Share This Article:

The Geosystem Analysis of Exogenesis of High-Mountain Landscapes of the Basin of the River Girdymanchay in Azerbaijan

Abstract Full-Text HTML XML Download Download as PDF (Size:1085KB) PP. 1254-1260
DOI: 10.4236/ijg.2015.611099    4,143 Downloads   4,523 Views   Citations

ABSTRACT

For the geological systems, assessment of influencing exogenous relief forming processes having essential impact on development of landscape status arises need of development of various field and image interpretation methods for creation of scenarios of possible changes of a geo-ecological situation in various massif having harmful consequences, by identification of relationships of cause and effect. It was analyzed possibilities of prognosis of the changes of the geo-ecological situation in high-mountainous of Great Caucasus with use of the geological, geomorphologic, climate and landscape materials, data of digital processing of the photo images and visual observation. Also the possibilities of forecasting of change of landscape structure of highlands in natural area of Great Caucasus with use of various data were analyzed. It was defined the main differences of relief situation, hydro meteorological conditions in the various parts of high-mountainous geo systems in which exogenic processes were shown, character and intensity of land using which had the influence to the slope slides. These data allowed revealing the main distinctions of factors of a relief situation in which were shown exodynamic relief and landscape forming processes, character and intensity of the land use, to some extent influencing on descent of landslides and area of their destructive.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Mardanov, I. and Tahir, A. (2015) The Geosystem Analysis of Exogenesis of High-Mountain Landscapes of the Basin of the River Girdymanchay in Azerbaijan. International Journal of Geosciences, 6, 1254-1260. doi: 10.4236/ijg.2015.611099.

