Tillage, Crop Rotation, and Cultural Practice Effects on Dryland Soil Carbon Fractions

Abstract

Information is needed on novel management practices to increase dryland C sequestration and soil quality in the northern Great Plains, USA. We evaluated the effects of tillage, crop rotation, and cultural practice on dryland crop biomass (stems and leaves) yield, surface residue, and soil C fractions at the 0-20 cm depth from 2004 to 2008 in a Williams loam in eastern Montana, USA. Treatments were two tillage (no-tillage [NT] and conventional tillage [CT]), two crop rotations (continuous spring wheat [Triticum aestivum L.] [CW] and spring wheat-barley [Hordeum vulgaris L.] hay-corn [Zea mays L.]-pea [Pisum sativum L.] [W-B-C-P]), and two cultural practices (regular [conventional seed rates and plant spacing, conventional planting date, broadcast N fertilization, and reduced stubble height] and ecological [variable seed rates and plant spacing, delayed planting, banded N fertilization, and increased stubble height]). Carbon fractions were soil organic C (SOC), particulate organic C (POC), microbial biomass C (MBC), and potential C mineralization (PCM). Crop biomass was 24% to 39% greater in W-B-C-P than in CW in 2004 and 2005. Surface residue C was 36% greater in NT than in CT in the regular practice. At 5 - 20 cm, SOC was 14% greater in NT with W-B-C-P and the regular practice than in CT with CW and the ecological practice. In 2007, POC and PCM at 0 - 20 cm were 23 to 54% greater in NT with CW or the regular practice than in CT with CW or the ecological practice. Similarly, MBC at 10 - 20 cm was 70% greater with the regular than with the ecological practice in NT with CW. Surface residue, PCM, and MBC declined from autumn 2007 to spring 2008. No-tillage with the regular cultural practice increased surface residue and soil C storage and microbial biomass and activity compared to conventional tillage with the ecological practice. Mineralization reduced surface residue and soil labile C fractions from autumn to spring.

Share and Cite:

