SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

Article citations

More>>

Richards, Q.D., Bange, M.P. and Johnston, S.B. (2008) HydroLOGIC: An Irrigation Management System for Australian Cotton. Agricultural Systems, 98, 40-49.

has been cited by the following article:

  • TITLE: Development of a Low-Cost Internet-of-Things (IoT) System for Monitoring Soil Water Potential Using Watermark 200SS Sensors

    AUTHORS: José O. Payero, Ali Mirzakhani-Nafchi, Ahmad Khalilian, Xin Qiao, Rebecca Davis

    KEYWORDS: Irrigation Scheduling, Automation, Sensors, Soil Moisture, Internet-of-Things, Arduino, Watermark Sensors, Calibration

    JOURNAL NAME: Advances in Internet of Things, Vol.7 No.3, July 4, 2017

    ABSTRACT: Soil moisture monitoring is one of the methods that farmers can use for irrigation scheduling. Many sensor types and data logging systems have been developed for this purpose over the years, but their widespread adoption in practical irrigation scheduling is still limited due to a variety of factors. Important factors limiting adoption of soil moisture sensing technology by farmers include high cost and difficulties in timely data collection and interpretation. Recent developments in open source microcontrollers (such as Arduino), wireless communication, and Internet-of-Things (IoT) technologies offer opportunities for reducing cost and facilitating timely data collection, visualization, and interpretation for farmers. Therefore, the objective of this study was to develop and test a low-cost IoT system for soil moisture monitoring using Watermark 200SS sensors. The system uses Arduino-based microcontrollers and data from the field sensors (End Nodes) are communicated wirelessly using LoRa radios to a receiver (Coordinator), which connects to the Internet via WiFi and sends the data to an open-source website (ThingSpeak.com) where the data can be visualized and further analyzed using Matlab. The system was successfully tested under field conditions by installing Watermark sensors at four depths in a wheat field. The system described here could contribute to widespread adoption of easy-to-use and affordable moisture sensing technologies among farmers.