References

[1] Alizade, E.K., Guliyeva, S.Yu. and Tarikhazer, S.A. (2005) Otsenka stepeni podverjennosti geokompleksov Yujnogo sklona Bolshogo Kavkaza opolznevimi protsessami. In: Nauchno-prakticheskaya konferentsiya, Prirodno-razrushitelniye yavleniya Sheki-Zakatalskoy oblasti i ekogeograficheskiye problemi razvitiya regiona, Sheki, 9-10 Iyunya 2005, 63-65.
[2] Pashayev, N.A. (2007) Upravlenie prirodnix katastrof na territorii Azerbaydjanskoy respubliki. In: Trudi Geograficheskogo obshestva Azerbaydjana. Sovremenniye geograficheskie issledovaniya v Azerbaydjane, Tom XI, Baku, 283-289.
[3] Djurovic, P. (2012) The Debeli Namet Glacier (Durmitor, Montenegro)—From the Second Half of the 20th Century to the Present. Acta Geographica Slovenica, 52, 277-301. http://dx.doi.org/10.3986/AGS52201
[4] Mardanov, I.I. (2009) O vozmojnosti ispolzovaniya ekspertnoy sistemi dlya prognozirovaniya opolzney. In: Trudi geograficheskogo obshestva Azerbaydjana, Tom XIV, Geograficheskiye problemi obespecheniya ekologicheskoy bezopasnosti prirodno-xozyaystvennix sistem, Baku, 36-40.
[5] Mardanov, I.I. (2011) Viyavleniye osnovnix faktorov pri izuchenii transformatsiy opolznevix massivov yugo-vostochnoy okonechnosti Bolshogo Kavkaza. In: Gidrometeorologiya i ekologiya. Yejekvartalniy Nauchno-Texnicheskiy Jurnal, 4, 132-143.
[6] Zhang, J.P., Zhang, L.B., Liu, W.L., Qi, Y. and Wo, X. (2014) Livestock-Carrying Capacity and Overgrazing Status of Alpine Grassland in the Three-River Headwaters Region, China. Journal of Geographical Sciences, 24, 303-312. http://dx.doi.org/10.1007/s11442-014-1089-z
[7] Fortier, D. (2012) Geomorphology of a Thermo-Erosion Gully, Bylot Island, Nunavut, Canada. Canadian Journal of Earth Sciences, 49, 979-986.
[8] Gogichaishvili, G.P., Kirvalidze, D.R. and Gorjomeladze, O.L. (2014) Testing of the Hydromechanical Prediction Model of Soil Erosion under the Conditions of Georgia. Eurasian Soil Science, 47, 917-922. http://dx.doi.org/10.1134/S106422931409004X
[9] Chen, C.-Y. (2009) Sedimentary Impacts from Landslides in the Tachia River Basin, Taiwan. Geomorphology, 105, 355-365. http://dx.doi.org/10.1016/j.geomorph.2008.10.009
[10] Mekhtiyev, A.Sh. (1998) Aerokosmicheskiye issledovaniya v Azerbaydjane. In: Materiali vtoroy nauchno-prakticheskoy konferentsii “Azerbaidjan na poroge XXI veka”, Baku, 343-346.
[11] Yastikli, N., Sefercik, U.G. and Esirtgen, F. (2014) Quantitative Assessment of Remotely Sensed Global Surface Models Using Various Land Classes Produced from Lands at Data in Istanbul. Chinese Geographical Science, 24, 307-316. http://dx.doi.org/10.1007/s11769-014-0681-6
[12] Carver, S.J. (1991) Integrating Multi-Criteria Evaluation with Geographical Information Systems. International Journal of Geographical Information Systems, 5, 321-339.
http://dx.doi.org/10.1080/02693799108927858
[13] Budagov, B.A., Mamedov, R.M. and Alizade, E.K. (2009) Problemi sbalansirovannogo razviviya ekodinamicheski napryajennix gornix geosistem azerbaydjanskoy chasti Bolshogo Kavkaza. Izvestiya Rossiyskoy Akademii Nauk. Seriya geograficheskaya, 3, 37-41.
[14] Nosenko, G.A., Rototayeva, O.V. and Nosenko, O.A. (2005) Vozmojnosti monitoringa iz kosmosa opasnix glyatsialnix protsessov v trudnodostupnix gornix rayonax (na primere Karmadonskoy katastrofi 2002 g.). Issledovaniye zemli iz kosmosa, 1, 75-81.
[15] Dawson, A.G., Matthews, J.A. and Shakesby, R.A. (1986) A Catastrophic Landslide (Sturzstrom) in Verkilsdalen, Rondane National Park, Southern Norway. Geografiska Annaler. Series A, Physical Geography, 68, 77-87.
http://dx.doi.org/10.2307/521178
[16] Nicorici, C., Gray, J., Imbroane, A.M. and Barbosu, M. (2012) GIS Susceptibility Maps for Shallow Landslides: A Case Study in Transylvania, Romania. Carpathian Journal of Earth and Environmental Sciences, 7, 83-92.
[17] Petrea, D., Bilaskco, S., Rosca, S., Vescan, I. and Fodorean, I. (2014) The Determination of the Landslide Occurrence Probability by GIS Spatial Analysis of the Land Morphometric Characteristics (Case Study: The Transylvanian Plateau). Carpathian Journal of Earth and Environmental Sciences, 9, 91-102.
[18] Ayalew, L. and Yamagishi, H. (2005) The Application of GIS-Based Logistic Regression for Landslide Susceptibility Mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65, 15-31. http://dx.doi.org/10.1016/j.geomorph.2004.06.010
[19] Shroder Jr., J.F. and Weihs, B.J. (2010) Geomorphology of the Lake Shewa Landslide Dam, Badakhshan, Afghanistan, Using Remote Sensing Data. Geografiska Annaler. Series A, Physical Geography, 92, 469-483. http://dx.doi.org/10.1111/j.1468-0459.2010.00408.x
[20] Glenn, N.F., Streutker, D.R., Chadwick, D.J., Thackray, G.D. and Dorsch, S.J. (2006) Analysis of LiDAR-Derived Topographic Information for Characterizing and Differentiating Landslide Morphology and Activity. Geomorphology, 73, 131-148. http://dx.doi.org/10.1016/j.geomorph.2005.07.006
[21] Bell, R., Petschko, H., Rohrs, M. and Dix, A. (2012) Assessment of Landslide Age, Landslide Persistence and Human Impact Using Airborne Laser Scanning Digital Terrain Models. Geografiska Annaler: Series A, Physical Geography, 94, 135-156. http://dx.doi.org/10.1111/j.1468-0459.2012.00454.x

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.