5.2 The Student’s Perspective

Analysis of the students’ reflections revealed emphasis of
three main issues: 1) the importance of documentation; 2)
team-based activities and 3) contribution to future voca-
tion.

5.2.1 The Importance of Documenting the
Project

Improving the students’ understanding regarding docu-
mentation and the role it plays in the project and its future
maintainability, was addressed by many of the reflections.
For example:

“I understood (unfortunately through bad ex-
perience) the importance of a development
project’s documentation.”
“It was only during the workshop that I began to
grasp the importance of understanding and
documenting the requirements.”

From the above students’ excerpts we can conclude that
they developed a sense of appreciation for documentation,
mostly arising from the need to spend many more of their
own resources when it was missing. Furthermore, without
proper documentation, the project may not be successful
and might not deliver the expected outcome. The fact that
they realized, for example, that undocumented specifica-
tions are misleading is consistent with Williams [25]
stressing that students no longer view the teaching staff as
their sole conduit of technical information.

5.2.2 Team-Based Activities and Implications
Students pointed out several advantages regarding their
experience of working in teams, as well as what was re-
quired of them. Here are some common reflections:

“Working in a team provided me with many

Ducumentation

Development

Testing

Raising Awareness of the Constituents of Software Design – The Case of Documentation

Copyright © 2010 SciRes. JSEA

501

new views and possibilities for solving the
problem.”
“The most important lesson I learned during the
workshop was to accept my friends’ criticism
and provide constructive feedback.”
“The success and failure of the project de-
pended mainly on the team members’ activities
and not on any single member.”

From these reflections we learn that in general students
found the teamwork method helpful in developing their
critical thinking (receiving and providing constructive
feedback) and in improving their ability to cooperate.
However, in their reflections students also pointed out the
shortcomings they experienced in team-based activities.
For example:

“Team work can be a blessing, but sometimes it
can also be a curse…”

5.2.3 The Workshop’s Contribution to Future
Vocation

Here are some student reflections regarding the contribu-
tion of the workshop’s assignments to their future em-
ployment.

“So far we learned that the most important stage
in the project is the development. Here I un-
derstood that the process is equally important.”

We conclude that the students found the detailed
documentation very helpful. Furthermore, the under-
standing gained by working in teams helped them think as
developers and enhanced the process of reaching the
problem solution.

6. Concluding Remarks

From the students’ reflections and the results received
regarding the differences in their perception as reflected in
the two questionnaires, it can be concluded that the
workshop raised the students’ levels of understanding [26],
and as a result helped them cope successfully with the
given workshop assignments. The role-based develop-
ment, in which the students had to assume responsibility
for activities partially performed by others, exposed them
to ideas which were different from the ones they had
decided to use in their own solutions. Especially, this
workshop structure effected the students’ appreciation of
documentation and the role it played in their own success.
This exposure, in many cases, made them rethink their
task and prompted them to look for better, more efficient
solutions. The collaborative team work exposed each team
member to various ideas expressed by his/her peers and as
a result caused additional thinking about available solu-
tion alternatives.

REFERENCES
[1] P. Naur and B. Randell, “Software Engineering: Report of a

Conference Sponsored by the NATO Science Committee,”

Garmisch, Germany, Scientific Affairs Division, NATO,
1968. http://homepages.cs.ncl.ac.uk/brian.randell/NATO/
nato1968.PDF

[2] R. J. Veldwijk, M. Boogaard and E. R. K. Spoor, “Assess-
ing the Software Crisis-Why Information Systems are
Beyond Control,” Vrije Universiteit, the Netherlands,
1992. ftp://zappa.ubvu.vu.nl/19920006.pdf

[3] J. Burge, “Exploiting Multiplicity to Teach Reliability and
Maintainability in a Capstone Project,” 20th Conference
on Software Engineering Education & Training, Dublin,
2007.

[4] L. T. Cheng, S. Hupper, S. Ross and J. Patterson, “Jazzing
up Eclipse with Collaborative Tools,” Proceedings of the
2003 OOPSLA Workshop on Eclipse Technology eX-
change, Anaheim, October 2003.

[5] S. C. Souza, N. Anquetil and K. M. Oliveira, “Which
Documentation for Software Maintenance,” Journal of the
Brazilian Computer Society, Vol. 13, No. 2, 2007, pp. 31-
44.

[6] S. Das, W. G. Lutters and C. B. Seaman , “Understanding
Documentation Value in Software Maintenance,” Pro-
ceedings of the 2007 Symposium on Computer human
interaction for the management of information technology,
Cambridge, Massachusetts, 30-31 March 2007.

[7] M. K. Mattsson, “Problems in Agile Trenches,” Proceed-
ings of the Second ACM-IEEE international symposium on
Empirical Software Engineering and Measurement, Kai-
serslautern, 09-10 October 2008.

[8] G. T. Daich, “Document Diseases and Software Mal-
practice”. http://www.sstc.online.org/Proceedings/2003/P
DFFiles/p961pap.pdf

[9] P. Clements, “Comparing the SEI’s Views and Beyond
Approach for Documenting Software Architectures with
ANSI-IEEE 1471-2000,” Technical Note CMU/SEI-2005-
TN-017.http://www.sei.cmu.edu/pub/documents/05.eports
/ pdf/05tn017.pdf

[10] R. C. Seacord, D. Plakosh and G. A. Lewis, “Modernizing
Legacy Systems–Software Technologies, Engineering
Processes and Business Practices,” New York, Addison-
Wesley, 2003.

[11] D. Brolund and Ohlrogge, “Streamlining the Agile
Documentation Demonstration for the XP 2006 Confe-
rence,” Lecture Notes in Computer Science, Springer, Vol.
4044, 2006, pp. 215-216.

[12] G. Canfora and A. Cimitile, “Software Maintenance.”
http://www.compaid.com/caiInternet/ezine/maintenance-c
anfora.pdf

[13] M. M. Lehman, “Lifecycles and the Laws of Software
Evolution,” Proceedings of the IEEE, Special Issue on
Software Engineering, Vol. 68, No. 9, 1980, pp. 1060-
1076.

[14] M. M. Lehman, “Program Evolution,” Journal of Info-
rmation Processing Management, Vol. 19, No. 1, 1984,
pp. 19-36.

[15] N. F. Schneidewind, “The State of Software Maintenance,”
IEEE Transactions on Software Engineering, Vol. 13, No.

Raising Awareness of the Constituents of Software Design – The Case of Documentation

Copyright © 2010 SciRes. JSEA

502

3, 1987, pp. 303-310.

[16] W. M. Osborne and E. J. Chikofsky, “Fitting Pieces to the
Maintenance Puzzle,” IEEE Software, Vol. 7, No. 1, 1990
pp. 11-12.

[17] T. M. Pigoski, “Practical Software Maintenance–Best Prac-
tices for Managing Your Software Investment,” Wiley &
Sons, New York, 1997.

[18] M. B. G. Dias, N. Anquetil and K.M. de Oliveira, “Orga-
nizing the Knowledge Used in Software Maintenance,”
Journal of Universal Computer Science, Vol. 9, No. 7,
2003, pp. 641-658.

[19] A. Yadin and I. Lavy, “Integrated Formative Assessment as
a Vehicle towards Meaningful Learning in Systems
Analysis and Design workshop,” Paris, 2008.

[20] C. Herndon, “Peer Review and Organizational Learning:
Improving the Assessment of Student Learning,” Research
& Practice in Assessment, Vol. 1, No. 1, 2006, pp. 1-7.

