The Preliminary Research of Sea Water District Heating and Cooling for Tallinn Coastal Area

Abstract

This paper describes possibilities to utilize sea water for district heating and cooling purposes in Tallinn costal area. The sea water temperature profiles and suitability of heating and cooling generation are studied for continental climatic conditions. The district network study bases on 21 buildings located near to the Gulf of Finland. Industrial reversible heat pump technology is selected to cover heating and cooling loads for the new buildings. Combination of existing district heating and heat pump technology is considered for existing buildings. The results show possibilities, threats and need for further research of the sea water based heat pump district network implementation.

Share and Cite:

A. Hani and T. Koiv, "The Preliminary Research of Sea Water District Heating and Cooling for Tallinn Coastal Area," Smart Grid and Renewable Energy, Vol. 3 No. 3, 2012, pp. 246-252. doi: 10.4236/sgre.2012.33034.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] K. J. Chua, S. K. Chou and W. M. Yang, “Advantages in Heat Pump Systems: A Review,” Applied Energy, Vol. 87, No. 12, 2010, pp. 3611-3624. doi:10.1016/j.apenergy.2010.06.014
[2] J. W. Lund, D. H. Freeston and T. L. Boyd, “Direct Application of Geothermal Energy: 2005 Worldwide Review,” Geothermics, Vol. 34, No. 6, 2005, pp. 691-727. doi:10.1016/j.geothermics.2005.09.003
[3] J. W. Lund, D. H. Freeston and T. L. Boyd, “Direct Utilization of Geothermal Energy 2010 Worldwide Review,” Geothermics, Vol. 40, No. 3, 2010, pp. 159-180. doi:10.1016/j.geothermics.2011.07.004
[4] H. W. Shu, D. M. Lin, X. L. Li and Y. X. Zhu, “Energy-Saving Judgment of Electric-Driven Seawater Source Heat Pump District Heating System over Boiler House District Heating System,” Energy and Buildings, Vol. 42, No. 6, 2010, pp. 889-895. doi:10.1016/j.enbuild.2010.01.001
[5] H. W. Shu, D. M. Lin, C. H. Zhang and Y. X. Zhu, “Study on the Decision-Making of District Cooling and Heating Systems by Means of Value Engineering,” Renewable Energy, Vol. 35, No. 9, 2010, pp. 1929-1939. doi:10.1016/j.renene.2010.01.021
[6] Y.-H. Song, Y. Akashi and J.-J. Yee, “Effects of Utilizing Seawater as a Cooling Source System in a Commercial Complex,” Energy and Buildings, Vol. 39, No. 10, 2007, pp. 1080-1087. doi:10.1016/j.enbuild.2006.11.011
[7] H. W. Shu, D. M. Lin, X. L. Li and Y. X. Zhu, “Quasi-Dynamic Energy-Saving Judgment of ElectricDriven Seawater Source Heat Pump District Heating System over Boiler House District Heating System,” Energy and Buildings, Vol. 42, No. 12, 2010, pp. 2424-2430. doi:10.1016/j.enbuild.2010.08.012
[8] T. Nagota, Y. Shimoda and M. Mizuno, “Verification of the Energy-Saving Effect of the District Heating and Cooling System-Simulation of an Electric-Driven Heat Pump System,” Energy and Buildings, Vol. 40, No. 5, 2008, pp. 732-741. doi:10.1016/j.enbuild.2007.05.007
[9] M. Eriksson and L. Vamling, “Future Use of Heat Pumps in Swedish District Heating Systems: Short-and LongTerm Impact of Policy Instruments and Planned Investments,” Applied Energy, Vol. 84, No. 12, 2007, pp. 1240-1257. doi:10.1016/j.apenergy.2007.02.009
[10] C.-J. Winter, “After Nuclear Has Gone: Energy in Germany,” International Journal of Hydrogen Energy, Vol. 37, No. 1, 2012, pp.1-5. doi:10.1016/j.ijhydene.2011.08.001
