Se-Bearing Colloidal Particles Produced by Sulfate-Reducing Bacteria and Sulfide-Oxidizing Bacteria: TEM Study

Abstract

As determined by transmission electron microscopy (TEM), the reduction of selenate and selenite by Desulfovibrio desulfuricans, a sulfate-reducing bacterium, produces spherical (Se, S) sub-micro particles outside the cell. The particles are crystalline or amorphous, depending on medium composition. Amorphous-like Se-rich spherical particles may also occur inside the bacterial cells. The bacteria are more active in the reduction of selenite than selenate. The Desulfovibrio desulfuricans bacterium is able to extract S in the (S, Se) solid solution particles and transform S-rich particles into Se-rich and Se crystals. Photoautotrophs, such as Chromatium spp., are able to oxidize sulfide (S2-). When the bacteria grow in sulfide- and selenide-bearing environments, they produce amorphous-like (S, Se) globules inside the cells. TEM results show that compositional zonation in the (S, Se) globules occur in Chromatium spp. collected from a top sediment layer of a Se-contaminated pond. S2- may be from the products of sulfate-reducing bacteria. Both the sulfate-reducing bacteria and photosynthetic Chromatium metabolize S preferentially over Se. It is proposed that the S-rich zones are formed during photosynthesis (day) period, and the Se-rich zones are formed during respiration active (night) period. The results indicate that both Desulfovibrio desulfuricans and Chromatium spp. are able to immobilize the oxidized selenium (selenate and/or selenite) in the forms of elemental selenium and (Se, S) solid solutions. The bacteria reduce S in the (Se, S) particles and further enrich Se in the crystalline particles. The reduced S combines with Fe2+ to form amorphous FeS.

Share and Cite:

H. Xu and L. Barton, "Se-Bearing Colloidal Particles Produced by Sulfate-Reducing Bacteria and Sulfide-Oxidizing Bacteria: TEM Study," Advances in Microbiology, Vol. 3 No. 2, 2013, pp. 205-211. doi: 10.4236/aim.2013.32031.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] E. P. Painter, “The Chemistry and Toxicity of Selenium Compounds, with Special Reference to the Selenium Problem,” Chemical Reviews, Vol. 28, No. 2, 1941, pp. 179-213. doi:10.1021/cr60090a001
[2] R. S. Oremland, J. T. Hollibaugh, A. S. MaestPresser, T. S. Presser, L. G. Miller and C. W. Culbertson, “Selenate Reduction to Elemental Selenium by Anaerobic Bacteria in Sediments and Culture: Biogeochemical Significance of a Novel, Sulfate-Independent Respiration,” Applied and Environmental Microbiology, Vol. 55, No. 9, 1989, pp. 2333-2343.
[3] N. A. Steinberg and R. S. Oremland, “Dissimilatory Selenate Reduction Potentials in a Diversity of Sediment Types,” Applied and Environmental Microbiology, Vol. 56, No. 11, 1990, pp. 3550-3557.
[4] F. A. Tomei, L. L. Barton, C. L. Lemanski, T. G. Zocco, N. H. Fink and L. O. Sillerud, “Transformation of Selenate and Selenite to Elemental Selenium by Desulfovibrio desulfuricans,” Industrial Microbiology, Vol. 14, No. 3-4, 1995, pp. 329-336.
[5] M. D. Tucker, L. L. Barton and B. M. Thompson, “Reduction of Cr, Mo, Se and U by Desulfovibrio desulfuricans Immobilized in Polyacrylamide Gels,” Industrial Microbiology, Vol. 20, No. 1, 1998, pp. 13-19.
[6] D. R. Lovley, “Dissimilatory Metal Reduction,” Annual Review of Microbiology, Vol. 47. 1993, pp. 263-290. doi:10.1146/annurev.mi.47.100193.001403
[7] R. Steudel, “On the Nature of the Elemental Sulfur (S0) Produced by Sulfur-Oxidizing Bacteria—A Model for S0 Globules,” In: H. G. Schlegel and B. Bowien, Eds., Autotropic Bacteria, Springer-Verlag, Berlin, 1989, pp. 289-304.
[8] N. Pfennig and H. G. Trüper, “The Family Chromatiaceae,” In: A. Balows, Ed., The Prokaryotes, Vol. 4, 2nd Edition, Springer-Verlag, New York, 1992, pp. 3200-3221.
[9] D. C. Nelson, W. H. Casey, J. D. Sison, E. R. Mack, A. Ahmad and J. S. Pollack, “Selenium Uptake by Sulfur-Accumulating Bacteria,” Geochimica et Cosmochimica Acta, Vol. 60, No. 18, 1996, pp. 3531-3539. doi:10.1016/0016-7037(96)00221-9
[10] H. E. Ganther, “Selenotrisulfides. Formation by the Reaction of Thiols with Selenious Acid,” Biochemistry, Vol. 7, No. 8, 1968, pp. 2898-2905. doi:10.1021/bi00848a029
[11] H. E. Ganther, “Reduction of the Selenotrisulfide Derivative of Glutathione to a Persulfide Analog by Gluthathione Reductase,” Biochemistry, Vol. 10, No. 22, 1971, pp. 4089-4098. doi:10.1021/bi00798a013
[12] R. C. Blake, D. M. Choate, S. Bardhan, N. Revis, L. L. Barton and T. G. Zocco, “Chemical Transformation of Toxic Metals by a Pseudomonas Strain from Wastes Site,” Environmental Toxicology and Chemistry, Vol. 12, No. 8, 1993, pp. 1365-1376. doi:10.1002/etc.5620120806
[13] G. Fauque, J. Le Gall and L. L. Barton, “Sulfate-Reducing and Sulfur-Reducing Bacteria,” In: J. M. Shively and L. L. Barton, Eds., Variations in Autotrophic Life, Academic Press, London, 1991, pp. 271-339.
[14] F. V. Kloeke, R. D. Bryant and E. J. Laishley, “Localization of Cytochromes in the Outer Membrane of Desulfovibrio vulgaris (Hildenborough) and Their Role in Anaerobic Biocorrosion,” Anaerobe, Vol. 1, No. 6, 1995, pp. 351-358. doi:10.1006/anae.1995.1038

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.