[21] L. Keig and M. D. Waggoner, “Collaborative Peer Review:

Role of Faculty in Improving College Teaching,” ASHE-
ERIC Higher Education Report, Washington DC, Vol. 23,
No. 2, 1994.

[22] K. Berkencotter, “The Power and Perils of Peer Review,”
Rhetoric Review, Vol. 13, No. 2, 1995, pp. 245-248.

[23] M. Lenic, M. Zorman, P. Povalej and P. Kokol, “Alter-
native Measurement of Software Artifacts,” ICCC 2004
Second IEEE International Conference on Compu-
tational Cybernetics, Wien, 2004, pp. 231-235.

[24] R. Glass, “Facts and Fallacies of Software Engineering,”
Addison-Wesley, New York, 2003.

[25] L. Williams, “In Support of Student Pair-Programming,”
Proceedings of the 32nd SIGCSE technical symposium on
Computer Science Education, Charlotte, 2001.

[26] J. Biggs, “Enhancing Teaching Through Constructive
Alignment,” Higher Education, Vol. 32, No. 3, 1996, pp.
347-364.

J. Software Engineering & Applications, 2010, 3: 503-509
doi:10.4236/jsea.2010.35057 Published Online May 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

A Line Search Algorithm for Unconstrained
Optimization*

Gonglin Yuan1, Sha Lu2, Zengxin Wei1

1College of Mathematics and Information Science, Guangxi University, Nanning, China; 2School of Mathematical Science, Guangxi
Teachers Education University, Nanning, China.
Email: glyuan@gxu.edu.cn

Received February 6th, 2010; revised March 30th, 2010; accepted March 31st, 2010.

ABSTRACT

It is well known that the line search methods play a very important role for optimization problems. In this paper a new line
search method is proposed for solving unconstrained optimization. Under weak conditions, this method possesses global
convergence and R-linear convergence for nonconvex function and convex function, respectively. Moreover, the given
search direction has sufficiently descent property and belongs to a trust region without carrying out any line search rule.
Numerical results show that the new method is effective.

Keywords: Line Search, Unconstrained Optimization, Global Convergence, R-linear Convergence

1. Introduction

Consider the unconstrained optimization problem

min ()
nx R

f x


, (1)

where : nf R R is continuously differentiable. The

line search algorithm for (1) often generates a sequence of
iterates { }kx by letting

1 , 0,1, 2,k k k kx x d k     (2)

where kx is the current iterate point, kd is a search

direction, and 0k  is a steplength. Different choices

of kd and k will determine different line search

methods [1-3]. The method is divided into two stages at
each iteration: 1) choose a descent search direction kd ; 2)

choose a step size k along the search direction kd .

Throughout this paper, we denote ()kf x by kf ,

()kf x by kg , and 1()kf x  by 1kg  , respectively.

|| || denotes the Euclidian norm of vectors.

One simple line search method is the steepest descent
method if we take k kd g  as a search direction at every

iteration, which has wide applications in solving

large-scale minimization problems [4]. However, the
steepest descent method often yields zigzag phenomena in
solving practical problems, which makes the algorithm
converge to an optimal solution very slowly, or even fail
to converge [5,6]. Then the steepest descent method is not
the fastest one among the line search methods.

If k k kd H g  is the search direction at each iteration

in the algorithm, where kH is an n × n matrix approxi-

mating 2 1[()]kf x  , then the corresponding line search

method is called Newton-like method [4-6] such as
Newton method, quasi-Newton method, variable metric
method, etc. Many papers [7-10] have been proposed by
the method for optimization problems. However, one
drawback of the Newton-like method is required to store
and compute matrix kH at each iteration and thus adds

the cost of storage and computation. Accordingly, this
method is not suitable to solve large-scale optimization
problems in many cases.

The conjugate gradient method is a powerful line
search method for solving the large scale optimization
problems because of its simplicity and its very low
memory requirement. The search direction of the conju-
gate gradient method often takes the form

, 1

, 0,
k k k

k

k

g d if k
d

g if k

  
  

 (3)

where k R  is a scalar which determines the different

* This work is supported by China NSF grants 10761001, the Scientific
Research Foundation of Guangxi University (Grant No. X081082), and
Guangxi SF grants 0991028.

A Line Search Algorithm for Unconstrained Optimization

Copyright © 2010 SciRes. JSEA

504

conjugate gradient methods [11-13] etc. The convergence
behavior of the different conjugate gradient methods with
some line search conditions [14] has been widely studied
by many authors for many years (see [4, 15]). At present,
one of the most efficient formula for k from the com-

putation point of view is the following PRP method

1 1

2

()
.

|| ||

T
PRP k k k

k

k

g g g

g
    (4)

If 1k kx x  , it is easy to get 0PRP

k  , which implies

that the direction kd of the PRP method will turn out to

be the steepest descent direction as the restart condition
automatically when the next iteration point is approximate
to the current point. This case is very important to ensure
the efficiency of the PRP conjugate gradient method (see
[4,15] etc.). For the convergence of the PRP conjugate
gradient method, Polak and Ribière [16] proved that the
PRP method with the exact line search is globally con-
vergent when the objective function is convex, and Powell
[17] gave a counter example to show that there exist
nonconvex functions on which the PRP method does not
converge globally even the exact line search is used.

We all know that the following sufficient descent con-
dition

2|| ||T

k k kg d c g  , for all 0k  and some constant

0c  (5)

is very important to insure the global convergence of the
algorithm by nonlinear conjugate gradient method, and it
may be crucial for conjugate gradient methods [14]. It has
been showed that the PRP method with the following
strong Wolfe-Powell (SWP) line search rules which is to
find the step size k satisfying

1() T

k k k k k k kf x d f g d     , (6)

and

2| () | | |T T

k k k k k kg x d d g d   (7)

did not ensure the condition (5) at each iteration, where

1

1
0

2
  , 1 2 1   . Then Grippo and Lucidi [18]

presented a new line search rule which can ensure the
sufficient descent condition and established the conver-
gence of the PRP method with their line search technique.
Powell [17] suggested that k should not be less than

zero. Considering this idea, Gilbert and Nocedal [14]
proved that the modified PRP method max{0, }PRP

k k  

is globally convergent under the sufficient descent as-
sumption condition and the following weak Wolfe-Powell

(WWP) line search technique: find the steplength k

such that (6) and

 2()T T

k k k k k kg x d d g d   . (8)

Over the past few years, much effort has been put to
find out new formulas for conjugate methods such that
they have not only global convergence property for gen-
eral functions but also good numerical performance (see
[14,15]). Resent years, some good results on the nonlinear
conjugate gradient method are given [19-25].

These observations motivate us to propose a new
method which possesses not only the simplicity and low
memory but also desirable theoretical features. In this
paper, we design a new line search method which pos-
sesses not only the sufficiently descent property but also
the following property

1|| || || ||k kd c g , for all 0k  and some constant

1 0c  (9)

whatever line search rule is used, where the property (9)
implies that the search direction kd is in a trust region

automatically.
This paper is organized as follows. In the next section,

the algorithms and other line search rules are stated. The
global convergence and the R-linear convergence of the
new method are established in Section 3. Numerical re-
sults and one conclusion are presented in Section 4 and in
Section 5, respectively.