[11] Z. Sagia, C. Rakopoulos and E. Kakaras, “Cooling Dominated Hybrid Ground Source Heat Pump System application,” Applied Energy, Vol. 94, 2012, pp. 41-47. doi:10.1016/j.apenergy.2012.01.031
[12] S. L. Russo, G. Taddia, G. Baccino and V. Verda, “Different Design Scenarios Related to an Open Loop Groundwater Heat Pump in a Large Building: Impact on Subsurface and Primary Energy Consumption,” Energy and Buildings, Vol. 43, No. 2-3, 2011, pp. 347-357. doi:10.1016/j.enbuild.2010.09.026
[13] C. M. Chen, Y. F. Zhang and L. J. Ma, “Assessment for Central Heating Systems with Different Heat Sources: A Case Study,” Energy and Buildings, Vol. 48, 2012, pp. 168-174. doi:10.1016/j.enbuild.2012.01.025
[14] V. Verda, G. Baccino, A. Sciacovelli and S. L. Russo, “Impact of District Heating and Groundwater Heat Pump Systems on the Primary Energy Needs in Urban Areas,” Applied Thermal Engineering, Vol. 40, 2012, pp. 18-26. doi:10.1016/j.applthermaleng.2012.01.047
[15] Y. Wang and Y. F. Zhang, “Analysis of the Dilatancy Technology of District Heating System with High-Temperature Heat Pump,” Energy and Buildings, Vol. 47, 2012, pp. 230-236. doi:10.1016/j.enbuild.2011.11.038
[16] B. David, J. Ramousse and L. G. Luo, “Optimization of Thermoelectric Heat Pumps by Operating Condition Management and Heat Exchanger Design,” Energy Conversion and Management, Vol. 60, 2012, pp. 125-133. doi:10.1016/j.enconman.2012.02.007
[17] S. Okamoto, “A Heat Pump System with a Latent Heat Storage Utilizing Seawater Installed in an Aquarium,” Energy and Buildings, Vol. 38, No. 2, 2006, pp. 121-128. doi:10.1016/j.enbuild.2005.04.004
[18] K. Bakirci and B. Yuksel, “Experimental Thermal Performance of a Solar Source Heat-Pump System for Residential Heating in Cold Climate Region,” Applied Thermal Engineering, Vol. 31, No. 8-9, 2011, pp. 1508-1518. doi:10.1016/j.applthermaleng.2011.01.039
[19] K. Hirata and H. Kakiuchi, “Energy Saving for Ethylene Process by Adsorption Heat Pump,” Applied Thermal Engineering, Vol. 31, No. 13, 2011, pp. 2115-2122. doi:10.1016/j.applthermaleng.2011.03.031
[20] W. E. TeGrotenhuis, P. H. Humble and J. B. Sweeney, “Simulation of a High Efficiency Multi-Bed Adsorption Heat Pump,” Applied Thermal Engineering, Vol. 37, 2012, pp. 176-182. doi:10.1016/j.applthermaleng.2011.11.012
[21] B. T. Austin and K. Sumathy, “Transcritical Carbon Dioxide Heat Pump Systems: A Review,” Renewable and Sustainable Energy Reviews, Vol. 15, No. 8, 2011, pp. 4013-4029. doi:10.1016/j.rser.2011.07.021
[22] K. Yasukawa and S. Takasugi, “Present Status of Underground Thermal Utilization in Japan,” Geothermics, Vol. 32, No. 4-6, 2003, pp. 609-618. doi:10.1016/j.geothermics.2003.07.011
[23] A. Hall, J. A. Scott and H. Shang, “Geothermal Energy Recovery from Underground Mines,” Renewable and Sustainable Energy Reviews, Vol. 15, No. 2, 2011, pp. 916-924. doi:10.1016/j.rser.2010.11.007
[24] B. Jonsson, K. Doos, J. Nycander and P. Lundberg, “Standing Waves in the Gulf of Finland and Their Relationship to the Basin-Wide Baltic Seiches,” Journal of Geophysical Research, Vol. 113, 2008, Article ID: C03004. doi:10.1029/2006JC003862
[25] T. Liblik and U. Lips, “Characteristics and Variability of the Vertical Thermohaline Structure in the Gulf of Finland in Summer,” Boreal Environment Research, Vol. 16, 2011, pp. 73-83.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.