Vol.5, No.9, 963-971 (2013) Natural Science
http://dx.doi.org/10.4236/ns.2013.59117
Relationship of nine constants
Michael Snyder
Department of Physics and Astronomy, University of Louisville, Louisville, USA; m0snyd04@louisville.edu
Received 25 June 2013; revised 25 July 2013; accepted 4 August 2013
Copyright © 2013 Michael Snyder. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
ABSTRACT
Through the process of trial and error, four
unitless equations made up of nine constants
have been found with exact ans wers. The related
constants are the Speed of Light [1], the Planck
constant [2], Wien’s displacement constant [3],
Avogadro’s number [4], the universal Gravity
constant [5], the Ampere constant [6], the Fara-
day constant [7], the G as constant [8] and Apery’s
constant [9].
Keywords: Planck; Wien; Avogadro; Faraday;
Apery; Ampere
1. INTRODUCTION
At the end of the spring semester 2013, I had found an
expression of a few physical constants that gave the cor-
rect value of the universal Gravity constant [5]. I shared
my findings with my classmates and they all pointed out
the units were incorrect.
This started the search for a unitless expression of
physical constants similar in form to the Fine Structure
constant but with more constants.
In the context of this paper, the term unitless is defined
as all the exponents of the units on the left hand side of
the equation are equal to zero and the right hand side of
the equation is represented by only a numeric expression.
2. MAIN BODY
The first few equations were found by trial and error.
One would literally examine a listing of physical con-
stants and guess which set of constants multiplied to-
gether and divided by another set of multiplied constants
produces an answer with units raised to the zero power.
I had the limited success of finding the Fine Structure
constant over and over again. At this point I changed my
strategy by writing a program that would try every com-
bination of a set of constants within a certain integer
range of exponents, with its dimensionality equal to a
selected SI unit. This strategy worked in the sense that it
produced a large set of equations, of the selected con-
stants that had the required SI units of seconds or meters,
etc.
The programming process and the testing the programs
happened over a few weeks and various sets of physical
constants where tried. Overall the physical constants that
produced the most equations were selected to be in the
final set of nine presented in this paper.
A few things happened concurrently that allowed me
to find the equations presented in this paper. One was
that I started using a unit of an ampere-mole as a range
extender in my search programs. The derived unit could
be removed from the final answers yet its presence in the
program allowed more equations to be found.
The second was that it occurred to me that the struc-
ture of the programs that I had written; could search for
unitless equations too. The third was that I added the
Faraday constant to the primary set of search constants. I
intended to use the Faraday constant as a more robust
replacement for the derived ampere-mole constant, and
was hoping for similar results.
A few minutes later, the first of many unitless equa-
tions appeared on the screen. Through the process of trial
and error I had found a set of eight physical constants
that produced unitless equations.
Once a pattern was found in the first few equations, a
new program in the Cuda GPU language was written to
find unitless combinations expressed as the powers of the
constants. A program listing is included for completeness
as Appendix I.
A set of 200 unitless equations are shown in Tab le 1 ,
and Eq.1 through Eq.4 are the results of the reduced row
echelon form of Tab le 1 . The reduced row echelon op-
eration on Table 1, results with two rows.
Eq.1 represents the first row and Eq.2 represents the
second row of the reduced row echelon form. Eq.3
represents the multiplication of the Eq.1 and Eq.2 and
Eq.4 represents the quotient of Eq.1 and Eq. 2. One can
Copyright © 2013 SciRes. OPEN ACCESS
M. Snyder / Natural Science 5 (2013) 963-971
964
Table 1. A family of unitless equations.