2. The Algorithms

Besides the inexact line search techniques WWP and
SWP, there exist other line search rules which are often
used to analyze the convergence of the line search
method:

1) The exact minimization rule. The step size k is

chosen such that

0
() min ()k k k k kf x d f x d


 


   . (10)

2) Goldstein rule. The step size k is chosen to satisfy

(6) and

2() T

k k k k k k kf x d f g d     . (11)

Now we give our algorithm as follows.
1) Algorithm 1 (New Algorithm)
Step 0: Choose an initial point 0 ,nx R and constants

0 1  , 1

1
0

2
  , 1 2 1   . Set 0 0d g 

0()f x  , : 0.k 

Step 1: If || || ,kg  then stop; Otherwise go to step 2.

Step 2: Compute steplength k by one line search

technique, and let 1k k k kx x d   .

Step 3: If 1|| || ,kg   then stop; Otherwise go to step 4.

A Line Search Algorithm for Unconstrained Optimization

Copyright © 2010 SciRes. JSEA

505

Step 4: Calculate the search direction 1kd  by (3),

where k is defined by (4).

Step 5: Let 1 1
1 1 1 12

1

min{0, }
|| ||

T
new k k
k k k k

k

g d
d d g g

g
 

   




    ,

where 1
1 1

1

|| |||| ||

|| |||| ||
k k

k k

k k

y g
d d

s d




 



  , 1k k ks x x  ,

|| || max{|| ||,|| ||}k k ky s y  , 1k k ky g g  .

Step 6: Let 1: naw

kd d  , : 1k k  , and go to step 2.

Remark. In the Step 5 of Algorithm 1, we have

|| || max{|| ||,|| ||}
1

|| || || ||
k k k

k k

y s y

s s



  ,

which can increase the convergent speed of the algorithm
from the computation point of view.

Here we give the normal PRP conjugate gradient algo-
rithm and one modified PRP conjugate gradient algorithm
[14] as follows.

2) Algorithm 2 (PRP Algorithm)
Step 0: Choose an initial point 0 ,nx R and constants

0 1  , 1

1
0

2
  , 1 2 1   . Set 0 0d g  

0()f x , : 0.k 

Step 1: If || || ,kg  then stop; Otherwise go to step 2.

Step 2: Compute steplength k by one line search

technique, and let 1k k k kx x d   .

Step 3: If 1|| || ,kg   then stop; Otherwise go to step 4.

Step 4: Calculate the search direction 1kd  by (3),

where k is defined by (4).

Step 5: Let : 1k k  and go to step 2.
3) Algorithm 3 (PRP+ Algorithm see [14])
Step 0: Choose an initial point 0 ,nx R and con-

stants 0 1  , 1

1
0

2
  , 1 2 1   . Set 0d 

0 0()g f x   , : 0.k 

Step 1: If || || ,kg  then stop; Otherwise go to step 2.

Step 2: Compute steplength k by one line search

technique, and let 1k k k kx x d   .

Step 3: If 1|| || ,kg   then stop; Otherwise go to step 4.

Step 4: Calculate the search direction 1kd  by (3),

where max{0, }PRP

k k 

Step 5: Let : 1k k  and go to step 2.
We will concentrate on the convergent results of Al-

gorithm 1 in the following section.

3. Convergence Analysis

The following assumptions are often needed to analyze

the convergence of the line search method (see [15,26]).
Assumption A (i) f is bounded below on the level set

0{ : () ()}nx R f x f x    ;

Assumption A (ii) In some neighborhood 0 of  ,

f is differentiable and its gradient is Lipschitz con-

tinuous, namely, there exists a constants 0L  such that
|| () () || || ||g x g y L x y   , for all 0,x y .

 In the following, let 0kg  for all k , for otherwise a

stationary point has been found.
Lemma 3.1 Consider Algorithm 1. Let Assumption (ii)

hold. Then (5) and (9) hold.
Proof. If 0k  , (5) and (9) hold obviously. For 1k  ,

by Assumption (ii) and the Step 5 of Algorithm 1, we
have

1 1 1

1 1

|| || || || || ||

|| || (2max{1, } 1) || || .

new

k k k

k k

d d d

g L g
  

 

  
  

Now we consider the vector product 1 1

T

k kg d 
 in the

following two cases:
case 1. If 1 1 0T

k kg d 
  . Then we get

2 21 1
1 1 1 1 1 12

1

2

1 1 1

2

1

min{0, } || || || ||
|| ||

|| ||

|| || .

T
T new T k k
k k k k k k

k

T

k k k

k

g d
g d g d g g

g

g d g

g

 
     



  




   

 

 

case 2. If 1 1 0T

k kg d 
  . Then we obtain

2 21 1
1 1 1 1 1 12

1

2 21 1
1 1 1 12

1

2

1

min{0, } || || || ||
|| ||

|| || || ||
|| ||

|| || .

T
T new T k k
k k k k k k

k

T
T k k
k k k k

k

k

g d
g d g d g g

g

g d
g d g g

g

g

 
     



 
   






   


  

 

Let (0,1)c , 1 2 max{1, } 1c L  and use the Step 6

of Algorithm 1, (5) and (9) hold, respectively. The proof is
completed.

The above lemma shows that the search direction kd

has such that the sufficient descent condition (5) and the
condition (9) without any line search rule.

Based on Lemma 3.1, Assumption (i) and (ii), let us
give the global convergence theorem of Algorithm 1.

Theorem 3.1 Let 1 1{ , , , }k k k kd x g   be generated by

Algorithm 1 with the exact minimization rule, the Gold-
stein line search rule, the SWP line search rule, or the
WWP line search rule, and Assumption (i) and (ii) hold.
Then

lim || || 0kk
g


 (12)

holds.

A Line Search Algorithm for Unconstrained Optimization

Copyright © 2010 SciRes. JSEA

506

Proof. We will prove the result of this theorem with the
exact minimization rule, the Goldstein line search rule, the
SWP line search rule, and the WWP line search rule,
respectively.

1) For the exact minimization rule. Let the step size k

be the solution of (10).
By the mean value theorem, 0T

k kg d  , and Assump-

tion (ii), for any

2 2

| | | |1 2
,

5 || || 5 || ||

T T

k k k k
k

k k

g d g d

L d L d
  

  
 

,

we have

1

0

1

0

() () () ()

() ()

[()] ()

k k k k k k k k

T

k k k k k

T T

k k k k k k k k k

f x d f x f x d f x

g x t d d dt

g d g x t d g d dt

 

 

  



 

  

    

 

   

2 2

2
2

2 2 4

2

2

1
|| ||

2
| | ()1 1 4

() || || (13)
5 || || 2 25 || ||

()3
,

25 || ||

T

k k k k k

T T
Tk k k k
k k

k k

T

k k

k

g d L d

g d g d
g d L d

L d L d

g d

L d

   

  

 

which together with Assumption (i), we can obtain
2

2
0

()

|| ||

T

k k

k
k

g d

d




  . (14)

This implies that
2

2

()
lim 0

|| ||

T

k k

k
k

g d

d
 (15)

holds. By Lemma 3.1, we get (12).
2) For Goldstein rule. Let the step size k be the so-

lution of (6) and (11).
By (11) and the mean value theorem, we have

1 2()T T

k k k k k k k k k k kg x d d f f g d          ,

where (0,1)k  , thus

2()T T

k k k k k k kg x d d g d    .

Using Assumption (ii) again, we get

2

2

(1)

[()] || ||

T

k k

T

k k k k k k k k

g d

g x d g d L d


  

 

   
,

which combining with (6), and use Assumption (i), we
have (14) and (15), respectively. By Lemma 3.1, (12)
holds.

