ition Maximum: A Biomechanical Analysis. Journal of Strength and Conditioning Research, 30, 1085-1092. https://doi.org/10.1519/JSC.0000000000001180
  • 9. Sinclair, J., Taylor, P.J., Edmundson, C.J., Brooks, D. and Hobbs, S.J. (2013) The Influence of Footwear Kinetic, Kinematic and Electromyographical Parameters on the Energy Requirements of Steady-State Running. Movement & Sports Sciences, 80, 39-49. https://doi.org/10.1051/sm/2012025

  • 10. Sinclair, J., Taylor, P.J. and Atkins, S. (2015) Effects of New Military Footwear on Knee Loading during Running. Footwear Science, 1, 1-7.

  • 11. Holowka, N.B., Wallace, I.J. and Lieberman, D.E. (2018) Foot Strength and Stiffness Are Related to Footwear Use in a Comparison of Minimally- vs. Conventionally-Shod Populations. Scientific Reports, 8, Article No. 3679. https://doi.org/10.1038/s41598-018-21916-7

  • 12. Willems, C., Stassijns, G., Cornelis, W. and D’Aout, K. (2017) Biomechanical Implications of Walking with Indigenous Footwear. American Journal of Physical Anthropology, 162, 782-793. https://doi.org/10.1002/ajpa.23169

  • 13. Nagwanshi, K.K., Dubey, S. and Verma, T. (2018) Generic Biometric Footprint Recognition Framework for Personal Security. IJCEM International Journal of Computational Engineering & Management, 21, 8-14.

  • 14. Khokher, R. and Singh, R.C. (2016) Footprint-Based Personal Recognition Using Scanning Technique. Indian Journal of Science and Technology, 44, 1-10. https://doi.org/10.17485/ijst/2016/v9i44/105167

  • 15. Smith, M.B. (2013) The Forensic Analysis of Footwear Impression Evidence. Forensic Science Communications, 11, Article ID: 233981.https://www.ncjrs.gov/pdffiles1/nij/grants/233981.pdf

  • 16. Morgan, R.M., Freudiger-Bonzon, J., Nichols, K.H., Jellis, T., Dunkerley, S., Zelazowski, P. and Bull, P.A. (2009) The Forensic Analysis of Sediments Recovered from Footwear. In: Ritz, K., Dawson, L. and Miller, D., Eds., Criminal and Environmental Soil Forensics, Springer, Berlin, 253-269. https://doi.org/10.1007/978-1-4020-9204-6_16

  • 17. Kadam, A.B., Manza, R.R. and Kale, K.V. (2012) A Review: Analysis of Footwear Impression Evidence Collection & Detection. International Journal of Machine Intelligence, 4, 410-413. https://doi.org/10.9735/0975-2927.4.2.410-413

  • 18. Patil, P.M., Deshmukh, M.P. and Kulkarni, J.V. (2012) Investigation of Shoeprints Using Radon Transform with Reduced Computational Complexity. Journal of Pattern Recognition Research, 7, 80-89. https://doi.org/10.13176/11.129

  • 19. Wang, X.N., Sun, H.H., Yu, Q. and Zhang, C. (2014) Automatic Shoeprint Retrieval Algorithm for Real Crime Scenes. In: Proceedings ACCV, Springer, Berlin, 399-413. https://doi.org/10.1007/978-3-319-16865-4_26

  • 20. Tang, Y., Srihari, S.N., Kasiviswanathan, H. and Corso, J.J. (2019) Footwear Print Retrieval System for Real Crime Scene Marks. In: IWCF 2010: Computational Forensics, Springer, Berlin, 88-100. https://doi.org/10.1007/978-3-642-19376-7_8

  • 21. Dong, Y.L. (2016) Matching Method of Partial Shoeprint Images Based on the PCA-SIFT Algorithm. International Journal of Engineering Research & Science, 2, 167-171.

  • 22. Rathinavel, S. and Arumugam, S. (2011) Full Shoeprint Recognition Based on Passband DCT and Partial Shoeprint Identification Using Overlapped Lock Method for Degraded Images. International Journal of Computer Applications, 26, 16-21. https://doi.org/10.5120/3126-4301

  • 23. Pavlou, M. and Allinson, N.M. (2006) Automatic Extraction and Classification of Footwear Patterns. Intelligent Data Engineering and Automated Learning, Burgos, 20-23 September 2006, 721-728. https://doi.org/10.1007/11875581_87

  • 24. Cervelli, F., Dardi, F. and Carrato, S. (2009) A Texture Recognition System of Real Shoe Marks Taken from Crime Scenes. ICIP 2009, Cairo, 7-10 November 2009. https://doi.org/10.1109/ICIP.2009.5413417

  • 25. Rathinavel, S. and Arumugam, S. (2009) Conversion of Commercial Shoeprint to Reference and Recovery of Images. International Journal of Image Processing, 3, 164-169.

  • 26. Khan, M.A. and Tidke, S.M. (2013) Automated Processing of Shoeprint Images for Use in Forensic Science. International Journal of Advanced Research in Computer and Communication Engineering, 2, 4292-4294.

  • 27. Li, X.Y., Wu, M.H. and Shi, Z.P. (2014) The Retrieval of Shoeprint Based on the Integral Histogram of the Gabor Transform Domain. 8th International Conference on Intelligent Information Processing, Hangzhou, 249-258. https://doi.org/10.1007/978-3-662-44980-6_28

  • 28. Deshmukh, M.P. and Patil, P.M. (2009) Automatic Shoeprint Matching System for Crime Scene Investigation. International Journal of Computing Science and Communication Technologies, 2, 281-287.

  • 29. Srihari, S.N. and Tang, Y. (2014) Computational Methods for the Analysis of Footwear Impression Evidence. In: Computational Intelligence in Digital Forensics: Forensic Investigation and Application, Springer, Berlin, 333-383. https://doi.org/10.1007/978-3-319-05885-6_15

  • 30. Hire, V.R., Shaikh, F.I., Jadhav, J.B. and Joshi, M.V. (2012) A Novel Automated Shoeprint Matching Technique for Use as Forensic Evidence in Criminal Investigation. International Journal of Computer Applications, 48, 25-31. https://doi.org/10.5120/7338-0082

  • 31. Rathinavel, S. and Arumugam, S. (2009) Threshold-Based Indexing of Commercial Shoeprint to Create Reference and Recovery Images. Computer Science and Networking, 1, 59-62.

  • 32. Uhl, A. and Wild, P. (2008) Footprint-Based Biometric Verification. Journal of Electronic Imaging, 17, Article ID: 011016. https://doi.org/10.1117/1.2892674

  • 33. De Chazal, P., Member, J.F. and Reilly, R.B. (2005) Automated Processing of Shoeprint Images Based on the Fourier Transform for Use in Forensic Science. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 341-350. https://doi.org/10.1109/TPAMI.2005.48

  • 34. Ramakrishnan, V. and Srihari, S. (2008) Extraction of Shoe-Print Patterns from Impression Evidence Using Conditional Random Fields. In: International Conference on Pattern Recognition, IEEE Computer Society Press, Tampa. https://doi.org/10.1109/ICPR.2008.4761881

  • 35. Shin, D., Lee, J., Lee, J. and Yoo, H.-J. (2017) 14.2 DNPU: An 8.1TOPS/W Reconfigurable CNN-RNN Processor for General-Purpose Deep Neural Networks. IEEE International Solid-State Circuits Conference, San Francisco, 5-9 February 2017. https://doi.org/10.1109/ISSCC.2017.7870350

  • Journal Menu>>