Index Number Ln (c0 h
0 A
0 R
0 w
0 G
0 N
0 F
0) = value
1 0 0 0 0 0 0 0 0 0
2 64 70 2 69 69 1 71 2 0.29664
3 128 140 4 138 138 2 142 4 0.59328
4 193 211 6 208 208 3 214 6 0.71252
5 192 210 6 207 207 3 213 6 0.88992
6 129 141 4 139 139 2 143 4 1.0092
7 65 71 2 70 70 1 72 2 1.3058
8 1 1 0 1 1 0 1 0 1.6024
9 63 69 2 68 68 1 70 2 1.8991
10 127 139 4 137 137 2 141 4 2.1957
11 194 212 6 209 209 3 215 6 2.315
12 191 209 6 206 206 3 212 6 2.4924
13 130 142 4 140 140 2 144 4 2.6116
14 66 72 2 71 71 1 73 2 2.9082
15 2 2 0
2 2
0 2 0 3.2049
16 62 68 2 67 67 1 69 2 3.5015
17 126 138 4 136 136 2 140 4 3.7982
18 195 213 6 210 210 3 216 6 3.9174
19 190 208 6 205 205 3 211 6 4.0948
20 131 143 4 141 141 2 145 4 4.214
21 67 73 2 72 72 1 74 2 4.5107
22 3 3 0 3 3 0 3 0 4.8073
23 61 67 2 66 66 1 68 2 5.1039
24 125 137 4 135 135 2 139 4 5.4006
25 196 214 6 211 211 3 217 6 5.5198
26 189 207 6 204 204 3 210 6 5.6972
27 132 144 4 142 142 2 146 4 5.8165
28 68 74 2 73 73 1 75 2 6.1131
29 4 4 0 4 4 0 4 0 6.4097
30 60 66 2 65 65 1 67 2 6.7064
31 124 136 4 134 134 2 138 4 7.003
32 197 215 6 212 212 3 218 6 7.1223
33 188 206 6 203 203 3 209 6 7.2997
34 133 145 4 143 143 2 147 4 7.4189
35 69 75 2 74 74 1 76 2 7.7155
36 5 5 0 5 5 0 5 0 8.0122
37 59 65 2 64 64 1 66 2
8.3088
38 123 135 4 133 133 2 137 4 8.6055
39 198 216 6 213 213 3 219 6 8.7247
40 187 205 6 202 202 3 208 6 8.9021
41 134 146 4 144 144 2 148 4 9.0213
42 70 76 2 75 75 1 77 2 9.318
43 6 6 0 6 6 0 6 0 9.6146
44 58 64 2 63 63 1 65 2 9.9113
45 122 134 4 132 132 2 136 4 10.208
46 199 217 6 214 214 3 220 6 10.327
47 186 204 6 201 201 3 207 6 10.505
48 135 147 4 145 145 2 149 4 10.624
Copyright © 2013 SciRes. OPEN ACCESS
M. Snyder / Natural Science 5 (2013) 963-971 965
Continued
49 71 77 2 76 76 1 78 2 10.92
50 7 7 0 7 7 0 7 0 11.217
51 57 63 2 62 62 1 64 2 11.514
52 121 133 4 131 131 2 135 4 11.81
53 200 218 6 215 215 3 221 6 11.93
54 185 203 6 200 200 3 206 6 12.107
55 136 148 4 146 146 2 150 4 12.226
56 72 78 2 77 77 1 79 2 12.523
57 8 8 0 8 8 0 8 0 12.819
58 56 62 2 61 61 1 63 2 13.116
59 120 132 4 130 130 2 134 4 13.413
60 201 219 6 216 216 3 222 6 13.532
61 184 202 6 199 199 3 205 6
13.709
62 137 149 4 147 147 2 151 4 13.829
63 73 79 2 78 78 1 80 2 14.125
64 9 9 0 9 9 0 9 0 14.422
65 55 61 2 60 60 1 62 2 14.719
66 119 131 4 129 129 2 133 4 15.015
67 202 220 6 217 217 3 223 6 15.134
68 183 201 6 198 198 3 204 6 15.312
69 138 150 4 148 148 2 152 4 15.431
70 74 80 2 79 79 1 81 2 15.728
71 10 10 0 10 10 0 10 0 16.024
72 54 60 2 59 59 1 61 2 16.321
73 118 130 4 128 128 2 132 4
16.618
74 203 221 6 218 218 3 224 6 16.737
75 182 200 6 197 197 3 203 6 16.914
76 139 151 4 149 149 2 153 4 17.034
77 75 81 2 80 80 1 82 2 17.33
78 11 11 0 11 11 0 11 0 17.627
79 53 59 2 58 58 1 60 2 17.923