3) For strong Wolf-Powell rule. Let the step size k

be the solution of (6) and (7).
By (7), we have

2 2()T T T

k k k k k k k kg d g x d d g d      .

Similar to the proof of the above case. We can obtain
(12) immediately.

4) For weak Wolf-Powell rule. Let the step size k be

the solution of (6) and (8). Similar to the proof of the case
3), we can also get (12).

Then we conclude this result of this theorem.
By Lemma 3.1, there exists a constant 0 0  such

that

0 ,
|| |||| ||

T

k k

k k

g d

g d
  for all .k (16)

By the proof process of Lemma 3.1. We can deduce that

there exists a positive number 1 satisfying

2

1 1 () ,
|| ||

T

k k
k k

k

g d
f f

d



  for all .k (17)

Similar to the proof of Theorem 4.1 in [27], it is not
difficult to prove the linear convergence rate of Algorithm
1. We state the theorem as follows but omit the proof.

Theorem 3.2 (see [27]) Based on (16), (17), and the
condition that the function f is twice continuously dif-

ferentiable and uniformly convex on nR . Let

1 1{ , , , }k k k kd x g   be generated by Algorithm 1 with the

exact minimization rule, the Goldstein line search rule,
the SWP line search rule, or the WWP line search rule.
Then { }kx converges to x at least linearly, where x

is the unique minimal point of ()f x .

4. Numerical Results

In this section, we report some numerical experiments
with Algorithm 1, Algorithm 2, and Algorithm 3. We test
these algorithms on some problem [28] taken from
MATLAB with given initial points. The parameters
common to these methods were set identically, 1 0.1  ,

2 0.9  , 610 ,  In this experiment, the following

Himmeblau stop rule is used:

If 1| () |kf x e ,let 1| () () |
1

| () |
k k

k

f x f x
stop

f x


 ; Other-

wise, let 11 | () () |k kstop f x f x   , where 5

1 10e  . If

|| ||kg  or 21stop e was satisfied, the program will

be stopped, where 5

2 10e  .

We also stop the program if the iteration number is
more than one thousand. Since the line search cannot
always ensure the descent condition 0T

k kd g  , uphill

search direction may occur in the numerical experiments.
In this case, the line search rule maybe failed. In order to
avoid this case, the stepsize k will be accepted if the

A Line Search Algorithm for Unconstrained Optimization

Copyright © 2010 SciRes. JSEA

507

searching number is more than forty in the line search.
The detailed numerical results are listed on the web site

http://210.36.18.9:8018/publication.asp?id=34402
Dolan and Moré [29] gave a new tool to analyze the

efficiency of Algorithms. They introduced the notion of a
performance profile as a means to evaluate and compare
the performance of the set of solvers S on a test set P .
Assuming that there exist sn solvers and pn problems,

for each problem p and solver s , they defined

,p st  computing time (the number of function evalua-

tions or others) required to solve problem p by solver s .

Requiring a baseline for comparisons, they compared
the performance on problem p by solver s with the

best performance by any solver on this problem; that is,
using the performance ratio

,

,

,

.
min{ : }

p s

p s

p s

t
r

t s S




Suppose that a parameter ,M p sr r for all p , s is

chosen, and ,p s Mr r if and only if solver s does not

solve problem p .

The performance of solver s on any given problem
might be of interest, but we would like to obtain an overall
assessment of the performance of the solver, then they
defined

,

1
() { : },s p s

p

t size p P r t
n

   

Thus ()s t was the probability for solver s S that a

performance ratio ,p sr was within a factor t R of the

best possible ration. Then function s was the (cumula-

tive) distribution function for the performance ratio. The
performance profile : [0, 1]s R  for a solver was a

nondecreasing, piecewise constant function, continuous
from the right at each breakpoint. The value of (1)s was

the probability that the solver would win over the rest of
the solvers.

According to the above rules, we know that one solver
whose performance profile plot is on top right will win
over the rest of the solvers.

In Figures 1-3, NA denotes Algorithm 1, PRP denotes
Algorithm 2, and PRP+ denotes Algorithm 3. Figures 1-3
show that the performance of these methods is relative to
NT NF m NG   , where NF and NG denote the
number of function evaluations and gradient evaluations
respectively, and m is an integer. According to the re-
sults on automatic differentiation [30], the value of m
can be set to 5m  . That is to say, one gradient evalua-
tion is equivalent to m number of function evaluations if
automatic differentiation is used. From these three figures

Figure 1. Performance profiles(NT) of methods with Gold-
stein rule

Figure 2. Performance profiles(NT) of methods with strong
Wolfe-Powell rule

Figure 3. Performance profiles (NT) of methods with weak
Wolfe-Power rule

A Line Search Algorithm for Unconstrained Optimization

Copyright © 2010 SciRes. JSEA

508

it is clear that the given method has the most wins (has the
highest probability of being the optimal solver).

In summary, the presented numerical results reveal that
the new method, compared with the normal PRP method
and the modified PRP method [14], has potential advan-
tages.

5. Conclusions

This paper gives a new line search method for uncon-
strained optimization. The global and R-linear conver-
gence are established under weaker assumptions on the
search direction kd . Especially, the direction kd satis-

fies the sufficient condition (5) and the condition (9)
without carrying out any line search technique, and some
paper [14,27,30] often obtains these two conditions by
assumption. The comparison of the numerical results
shows that the new search direction of the new algorithm
is a good search direction at every iteration.

REFERENCES
[1] G. Yuan and X. Lu, “A New Line Search Method with

Trust Region for Unconstrained Optimization,” Commu-
nications on Applied Nonlinear Analysis, Vol. 15, No. 1,
2008, pp. 35-49.

[2] G. Yuan, X. Lu, and Z. Wei, “New Two-Point Stepsize
Gradient Methods for Solving Unconstrained Optimi-
zation Problems,” Natural Science Journal of Xiangtan
University, Vol. 29, No. 1, 2007, pp. 13-15.

[3] G. Yuan and Z. Wei, “New Line Search Methods for
Uncons- trained Optimization,” Journal of the Korean
Statistical Society, Vol. 38, No. 1, 2009, pp. 29-39.

[4] Y. Yuan and W. Sun, “Theory and Methods of Optimi-
zation,” Science Press of China, Beijing, 1999.

[5] D. C. Luenerger, “Linear and Nonlinear Programming,”
2nd Edition, Addition Wesley, Reading, MA, 1989.

[6] J. Nocedal and S. J. Wright, “Numerical Optimization,”
Springer, Berlin, Heidelberg, New York, 1999.

[7] Z. Wei, G. Li, and L. Qi, “New Quasi-Newton Methods for
Unconstrained Optimization Problems,” Applied Mathe-
matics and Computation, Vol. 175, No. 1, 2006, pp. 1156-
1188.

[8] Z. Wei, G. Yu, G. Yuan, and Z. Lian, “The Superlinear
Convergence of a Modified BFGS-type Method for
Unconstrained Optimization,” Computational Optimiza-
tion and Applications, Vol. 29, No. 3, 2004, pp. 315-332.

[9] G. Yuan and Z. Wei, “The Superlinear Convergence Anal-
ysis of a Nonmonotone BFGS Algorithm on Convex
Objective Functions,” Acta Mathematica Sinica, English
Series, Vol. 24, No. 1, 2008, pp. 35-42.