U. Sainju, A. Lenssen, T. Caesar-TonThat, J. Jabro, R. Lartey, R. Evans and B. Allen, "Tillage, Crop Rotation, and Cultural Practice Effects on Dryland Soil Carbon Fractions," Open Journal of Soil Science, Vol. 2 No. 3, 2012, pp. 242-255. doi: 10.4236/ojss.2012.23029.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. Lal, J. M. Kimble and B.A. Stewart, “World Soils as a Source or Sink for Radiatively-Active Gases,” In: R. Lal, Ed., Soil Management and Greenhouse Effect. Advances in Soil Science, CRC Press, Boca Raton, 1995, pp. 1-8.
[2] K. Paustian, G. P. Robertson and E. T. Elliott, “Management Impacts on Carbon Storage and Gas Fluxes In Mid-Latitudes Cropland,” In: R. Lal, Ed., Soils and Global Climate Change, Advances in Soil Science, CRC Press, Boca Raton, USA, 1995, pp. 69-83.
[3] A. D. Halvorson, G. A. Peterson and C. A., Reule, “Tillage System and Crop Rotation Effects on Dryland Crop Yields and Soil Carbon in the Central Great Plains,” Agronomy Journal, Vol. 94, No. 6, 2002, pp. 1429-1436. doi:10.2134/agronj2002.1429
[4] L. A. Sherrod, G. A., Peterson, D. G. Westfall and L. R. Ahuja, “Cropping Intensity Enhances Soil Organic Carbon and Nitrogen in a No-Till Agroecosystem,” Soil Science Society of America Journal, Vol. 67, No. 5, 2003, pp. 1533-1543. doi:10.2136/sssaj2003.1533
[5] U. M. Sainju, T. Caesar-TonThat, A. W. Lenssen, R. G. Evans and R. Kolberg, “Long-Term Tillage and Cropping Sequence Effects on Dryland Residue and Soil Carbon Fractions,” Soil Science Society of America Journal, Vol. 71, No. 6, 2007, pp. 1730-1739. doi:10.2136/sssaj2006.0433
[6] P. E. Rasmussen, R. R. Allmaras, C. R. Rhoade and N. C. Roager Jr, “Crop Residue Influences on Soil Carbon and Nitrogen in a Wheat-Fallow System,” Soil Science Society of America Journal, Vol. 44, No. 3, 1980, pp. 596-600. doi:10.2136/sssaj1980.03615995004400030033x
[7] G. A. Peterson, A. D. Halvorson, J. L. Havlin, O. R. Jones, D. G. Lyon and D. L. Tanaka, “Reduced Tillage and Increasing Cropping Intensity in the Great Plains Conserve Soil Carbon,” Soil and Tillage Research, Vol. 47, No. 3-4, 1998, pp. 207-218. doi:10.1016/S0167-1987(98)00107-X
[8] A. Bauer and A. L. Black., “Quantification of the Effect of Soil Organic Matter Content on Soil Productivity,” Soil Science Society of America Journal, Vol. 58, No. 1, 1994, pp. 185-193. doi:10.2136/sssaj1994.03615995005800010027x
[9] A. D. Halvorson, B. J. Wienhold and A. L. Black, “Tillage, Nitrogen, and Cropping System Effects on Soil Carbon Sequestration,” Soil Science Society of America Journal, Vol. 66, No. 3, 2002, pp. 906-912. doi:10.2136/sssaj2002.0906
[10] T. O. West and W. M. Post, “Soil Organic Carbon Sequestration Rates by Tillage and Crop Rotation: A Global Data Analysis,” Soil Science Society of America Journal, Vol. 66, No. 6, 2002, pp. 1930-1946. doi:10.2136/sssaj2002.1930
[11] A. W. Lenssen, G. D. Johnson and G. R Carlson, “Cropping Sequence and Tillage System Influences Annual Crop Production and Water Use in Semiarid Montana,” Field Crops Research, Vol. 100, No. 1, 2007, pp. 32-43. doi:10.1016/j.fcr.2006.05.004
[12] U. M. Sainju, A. W. Lenssen, T. Caesar-TonThat and R. G. Evans, “Dryland Crop Yields and Soil Organic Matter as Influenced by Long-Term Tillage and Cropping Sequence,” Agronomy Journal, Vol. 101, No. 2, 2009, pp. 243-251. doi:10.2134/agronj2008.0080x
[13] M. F. Vigil, R. A. Anderson and W. E. Beard. “Base Temperature Growing-Degree-Hour Requirements for Emergence of Canola,” Crop Science, Vol. 37, No. 3, 1997, pp. 844-849. doi:10.2135/cropsci1997.0011183X003700030025x
[14] P. R. Miller, B. McConkey, G. W. Clayton, S. A. Brandt, J. A. Staricka, A. M. Johnston, G. P. Lafond, B. G. Schatz, D. D. Baltensperger and K. E. Neill, “Pulse Crop Adaptation in the Northern Great Plains,” Agronomy Journal, Vol. 94, No. 2, 2002, pp. 261-272. doi:10.2134/agronj2002.0261
[15] A. W. Lenssen, J. T. Waddell, G. D. Johnson and G. R. Carlson, “Diversified Cropping Systems in Semiarid Montana: Nitrogen Use during Drought,” Soil and Tillage Research, Vol. 94, No. 2, 2007, pp. 362-375. doi:10.1016/j.still.2006.08.012
[16] J. K. Aase and G. M Schaefer, “Economics of Tillage Practices and Spring Wheat and Barley Crop Sequence in the Northern Great Plains,” Journal of Soil and Water Conservation, Vol. 51, No. 2, 1996, pp. 167-170.
[17] P. J. Gregory, J. S. I. Ingram, R. Anderson, R. A. Betts, V. Brovkin, T. N. Chase, P. R. Grace, A. J. Gray, N. Hamilton, T. B. Hardy, S. M. Howden, A. Jenkins, M. Meybeck, M., Olsson, I. Ortiz-Montasterio, C. A. Palm, T. W. Payn, M. Rummukainen, R. E. Schulze, M. Thiem, C. Valentin and M. J. Wikinson, “Environmental Consequences of Alternative Practices for Intensifying Crop Production,” Agricultural Ecosystem and Environment, Vol. 88, No. 3, 2002, pp. 279-290. doi:10.1016/S0167-8809(01)00263-8
[18] A. J. Franzluebbers, F. M. Hons and D. A. Zuberer, “Soil Organic Carbon, Microbial Biomass, and Mineralizable Carbon and Nitrogen in Sorghum,” Soil Science Society of America Journal, Vol.59, No. 2, 1995, pp. 460-466. doi:10.2136/sssaj1995.03615995005900020027x