80 117 129 4 127 127 2 131 4 18.22
81 204 222 6 219 219 3 225 6 18.339
82 181 199 6 196 196 3 202 6 18.517
83 140 152 4 150 150 2 154 4 18.636
84 76 82 2 81 81 1 83 2 18.933
85 12 12 0 12 12 0 12 0 19.229
86 52 58 2 57 57 1 59 2 19.526
87 116 128 4 126 126 2 130 4 19.823
88 205 223 6 220 220 3 226 6 19.942
89 180 198 6 195 195 3 201 6 20.119
90 141
153 4 151 151 2 155 4 20.238
91 77 83 2 82 82 1 84 2 20.535
92 13 13 0 13 13 0 13 0 20.832
93 51 57 2 56 56 1 58 2 21.128
94 115 127 4 125 125 2 129 4 21.425
95 206 224 6 221 221 3 227 6 21.544
96 179 197 6 194 194 3 200 6 21.722
97 142 154 4 152 152 2 156 4 21.841
98 78 84 2 83 83 1 85 2 22.137
Copyright © 2013 SciRes. OPEN ACCESS
M. Snyder / Natural Science 5 (2013) 963-971
966
Continued
99 14 14 0 14 14 0 14 0 22.434
100 50 56 2 55 55 1 57 2 22.731
101 114 126 4 124 124 2 128 4 23.027
102 207 225 6 222 222 3 228 6 23.147
103 178 196 6 193 193 3 199 6 23.324
104 143 155 4 153 153 2 157 4 23.443
105 79 85 2 84 84 1 86 2 23.74
106 15 15 0 15 15 0 15 0 24.037
107 49 55 2 54 54 1 56 2 24.333
108 113 125 4 123 123 2 127 4 24.63
109 208 226 6 223 223 3 229 6 24.749
110 177 195 6 192 192 3 198 6 24.926
111 144 156 4 154 154 2 158 4 25.046
112 80 86 2 85 85 1 87 2 25.342
113 16 16 0 16 16
0 16 0 25.639
114 48 54 2 53 53 1 55 2 25.936
115 112 124 4 122 122 2 126 4 26.232
116 209 227 6 224 224 3 230 6 26.351
117 176 194 6 191 191 3 197 6 26.529
118 145 157 4 155 155 2 159 4 26.648
119 81 87 2 86 86 1 88 2 26.945
120 17 17 0 17 17 0 17 0 27.241
121 47 53 2 52 52 1 54 2 27.538
122 111 123 4 121 121 2 125 4 27.835
123 210 228 6 225 225 3 231 6 27.954
124 175 193 6 190 190 3 196 6 28.131
125 146 158 4 156 156 2 160 4 28.251
126 82 88 2 87 87 1 89 2 28.547
127 18 18 0 18 18 0 18 0 28.844
128 46 52 2 51 51 1 53 2 29.14
129 110 122 4 120 120 2 124 4 29.437
130 211 229 6 226 226 3 232 6 29.556
131 174 192 6 189 189 3 195 6 29.734
132 147 159 4 157 157 2 161 4 29.853
133 83 89 2 88 88 1 90 2 30.15
134 19 19 0 19 19 0 19 0 30.446
135 45 51 2 50 50 1 52 2
30.743
136 109 121 4 119 119 2 123 4 31.04
137 212 230 6 227 227 3 233 6 31.159
138 173 191 6 188 188 3 194 6 31.336
139 148 160 4 158 158 2 162 4 31.455
140 84 90 2 89 89 1 91 2 31.752
141 20 20 0 20 20 0 20 0 32.049
142 44 50 2 49 49 1 51 2 32.345
143 108 120 4 118 118 2 122 4 32.642
144 213 231 6 228 228 3 234 6 32.761
145 172 190 6 187 187 3 193 6 32.939
146 149 161 4 159 159 2 163 4 33.058
147 85 91 2 90 90 1 92 2 33.355
148 21 21 0 21 21 0 21 0 33.651
149 43 49 2 48 48 1 50 2 33.948
Copyright © 2013 SciRes. OPEN ACCESS
M. Snyder / Natural Science 5 (2013) 963-971 967
Continued
150 107 119 4 117 117 2 121 4 34.244
151 214 232 6 229 229 3 235 6 34.364
152 171 189 6 186 186 3 192 6 34.541