[10] G. Yuan and Z. Wei, “Convergence Analysis of a Modified
BFGS Method on Convex Minimizations,” Computational
Optimization and Applications, Science Citation Index,
2008.

[11] Y. Dai and Y. Yuan, “A Nonlinear Conjugate Gradient

with a Strong Global Convergence Properties,” SIAM
Journal of Optimization, Vol. 10, No. 1, 2000, pp. 177-
182.

[12] Z. Wei, G. Li, and L. Qi, “New Nonlinear Conjugate
Gradient Formulas for Large-Scale Unconstrained Optimi-
zation Problems,” Applied Mathematics and Computation,
Vol. 179, No. 2, 2006, pp. 407-430.

[13] G. Yuan and X. Lu, “A Modified PRP Conjugate Gradient
Method,” Annals of Operations Research, Vol. 166, No. 1,
2009, pp. 73-90.

[14] J. C. Gibert, J. Nocedal, “Global Convergence Properties
of Conjugate Gradient Methods for Optimization,” SIAM
Journal on Optimization, Vol. 2, No. 1, 1992, pp. 21-42.

[15] Y. Dai and Y. Yuan, “Nonlinear Conjugate Gradient
Methods,” Shanghai Science and Technology Press, 2000.

[16] E. Polak and G. Ribiè, “Note Sur la Xonvergence de
Directions Conjugèes,” Rev Francaise Informat Recher-
che Operatinelle 3e Annèe, Vol. 16, 1969, pp. 35-43.

[17] M. J. D. Powell, “Nonconvex Minimization Calculations
and the Conjugate Gradient Method,” Lecture Notes in
Mathematics, Springer-Verlag, Berlin, Vol. 1066, 1984,
pp. 122-141.

[18] L. Grippo and S. Lucidi, “A Globally Convergent Version
of the Polak-RibiÈRe Gradient Method,” Mathematical
Programming, Vol. 78, No. 3, 1997, pp. 375-391.

[19] W. W. Hager and H. Zhang, “A New Conjugate Gradient
Method with Guaranteed Descent and an Efficient Line
Search,” SIAM Journal on Optimization, Vol. 16, No. 1,
2005, pp. 170-192.

[20] Z. Wei, S. Yao, and L. Liu, “The Convergence Properties
of Some New Conjugate Gradient Methods,” Applied
Mathematics and Computation, Vol. 183, No. 2, 2006, pp.
1341-1350.

[21] G. H. Yu, “Nonlinear Self-Scaling Conjugate Gradient
Methods for Large-scale Optimization Problems,” Thesis
of Doctor's Degree, Sun Yat-Sen University, 2007.

[22] G. Yuan, “Modified Nonlinear Conjugate Gradient
Methods with Sufficient Descent Property for Large-Scale
Optimization Problems,” Optimization Letters, Vol. 3, No.
1, 2009, pp. 11-21.

[23] G. Yuan, “A Conjugate Gradient Method for Uncons-
trained Optimization Problems,” International Journal of
Mathematics and Mathematical Sciences, Vol. 2009, 2009,
pp. 1-14.

[24] G. Yuan, X. Lu, and Z. Wei, “A Conjugate Gradient
Method with Descent Direction for Unconstrained Optimi-
zation,” Journal of Computational and Applied Mathe-
matics, Vol. 233, No. 2, 2009, pp. 519-530.

[25] L. Zhang, W. Zhou, and D. Li, “A Descent Modified
Polak-RibiÈRe-Polyak Conjugate Method and its Global
Convergence,” IMA Journal on Numerical Analysis, Vol.
26, No. 4, 2006, pp. 629-649.

[26] Y. Liu and C. Storey, “Efficient Generalized Conjugate
Gradient Algorithms, Part 1: Theory,” Journal of Optimi-
zation Theory and Application, Vol. 69, No. 1, 1992, pp.
17-41.

A Line Search Algorithm for Unconstrained Optimization

Copyright © 2010 SciRes. JSEA

509

[27] Z. J. Shi, “Convergence of Line Search Methods for
Unconstrained Optimization,” Applied Mathematics and
Computation, Vol. 157, No. 2, 2004, pp. 393-405.

[28] J. J. Moré, B. S. Garbow, and K. E. Hillstrome, “Testing
Unconstrained Optimization Software,” ACM Transac-
tions on Mathematical Software, Vol. 7, No. 1, 1981, pp.
17-41.

[29] E. D. Dolan and J. J. Moré, “Benchmarking Optimization
Software with Performance Profiles,” Mathematical
Programming, Vol. 91, No. 2, 2002, pp. 201-213.

[30] Y. Dai and Q. Ni, “Testing Different Conjugate Gradient
Methods for Large-scale Unconstrained Optimization,”
Journal of Computational Mathematics, Vol. 21, No. 3,
2003, pp. 311-320.

J. Software Engineering & Applications, 2010, 3: 510-516
doi:10.4236/jsea.2010.35058 Published Online May 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

Experience in Using a PFW System – A Case Study

Derrick Black1, Elizabeth Hull1, Ken Jackson2

1School of Computing and Mathematics, University of Ulster, N Ireland, UK; 2IBM Ltd., England, UK.
Email: mec.hull@ulster.ac.uk

Received October 26th, 2009; revised January 30th, 2010; accepted January 31st, 2010.

ABSTRACT

A safety document management system, in a domain such as the power industry, is known as a Permit for Work (PFW)
solution. It is based on the issues prevalent in an environment and on the methods available to eliminate potential safety
issues. This paper considers how a PFW system should be implemented. It does so by identifying an appropriate case
study from a domain not usually associated with PFW systems, and applying a suitable process, +PFW.

Keywords: Safety, Permit for Work, Systems Engineering, Health and Safety, Process, Modeling, Framework

1. Introduction

For many years, process industries in the UK such as the
mining and power generation industry have had govern-
ment legislation applied to them which included the re-
quirement to utilise a Permit for Work (PFW) system [1].
This has resulted in these industries developing a thor-
ough understanding and competency in the implementa-
tion and operation of a safety document management
system based on domain knowledge and operational ex-
perience. Research in requirements engineering [2,3] has
recognized the need to ensure that systems are developed
with safety considered as an integral part of requirements
elicitation. Furthermore, it is generally understood that
all stakeholders involved in the requirements process are
fully conversant with the consequences of their decisions
and the potential impact on the domain [4].

The introduction of the UK Health and Safety at Work
Act [5-7] has widened this, and placed a requirement to
operate a PFW system on all sectors of society where risks
exist that cannot be eliminated or minimised sufficiently.
Unfortunately these new sectors do not have the same
experience or competency of safe systems. Thus the po-
tential exists for this lack of operational knowledge to
cause difficulties when a PFW system is introduced.
When less experienced industry sectors start to introduce
PFW systems (in response to risk assessments) it is im-
portant that they are implemented correctly and that the
operational procedures applied to them are appropriate.
The deficiency of user experience in these sectors may
compound any problems and this is an area of concern.

This paper builds on work previously presented by the
authors concerning the management of safety. First of all
a Safety Framework [1,8] has been established. This al-

lows a series of views to be identified that are relevant to
safety in systems. These views convey different per-
spectives of the architecture including issues such as roles
and organizational hierarchies, as well as rules and regu-
lations. Hence a series of high level views can be estab-
lished that may be applied to a system with safety as a core
consideration. Secondly, a process +PFW [1,8], has been
presented which ensures that a user will be in a position to
utilise a PFW system without compromising safety. It is
important to understand the Safety Framework and the
process +PFW to fully appreciate the following sections
of this paper.