[19] D. F. Bezdicek, D. F. Papendick, and R. Lal, “Introduction: Importance of Soil Quality to Health and Sustainable Land Management,” In: J. W. Doran, and A. J. Jones, Eds., Methods of Assessing Soil Quality, Spec. Publ. 49, Soil Science Society of America, Madison, USA, 1996, pp. 1-18.
[20] P. G. Saffigna, D. S. Powlson, P. C. Brookes and G. A. Thomas, “Influence of Sorghum Residues and Tillage on Soil Organic Matter and Soil Microbial Biomass in an Australian Vertisol,” Soil Biology and Biochemistry, Vol. 21, No. 6, 1989, pp. 759-765. doi:10.1016/0038-0717(89)90167-3
[21] E. Bremner and C.Van Kissel, “Plant-Available Nitrogen from Lentil and Wheat Residues during a Subsequent Growing Season,” Soil Science Society of America Journal, Vol. 56, No. 4, 1992, pp. 1155-1160. doi:10.2136/sssaj1992.03615995005600040025x
[22] C. A. Cambardella and E. T. Elliott, “Particulate Soil Organic Matter Changes across a Grassland Cultivation Sequence,” Soil Science Society of America Journal, Vol. 56, No. 3, 1992, pp. 777-783. doi:10.2136/sssaj1992.03615995005600030017x
[23] J. Six, E. T. Elliott and K. Paustian, “Aggregate and Soil Organic Matter Dynamics under Conventional and No-Tillage Systems,” Soil Science Society of America Journal, Vol. 63, No. 5, 1999, pp. 1350-1358. doi:10.2136/sssaj1999.6351350x
[24] H. J. Haas, W. O. Willis and J. J. Bond, “Summer Fallow in the Western United States,” USDA Conservation Research Report Number 17, U.S. Government Printing Office, Washington DC, 1974, pp. 2-35.
[25] R. A. Bowman, M. F. Vigil, D. C. Nielsen and R. L. Anderson, “Soil Organic Matter Changes in Intensively Cropped Dryland Systems,” Soil Science Society of America Journal, Vol. 63, No. 1, 1999, pp. 186-191. doi:10.2136/sssaj1999.03615995006300010026x
[26] H. H. Schomberg and O. R. Jones, “Carbon and Nitrogen Conservation in Dryland Tillage and Cropping Systems,” Soil Science Society of America Journal, Vol. 63, No. 5, 1999, pp. 1359-1366. doi:10.2136/sssaj1999.6351359x
[27] A. L. Black and D. L. Tanaka, “A Conservation Tillage Cropping System Study in the Northern Great Plains of the United States,” In: E. A. Paul, Ed., Soil Organic Matter in Temperate Agroecosystems: Long-term Experiments in North America, CRC Press, Boca Raton, 1997, pp. 335-342.
[28] M. H. Entz, V. S. Baron, P. M. Carr, D. W. Meyer, S. R. Smith Jr. and W. P. McCaughey, “Potential of Forages to Diversity Cropping Systems in the Northern Great Plains,” Agronomy Journal, Vol. 94, No. 2, 2002, pp. 240-250. doi:10.2134/agronj2002.0240
[29] S. M. Strydhorst, J. R. King, K. H. Lopetinsky and K. N. Harker, “Weed Interference, Pulse Species, and Plant Density Effects on Rotational Benefits,” Weed Science, Vol. 56, No. 2, 2008, pp. 249-258. doi:10.1614/WS-07-118.1
[30] Eastern Agricultural Research Center, “Agricultural Research Update,” Regional Rep. 2, Eastern Agricultural Research Center, Montana State University, Sidney, 1997.
[31] D. W. Nelson and L. E. Sommers, “Total Carbon, Organic Carbon, and Organic Matter,” In: D. L. Sparks, Ed., Methods of Soil Analysis, Part 3, Chemical Method, SSSA Book Ser. 5, Soil Science Society of America, Madison, 1996, pp. 961-1010.
[32] R. L. Haney, A. J. Franzluebbers, E. B. Porter, F. M. Hons and D. A. Zuberer, “Soil Carbon and Nitrogen Mineralization: Influence of Drying Temperature,” Soil Science Society of America Journal, Vol. 68, No. 2, 2004, pp. 489-492. doi:10.2136/sssaj2004.0489
[33] J. L. Pikul Jr. and J.K. Aase, J. K., “Water infiltration and Storage Affected by Subsoiling and Subsequent Tillage,” Soil Science Society of America Journal, Vol. 67, No. 3, 2003, pp. 859-866. doi:10.2136/sssaj2003.0859
[34] A. J. Franzluebbers, R. L. Haney, F. M. Hons and D. A. Zuberer, “Determination of Microbial Biomass and Nitrogen Mineralization Following Rewetting of Dried Soil,” Soil Science Society of America Journal, Vol. 60, No. 4, 1996, pp. 1133-1139. doi:10.2136/sssaj1996.03615995006000040025x
[35] R. P. Voroney and E. A. Paul, “Determination of kC and kN in situ for Calibration of the Chloroform Fumigation-Incubation Method,” Soil Biology and Biochemistry, Vol. 16, No. 1, 1984, pp. 9-14. doi:10.1016/0038-0717(84)90117-2
[36] R. C. Littell, G. A. Milliken, W. W. Stroup and R. R. Wolfinger, “SAS System for Mixed Models,” SAS Institute Inc., Cary, 1996.
[37] U. M. Sainju, A. W. Lenssen, T. Caesar-TonThat and J. T. Waddell, “Tillage and Crop Rotation Effects on Dryland Soil and Residue Carbon and Nitrogen,” Soil Science Society of America Journal, Vol. 70, No. 2, 2006, pp. 668-678. doi:10.2136/sssaj2005.0089
[38] D. W. Fryrear, “Soil Cover and Wind Erosion,” Transaction American Society of Agricultural Engineers, Vol. 28, No. 3, 1985, pp. 781-784.
[39] R. A. Ortega, G. A. Peterson and D. G. Westfall, “Residue Accumulation and Changes in Soil Organic Matter As Affected by Cropping Intensity in No-Till Dryland Agroecosystems,” Agronomy Journal, Vol. 94, No. 4, 2002, pp. 944-954. doi:10.2134/agronj2002.0944
[40] U.M. Sainju, A. W. Lenssen, T. Caesar-TonThat and J. T. Waddell, “Dryland Plant Biomass and Soil Carbon and Nitrogen Fractions on Transient Land as Influenced by Tillage and Crop Rotation,” Soil and Tillage Research, Vol. 93, No. 2, 2007, pp. 452-461. doi:10.1016/j.still.2006.06.003

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.