153 150 162 4 160 160 2 164 4 34.66
154 86 92 2 91 91 1 93 2 34.957
155 22 22 0 22 22 0 22 0 35.254
156 42 48 2 47 47 1 49 2 35.55
157 106 118 4 116 116 2 120 4 35.847
158 215 233 6 230 230 3 236 6 35.966
159 170 188 6 185 185 3 191 6 36.144
160 151 163 4 161 161 2 165 4 36.263
161 87 93 2 92 92 1 94 2 36.559
162 23 23 0 23 23 0 23 0 36.856
163 41 47 2 46 46 1 48 2 37.153
164 105 117 4 115 115 2 119 4 37.449
165 216 234 6 231 231 3 237 6 37.569
166 169 187 6 184 184 3 190 6 37.746
167 152 164 4 162 162 2 166 4 37.865
168 88 94 2 93 93 1 95 2 38.162
169 24 24 0 24 24 0 24 0 38.458
170 40 46 2 45 45 1 47 2 38.755
171 104 116 4 114 114 2 118 4 39.052
172 217 235 6 232 232 3 238 6 39.171
173 168 186 6 183 183 3 189 6 39.348
174 153 165 4 163 163 2 167 4 39.468
175 89 95 2 94 94 1 96 2 39.764
176 25 25 0 25 25 0 25 0 40.061
177 39 45 2 44 44 1 46 2
40.358
178 103 115 4 113 113 2 117 4 40.654
179 218 236 6 233 233 3 239 6 40.773
180 167 185 6 182 182 3 188 6 40.951
181 154 166 4 164 164 2 168 4 41.07
182 90 96 2 95 95 1 97 2 41.367
183 26 26 0 26 26 0 26 0 41.663
184 38 44 2 43 43 1 45 2 41.96
185 102 114 4 112 112 2 116 4 42.257
186 219 237 6 234 234 3 240 6 42.376
187 166 184 6 181
181 3 187 6 42.553
188 155 167 4 165 165 2 169 4 42.672
189 91 97 2 96 96 1 98 2 42.969
190 27 27 0 27 27 0 27 0 43.266
191 37 43 2 42 42 1 44 2 43.562
192 101 113 4 111 111 2 115 4 43.859
193 220 238 6 235 235 3 241 6 43.978
194 165 183 6 180 180 3 186 6 44.156
195 156 168 4 166 166 2 170 4 44.275
196 92 98 2 97 97 1 99 2 44.572
197 28 28 0 28 28 0 28 0 44.868
198 36 42 2 41 41 1 43 2 45.165
199 100 112 4 110 110 2 114 4 45.461
200 221 239 6 236 236 3 242 6 45.581
Copyright © 2013 SciRes. OPEN ACCESS
M. Snyder / Natural Science 5 (2013) 963-971
Copyright © 2013 SciRes.
968
Figures 1 and 2 should prove that the family of unitless
equations contained in Table 1 is not random but instead
is a structure made up of periodic waveforms.
use dimensional analysis to check that Eq.1 through
Eq.4 are unitless equations.

75
19
62 12 2
6
22
49 π5
π3
cF
AGNRw





 2
(1) 3. DISCUSSION
Once we know that the dimensionality of the left hand
sides of the equations are correct, then our focus switches
to the right hand side of the equations. One should note
by definition all the physical constants on the left hand
side are measurements and have limited accuracy.
2
113
255 7
6
2672 7
212
49 2
π5π
FRw
AGhN





 (2)

21
122
3222 72
3
234 22
492 5
π3
cF Rw
AGhN





 (3)

55 9
62
22
2
8
7
π54
π
27 3
chN
Rw
 
 
 

Obviously the equations based physical measurements
can not be more accurate than the measurements them-
selves. My method was to give the Maple software pro-
gram the benefit of the doubt when computing the right
hand sides of the equations.