This paper identifies a suitable candidate as a case study
to use a PFW system. Intentionally, the domain chosen is
outside the industries normally associated with PFW
systems. This is described in Section 2. Having identified
a suitable nominee as a case study, the paper considers the
rationale for implementing a PFW system. Section 3 re-
counts the experiences of the identified user in imple-
menting a PFW system in their environment. The evident
shortcomings are presented and areas of concern still
evident after implementation are highlighted. Section 4
then examines the application of the +PFW process to the
implementation of a PFW system in an effort to eliminate
the outstanding issues and provide an operational system
designed to enhance the safety of users in the environ-
ment.

2. Identification of a Suitable Candidate

The need to use a PFW solution is based on the risks
prevalent in an environment and on the methods available
to eliminate these potential issues. The requirement to
manage part of the safety process using a specialist system

Experience in Using a PFW System – A Case Study

Copyright © 2010 SciRes. JSEA

511

such as a PFW solution is not an isolated decision. It
consists of a series of considered assessments leading
ultimately to a decision on whether an organisation needs
to employ such a solution. Initially the concern is with the
tasks performed. If all risks and hazards can be identified,
managed and eliminated, or reduced to an acceptable level
then there is no requirement for a PFW solution. However,
if the risks cannot be managed successfully then a PFW is
required. This concept is shown in Figure 1.

As an example, consider the domain of an academic
institution. A university’s goal is to develop a seat of
learning for its students that is supported by world re-
nowned research, innovation and teaching. However, to
achieve this task the required infrastructure must be in
place to support this objective. This infrastructure in-
cludes the provision of suitably equipped teaching and
research facilities as well as accommodation and social
provision for academics, students and support staff. All of
these facilities need to be maintained and enhanced and it
is here that many of the risks and hazards associated with
this environment are present.

In providing the required facilities universities use high
voltage equipment, heating and steam generating plant as
well as scientific ancillaries such as fume extraction
equipment. All of these items have associated risks and
hazards such as electrocution, scalds, asphyxiation and
toxicity. Many of these risks cannot be eliminated or
reduced successfully and as a result a PFW is required for
the maintenance environment of a university. Even though
these items of equipment are commonplace across the
university sector few if any universities have PFW sys-
tems in place and even fewer operate them successfully.
Given the limited experience of using a PFW system in
this sector, a university environment would appear to be
ideally suited as a case study. A University in the UK was
therefore chosen.

3. Initial Implementation of a PFW System

Having identified the need for a PFW solution based on a
series of risk assessments and method statements, the
University decided an appropriate solution would be to
use a computerised PFW system. A tender exercise was
carried out to source the most suitable solution. The result
of this exercise was the procurement of the world leading
computerised software system known as Eclipse. This
product was development in the Power Generation In-
dustry and is the standard system implemented in the
majority of existing UK Power Stations. It has also been
implemented in new power stations world-wide. The
chosen system was installed with a minimal set of data at
the request of the University.

The supplier carried out a series of training sessions on
the operation of the system. This training was focused
exclusively on the key presses required to deliver the
required output rather than any concept of the operation of

a PFW system. The result of the installation and training
was the availability of a fully functionally PFW. How-
ever, because of the lack of data and understanding of the
operational concepts of the system by the users, the in-
stalled system lay unused for eighteen months, with no
safety documents being issued. The supplier returned to
the University on a number of occasions to ascertain if
they could be of assistance in implementing the full op-
eration of the system but to no avail. No operational pro-
cedures existed and the data required for day to day op-
erations, such as an asset list and the identification of the
participants, were never established. Thus a system
deemed necessary to fulfill health and safety obligations
remained unused.

3.1 Issues with the Initial Implementation

The initial installation was performed to facilitate the
requirement to provide a safety document management
system. Identification of this need was made following a
risk assessment exercise carried out by the Estates Di-
rectorate in the University. The assessment looked at
some of the key activities performed by this department
and concluded that a safety document management sys-
tem was required. However, the group tasked with this
initial assessment programme was made up of several
members of staff some of whom had limited or no ex-
perience of PFW systems or had widely differing inter-
pretations of the operational procedures required. These
differences were left unresolved and the resultant system
installation had no agreed operational process in place.

Despite the fact that no cohesive operational procedures
had been developed and the data required to populate
system tables had not be developed, nor agreed, the sys-
tem was installed and training was undertaken. A number
of issues remained to be resolved. These included:
 Individuals responsible for the operation of the sys-

tem remained unidentified
 Management roles had not been established
 Users roles had not been identification
 No data was available to populate the system tables
 The areas to be addressed by the PFW system re-

mained unidentified
 Establishment of operational procedures remained to

be undertaken.

4. Using +PFW to Implement a Solution

As the University recognized that the most suitable solu-
tion available had been chosen, it was agreed that the
problem lay not with the computerised solution but with
the process applied to implement the system.

To facilitate the implementation and operation of the
PFW system the process +PFW [9] was introduced to the
University staff and its concept explained. Following
detailed discussions it was agreed that +PFW should be
used in the second attempt to implement the safety docu-

Experience in Using a PFW System – A Case Study

Copyright © 2010 SciRes. JSEA

512

ment management system. A group was identified and tas-
ked with fully implementing the PFW system.

The three key stages of +PFW are as follows:
1) Establishment of a maintenance list
2) Development of an equipment list based on the

context of the maintenance list
3) Establishment of specified roles
The Safety Framework [10] facilitates the way in which

the stages of the process can be realized. The framework
identifies three potential groups of views:
 Operational Group, OG
 Safety Regulation Group, SG
 Requirements Group, RG
 And proposes a way in which each can be imple-

mented.

4.1 Creating the Maintenance List

+PFW was developed to be used in a standalone envi-
ronment were the requirements phase had been completed
and a PFW was deemed necessary, but the implementa-
tion and operational procedures had not yet been discov-
ered. The University scenario described previously is a
perfect example of this situation since the requirement
elicitation process had resulted in the installation of the
PFW system but the implementation of the solution was
the cause of concern. Figure 2 shows the Maintenance
List stages in +PFW.

This maintenance list defines those items of plant and
equipment that require the issue of a safety document
when repair tasks are being undertaken. The process
suggests that use of the Safety Framework [8] is needed to
achieve the correct maintenance list. Cognition must be
made of the principles of operation of the system, the
organisational roles in place, any existing safety rules
utilised as well as identifying the intention behind any
decisions made. Any maintenance list must be developed
in the context set by these requirements. Thus the first task
was to identify the objectives of the PFW system.

The University had decided that the PFW system was to

Figure 1. Decision process involved in introducing a PFW
solution

be used to protect individual’s safety rather than plant
safety and that initially it was to be operated by the Estates
Department in conjunction with its internal staff and ex-
ternal contractors. This objective clearly removed ele-
ments of equipment not maintained by this group of staff
and as such excluded research equipment from consid-
eration. Although risks may still be evident for these items
of equipment their omission from the PFW system is
justified on the basis that the initial implementation was
for a particular group of staff.
 Limiting the operation of the system to Estates staff and
external contractors employed to perform maintenance
activities for this group was another element that placed
the operation of the system in an agreed context. Since the
system’s operation was limited to this group only the
organisational hierarchy within the Estate’s department
needed to be considered in terms of who would be in-

Identify Maintenance
List

Establish
Completeness

Maintenance List Req

Identify Need for list and establish its content

Compare and contrast completeness with context

Identify Context

Figure 2. Maintenance list stages of +PFW

Experience in Using a PFW System – A Case Study

Copyright © 2010 SciRes. JSEA

513

volved in the operation of the solution. Therefore only the
identified roles within this structure had an input to the
development of the maintenance list thereby restricting
the number of potential stakeholders.

