SCIRP Mobile Website

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

W. C. Seaman, “Passage of Solid through Rotary Kiln,” Chemical Engineering Progress, Vol. 47, No. 10, 1951, pp. 508-514.

has been cited by the following article:

  • TITLE: Improving Municipal Solid Waste Land Filling Disposal Process: Experiments with a Laboratory Scale Rotary Kiln

    AUTHORS: Jean Fidèle Nzihou

    KEYWORDS: Land Filling; Greenhouse Gases; Pollutants; Rotary Kiln; Lifespan

    JOURNAL NAME: Journal of Environmental Protection, Vol.4 No.8, July 23, 2013

    ABSTRACT: Developing countries often face the challenge of managing continuously growing quantity of municipal waste. Waste is often disposed of by stockpiling and land filling because these have been found the cheapest waste disposal methods in the world. Unfortunately, these waste disposal methods are often source of visual pollution, water contamination and greenhouse effect gas emissions. Waste disposal by incineration has been found effective and now is one of the mostly used waste disposal method in several developed countries. Nevertheless, setting up appropriate waste incinerator requires a good of the combustion process. Unfortunately, direct studies on industrial facilities are not easily feasible because of technical issues and financial limitations. Studies and throughout testing frequently need to be carried out at laboratory scale. Work herein reported first overviewed operation conditions of the landfill facility in the town of Ouagadougou. In the second time for incineration simulation, batch experiments are carried out with a rotary kiln furnace to study the effects of the residence time on emissions of NO, NO2, CO, CO2 and SO2 in the atmosphere. For each rotation speed, emissions of NO, NO2, CO, CO2 and SO2 from the incineration of a household combustible fraction model waste consisting of wood (53%), cardboard (25%) and plastics (22%) have been recorded. The lifespan of the land filling facility with incineration has been estimated. Our work show that it may be improved up to roughly three times that of simple land filling. Visual pollution maybe drastically reduced and atmospheric pollution reduced.