9
(4) For example while factoring and processing Eq.3 with
Maple’s identify command, the Apery’s constant [9] ap-
pears in the result. Apery’s constant can be expressed as
a series, which means we could convert the right hand
side of Eq.3 into a series just by redistributing some of
the factors. For this reason I left Apery’s constant in the
answer which propagated to other the equations.
Figure 1 is a plot of Ta ble 1, and is intended to show
that the system of equations in Table 1 is not random but
very periodic. The green line represents the natural log of
the right hand sides of the equations and the other lines
represent the exponent powers of the physical constants.
I view the form of the right hand sides of the equations
as an idealized guess times an error term which was sup-
plied by the reduced row echelon operation.
Figure 2 is also a plot of Table 1, where the equations
of the table have been resorted based on the values of the
ninth column of the table, instead of the tenth column.
Figure 1. Plot of Table 1 sorted by the right hand side values.
OPEN ACCESS
M. Snyder / Natural Science 5 (2013) 963-971 969
Figure 2. Plot of Table 1 sorted by the exponent values of the Faraday constant term.
A problem is that the right hand side of the equations
are inherently more accurate than the left hand side of the
equations; which means any exact answer found by my
method is merely a good guess.
On the other hand, these guesses appear to have over
seven significant digits of accuracy. Practically speaking,
the right hand sides of Eq.1 through Eq.4 are close
enough to the “right answers” to solve most problems
and if one wishes more accuracy one can always use the
left hand side to directly compute a decimal value.
4. SUMMARY
In some ways, this paper is mundane. We have a fam-
ily of similar equations where any single equation can be
proven with dimensional analysis to be unitless.
Assuming that a suitable expression can be found for
the right hand sides of the equations, then most of these
equations could be used like a Swiss army knife to change
from one physical constant to another.
On the mundane side we basically have a relationship
between nine constants that connects the constants like a
key ring. On the other hand, one could argue that the
relationships shown in this paper existed before any of
the physical constants were measured.
Obviously I can not address the range of philosophical
issues that this paper may cause. To answer the reader’s
unspoken question, I do not know why these relation-
ships exist; I only know that each time that I check them
they seem to be correct. I invite other papers to address
the deeper issues and physical interpretations of my equa-
tions.
A database of over 17,000 equations is available for
download; the reader is encouraged to download the da-
tabase and verify my work. By definition the terms of
these equations tend to be self canceling, meaning if you
make the wrong substitution, the whole left hand side
can disappear and just leave a number. This has hap-
pened to me quite a few times in the last few months,
which leads me to my final statement of the paper: “I
claim nothing.”
REFERENCES
[1] Rømer, O. (1677) Lettre No 2104. In: J. Bosscha, Ed.,
Oeuvres Complètes de Christiaan Huygens, M. Nijhoff,
La Haye, 1888-1950.
[2] Planck, M. (1920) The genesis and present state of de-
velopment of the quantum theory. Nobel Lecture, El-
sevier Publishing, Amsterdam.
[3] Feynman, R., Leighton, R. and Sands, M. (1989) The
Feynman lectures on physics, vol. 1. Addison Wesley,
Boston, 35-2-35-3.
[4] Avogadro, A. (1811) Essai d’une maniere de determiner
Copyright © 2013 SciRes. OPEN ACCESS
M. Snyder / Natural Science 5 (2013) 963-971
970
les masses relatives des molecules elementaires des corps,
et les proportions selon lesquelles elles entrent dans ces
combinaisons. Journal de Physique, 73, 58-76.
[5] Newton, I. and Turnbull, H.W. (1960) The correspond-
dence of Isaac Newton: Volume 2 (1676-1687). Cam-
bridge University Press, Cambridge, 309.
[6] Maxwell, J.C. (1904) Treatise on electricity and magnet-
ism. Clarendon Press, Oxford, 173.
[7] Faraday, M. (1859) Experimental researches in chemistry
and Physics. Richard Taylor and William Francis, Cam-
bridge.