Before the maintenance list was developed, the ration-
ale for including items of equipment and plant needed to
be understood. The University decided the most appro-
priate method for this was to group items of plant and
equipment and then decide if they were to be included in
the maintenance list. An examination was undertaken
using risk assessments of the tasks to be undertaken to
ensure that the list was complete. The outcome was that a
Maintenance List specific to the requirements of the
University was created that could be justified in terms of
its context, its completeness and the reasoning behind
those elements included and those omitted. This first draft
of the maintenance list was approved for use. It is con-
sidered dynamic and will be reviewed on a regular basis.

The decision on which type of equipment to included
was influenced by the domain knowledge and experience
of the Estate’s Department staff and the current legisla-
tion.

4.2 Establishing the Equipment List

The second element of +PFW concentrates on the estab-
lishment of the Equipment List and is shown in Figure 3.
This is based on the maintenance list using the same
context.

The equipment list is used to identify all potential
sources of energy that may cause an item of equipment to
operate, or any potentially hazardous materials stored in
the equipment or plant used by the University. Elements
such as high voltage supplies, steam and high pressure
water, as well as flammable and hazardous materials etc
were all identified as potential sources of supply.

The equipment list is a dynamic document needing
continual review to ensure that modifications to the plant
and equipment and the overall electro-mechanical system
are included as appropriate. Changes to potential sources

of energy need to be updated to ensure an up to date,
accurate list is maintained. In addition the equipment list
needs to be reviewed in association with the agreed
maintenance list to reflect changes, additions and dele-
tions of items from this list. The University recognised
this requirement and has established a procedure to ac-
tively review the contents of both the maintenance and
equipment lists as well as auditing the overall operation of
the system.

4.3 Identification of the PFW Roles

+PFW identifies the requirement to establish the roles and
responsibilities associated with the implementation and
operation of a PFW system as shown in Figure 4.

To operate a PFW successfully the roles to be per-
formed by users must be clearly and unambiguously
identified. The first of these roles was identified as the
individuals charged with assessing the task to be under-
taken to determine if a safety document is to be issued.
Although the maintenance list identifies the equipment to
be included that does not mean that in every instance work
is performed on these items; a safety document is required.
However, not all safety documents perform the same task.
Although they are similar in format two distinct safety
document types were identified by the University as being
relevant to their procedures. These documents are referred
to as the Permit and the Limited Work Certificate
(LWC). Both documents state the work to be undertaken
and the precautions applied to achieve safety. Where they
differ is in the isolation applied to the equipment. In the
case of the Permit the equipment is isolated completely
from the potential sources of energy while for the LWC
safety is achieved by limiting either the work to be un-
dertaken or the area in which the task is to be carried out.
For example working on a high voltage busbar would
require a Permit while brushing the floor in front of the
high voltage switch gear would require a LWC, because
the work is in a dangerous area but no contact is possible
with the live conductors.

Identify
Equipment List

Establish
Completeness

Equipment List
Req

Identify Potential
Sources

Identify Need for list and establish its content

Compare and contrast completeness with potential
sources

Figure 3. Equipment list stages of +PFW

Experience in Using a PFW System – A Case Study

Copyright © 2010 SciRes. JSEA

514

Identify Roles

Identify Operation of
Responsibilities

Establish Roles

Establish
Responsibilities

Identify need for roles and establish criteria

Establish completeness between
responsibilities and operation of

system

Figure 4. Roles and responsibilities associated with a PFW system

The creation of the safety document requires an indi-
vidual skilled in the application of the PFW system as well
as individuals with detailed knowledge and experience of
the domain. This role must identify any precautions and
isolation points to be applied to ensure safety. Although
the equipment list identifies the isolation to be applied to a
particular equipment item it is unwise to rely on this list
completely, as there may be occasions when the isolation
suggested may be inappropriate or unavailable.

Once a safety document is issued there is clearly a role
to be played in the performance of the repair task, but
equally a role needs to exist to ensure that the require-
ments of the PFW system are not breached.

Finally, a role was established that is only applicable in
a very specific set of circumstances. The University pro-
posed to use a ‘Hot Work Certificate’ in association with a
safety document where the use of cutting or burning
equipment is required in the repair task. Although this is
common in the operation of PFW systems, it differs in that
normally PFWs are issued in process industries that op-
erate 24 hrs per day while the University’s Estates de-
partment operates 9 to 5 daily. There is a risk that heated
material may spontaneously combust. To prevent this, a
safety document may stipulate a required time to under-
take a ‘Fire Watch’ whereby someone is charged with
remaining in situ for a period after the work has been
completed. To ensure this has occurred, it is advisable for
a nominated individual to visit the site of the repair when
the safety document is returned as completed (after the
fire watch). Since no maintenance engineering staff are
likely to be present after hours the task has been delegated
to the security staff and as such this is an identified role in
the PFW operation.

4.3.1 Naming and Assignment of Identified Roles
+PFW indicates that PFW roles should be established in
association with the operational roles and organisational
structure prevalent in the domain as well as using the

interaction between these elements. In the University
scenario referencing these aspects led to the decision that
three roles would be utilised in the operation of the PFW
system. One of the roles would be performed by the Es-
tates Engineering and Project Managers and assistants, the
second would be performed by competent maintenance
staff and external contractor’s staff while the third would
be performed by the security staff as previously described.

The first role was named as an Authorised Person. This
role was assigned the responsibility to issue a safety
document (and its cancellation on completion of the task)
and the decision to isolate equipment (and to de-isolate).

The second role was named as a Competent Person.
The term ‘Competent Person’ is unlike the conventional
definition of competent. To be considered a Competent
Person in the PFW system a user needs to be competent in
their own discipline, for example only qualified electri-
cians can work at electrical installations, as well as being
assessed competent in the use of the PFW system.

A Competent Person, using the University’s definition,
means an individual charged with supervising and/or
undertaking the work required to complete the repair task
while being responsible for requesting a safety document,
receiving it when it is issued, ensuring general safety is
maintained at the work site and returning the safety
document on completion of the task.

The Security role has been discussed previously and the
responsibility is to receive a completed safety document
when it is returned out of hours, visit the site of a repair
that has had a Hot Work Certificate issued on it and to
return any safety documents to the Authorised Person.

The University identified an additional role that was
considered important, although plays no part in the actual
operation of the system, staff, students and contractors
who are not involved in the repair task indicated by a
safety document need to comply with the terms of the
safety document, in terms of the access to a restricted area

Experience in Using a PFW System – A Case Study

Copyright © 2010 SciRes. JSEA

515

etc. This role is not commonly included in the roles as-
signed in a PFW system but the University felt that it was
appropriate to include this role so that no individual was
overlooked when training was being undertaken. Plans are
currently being drawn up to include this in the induction
progress for contractors, new staff and students.

4.3.2 Documenting the Assumptions
The final stage of +PFW deals with the assumptions,
methods of isolation and the operational rules relevant to
the implementation and operation of PFW system and is
shown in Figure 5.

The majority of assumptions made in implementing a
PFW system are made at the maintenance list creation
stage but these decisions need to be recorded to allow
traceability on all decisions taken. They should also be
tested to ensure that they are relevant to the domain. The
assumptions made in this case study were that only
equipment maintained by the Estates Department of the
University would be included. All other plant and
equipment even if it was on the University estate would be
excluded. However, this raised a question with regard to
what happened to the equipment when it was handed to an
external contractor as part of a major refurbishment/re-
placement process. The outcome of deliberations on this
point lead to the assumption that the equipment would be
temporarily removed from the PFW system until the re-
furbishment had been completed.

The equipment list identified earlier detailed the isola
tion applicable to each equipment or plant item but did not
consider how this was to be achieved. Two possible sce-
narios are common in the operation of PFW system. One
relies on the understanding of the stakeholders in the

domain. In this instance the isolation is applied by closing
valves, opening electrical switches and opening drain and
vent valves on the item. Notices are then placed on the
isolation points stating their use on a safety document
system. The second option applies the same methodology
to the isolation points, but in this instance locks are ap-
plied to the devices and the keys that from these locks are
placed in a safe which is controlled by the safety docu-
ment. Either method is suitable provided all the stake-
holders involved understand the principles. Although the
University believed that the second option might be more
secure it has opted for the first since it is an easier method
to implement and operate.

The final element of the process suggests that a set of
operational rules are required. These will be developed in
due course. The University felt that it was more appro-
priate to develop these rules following a period of opera-
tion so that the user community had gained a sound ap-
preciation of the system and its nuances before commit-
ting to the operational rules.

4.3.3 Evaluation of the Implementation Process
Using +PFW highlighted a significant number of areas
that had not been sufficiently addressed during the initial
implementation procedure. They included the need to
establish a full and comprehensive maintenance list based
on the agreed groups of equipment to be included in the
system operation. Hence +PFW delivered a positive im-
pact almost immediately and this carried on throughout
the implementation process.
Having identified the maintenance list, the requirement
for an equipment list was clearly evident since knowing
the equipment to be worked on as part of the system was

Figure 5. Identifying the assumptions, methods of isolation and operational rules

Perform Risk Assessment Define Assumptions

Provide risk assessment of equip-
ment based on defined assumptions

Record Source and Isolation Define Method of Isolation

Define isolation method procedures
and operation

Develop Rules for Operation Define Context for Operation
Rules

Identify the operational rules
for the system and document

these rules

Experience in Using a PFW System – A Case Study

Copyright © 2010 SciRes. JSEA

516

only part of the issue. The normal or potential sources of
energy to each of these items was obviously required if the
equipment was to be rendered safe for the repair tasks.

The identification of the roles involved in the PFW
system was a much more contentious issue for the Uni-
versity. The need to establish the roles was not the issue,
however the roles to be performed and the method of
operation for the roles caused major differences of opinion
between all the stakeholders. Part of the problem in this
area was that several stakeholders had experience of PFW
system gained in different environments. Each of these
stakeholders had slightly differing views of what the
correct procedures to employ should be and where the
responsibility for the operations of the various elements
resided. To facilitate the establishment of the roles and
responsibilities the University sought advice from the
supplier of the Eclipse product and other experienced
PFW system users. This did not quite achieve the desired
result since the supplier is heavily involved in the Power
Generation domain and had what were considered strict
interpretations of the requirements for the roles in the
system while some of the other users consulted were more
lax in their definitions. A compromise was eventually
reached that combined the major roles suggested by some
stakeholders and validated by the supplier with some
more lenient aspects suggested by other stakeholders. The
outcome has proved to be very satisfactory for the Uni-
versity. It has clearly established the key roles while ad-
dressing specific issues such as the fire watch scenario.

+PFW indicated that the desired outcome required
documentation to enable users to operate the PFW system
effectively. This has been achieved with the University
now in possession of Safety Procedure Document. It
provides a clear overview of the operational procedure to
be applied while identifying the roles and responsibilities
required to effectively operate the system. It establishes
the concept behind the maintenance and equipment lists
unambiguously.

At present no formal training has been undertaken in
the concept of PFW systems. However, a contract has
been prepared for issue to a Health and Safety company to
provide the required training for all levels of staff in their
identified roles. Additionally a request has been made to
each contractor requesting the nomination of suitably
qualified individuals to be trained as ‘Competent Persons’
within the PFW system.

5. Conclusions

This paper has described how, following an initial attempt
at implementing a system, +PFW was utilised. The
process highlighted the elements that needed to be estab-
lished and validated for the implementation to be consid-
ered a success. Having reached an impasse after the first
attempt to implement the system the University was
sceptical that any progress could be made but +PFW

clearly removed these doubts and an effective PFW sys-
tem is now in operation. It has allowed the University to
develop the information necessary to fully implement and
operate a PFW system.

The initial implementation procedure resulted in a
number of key elements being missed with the conse-
quence that a poorly installed system, which could not be
operated by the University, was provided. The imple-
mentation did not fulfil the University’s identified re-
quirement to protect the safety of individuals working on
equipment when outstanding risks existed. By following
the process, these missing elements were identified and
provided the University with the skills necessary to es-
tablish the required outcomes in each area. These ele-
ments included the need to:
 Identify key individuals in the operation of the sys-

tem
 Establish pivotal managerial roles
 Provide users with an identified set of tasks for

which they are responsible
 Identify the roles required for the operation of the

system
 Identify the activities requiring a safety document

and their associated methods of isolation
 Identification of the equipment and plant to be in-

cluded in the PFW system.
These areas were all fully addressed by the +PFW

process using stakeholders with limited or no experience
of the concepts associated with a PFW system.

REFERENCES
[1] D. D. Black, “Management of Safety-A Systems Engi-

neering Approach,” PhD Thesis, University of Ulster, 2008.

[2] P. G. Bishop and R. E. Bloomfield, “The SHIP Safety Case
Approach,” Proceeding of Safecomp 95, Belgirate, 1995,
pp. 437-451.

[3] N. G. Leveson, “Safeware System Safety and Computers,”
Addison-Wesley, 2001, pp. 171-184.

[4] M. E. C. Hull, K. Jackson and A. J. J. Dick, “Requirements
Engineering,” 2nd Edition, Springer, 2005.

[5] “Essentials of Health and Safety at Work,” HSE Books,
Health and Safety Executive, 2006.

[6] “Health and Safety at Work (Northern Ireland) Order,”
Northern Ireland orders in Council, No. 1039, 1978.

[7] “Permit-to-work Systems,” HSE Books Online, Health and
Safety Executive, 1997.

[8] D. D. Black, M. E. C. Hull and K. Jackson, “Combining a
Safety Management Process with a Safety Framework,”
Journal of Intelligent Information Management, Vol. 2, No.
4, 2010, pp. 233-242.

[9] D. D. Black, M. E. C. Hull and K. Jackson, “+PFW-A
Process for System Safety,” 2009.

[10] D. D. Black, M. E. C. Hull and K. Jackson, “Systems
Engineering and Safety-A Framework,” 2009.

	cover 1
	cover 2
	cover 3
	cover 4
	JSEA.pdf
	contents.doc-revHEAD.svn000.tmp
	journal information jsea
	1-9301036
	2-9301044
	3-9301028
	4-9301057
	5-9301059
	6-9300064
	7-9301056
	8-9301025
	9-9301039
	10-9301010
	11-9301043
	12-9300181