[8] Менделеев, Д.И. (1874) О сжимаемости газов (Из
лаборатории С.-Петербургского Университета). Жу-
рнал русского химического общ ес т ва и физического
общес т ва . Том 6, 309-352.
[9] Apéry, R. (1979) Irrationalité de ζ(2) et ζ(3). Astérisque,
61, 11-13.
Copyright © 2013 SciRes. OPEN ACCESS
M. Snyder / Natural Science 5 (2013) 963-971 971
APPENDIX I
----------------------------------------------------------------
#include "stdio.h"
#define searchsize 29
// Search Size Should be an Odd Interger Greater than 5
// nvcc helloworld08g29.cu -o world08g29 -arch=sm_21
-maxrregcount=24 -ccbin=gcc-4.4
// Note size 29 runs in about 15 seconds on a GTX560,
size 79 runs in a few hours.
// All rights reserved, M. Snyder June 18, 2013
// Looking for solutions of
(x4-x5)^2+(x3+x8)^2+(x4+x7+x8)^2+(x2+x4-x6)^2+(-2
*(x4+x6)+x8-x1-x2)^2+(2*(x2+x4)+x1+x5+3*x6)^2 = 0
__global__ void helloworld()
{
int x1,x2,x3,x4,x5,x6,x7,x8,rlow,rhgh;
rlow=-((gridDim.x-1)/2);
rhgh=((gridDim.x-1)/2);
x1=blockIdx.x+rlow;
x2=blockIdx.y+rlow;
x3=threadIdx.x+rlow;
x4=rlow;
x5=rlow;
x6=rlow;
x7=rlow;
x8=rlow;
while (x8<rhgh)
{
if (x4 + x7 == -x8){
if (x3 == -x8){
if ( (x2+x4) == x6){
if (2*(x2+x4) + x1 + x5 == -3*x6){
if (x4 == x5){
if (-2*( x4 + x6) + x8 == x1 + x2){
printf("%+4d,%+4d,%+4d,%+4d,%+4d,%+4d,%+4d,%+
4d \n", x1,x2,x3,x4,x5,x6,x7,x8);
}
}
}
}
}
}
x4=x4+1;
if (x4>rhgh){x5=x5+1;x4=rlow;
if (x5>rhgh){x6=x6+1;x5=rlow;
if (x6>rhgh){x7=x7+1;x6=rlow;
if (x7>rhgh){x8=x8+1;x7=rlow;
}
}
}
}
}
}
int main()
{
int rangeofsearch(searchsize),seconds;
dim3 grid,block;
grid.x=rangeofsearch;
grid.y=rangeofsearch;
block.x=rangeofsearch;
size_t buf=1e7;
cudaFuncSetCacheCon-
fig(helloworld,cudaFuncCachePreferL1);
cudaDeviceSetLimit(cudaLimitPrintfFifoSize, buf);
seconds = time(NULL);
helloworld<<<grid,block>>>();
cudaDeviceSynchronize();
printf ("\n\n\nComplete CUDA Time: %i ",
int(time(NULL))-seconds);
return 0;
----------------------------------------------------------------
APPENDIX II
A maple script one could use to check the program out-
put.
----------------------------------------------------------------
with(ScientificConstants);
c0 := evalf(Constant(c));
c0u := GetUnit(Constant(c));
h0 := evalf(Constant(Planck_constant));
h0u := GetUnit(Constant(Planck_constant));
G0 :=
evalf(Constant(Newtonian_constant_of_gravitation));
G0u := GetU-
nit(Constant(Newtonian_constant_of_gravitation));
w0 :=
evalf(Constant(Wien_displacement_law_constant));
w0u := GetU-
nit(Constant(Wien_displacement_law_constant));
R0 := evalf(Constant(R));
R0u := GetUnit(Constant(R));
N0 := evalf(Constant(Avogadro_constant));
N0u := GetUnit(Constant(Avogadro_constant));
A0 := 1;
A0u := Unit('A');
F0 := 96485.3399;
F0u := Unit('C')/Unit('mol');
Copyright © 2013 SciRes. OPEN ACCESS