SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

Article citations

More>>

Yang, X.F., Li, J., Croll, S.G., Tallman, D.E. and Bierwagen, G.P. (2003) Degradation of Low Gloss Polyurethane Aircraft Coatings under UV and Prohesion Alternating Exposures. Polymer Degradation and Stability, 80, 51-58.
https://doi.org/10.1016/S0141-3910(02)00382-8

has been cited by the following article:

  • TITLE: Applicability Evaluation of a Laser Light-Mater Interaction Based Computational Tool on Status Identification of Applied Micro-Structured Coatings

    AUTHORS: Mauricio Zadra Pacheco, Daniel Vriesman, Hauke Brüning, Kai Brune, Welchy Leite Cavalcanti, Bernd Mayer

    KEYWORDS: Structured Coatings, Laser Sensor, Quality Assurance, Object-Oriented Programming

    JOURNAL NAME: World Journal of Engineering and Technology, Vol.5 No.1, February 28, 2017

    ABSTRACT: The current work aims at evaluating a proposed method based on a computational tool developed using Object-Oriented Programming to identify the status of micro-structured surfaces. In this case, these are micro-structured coatings with riblet microstructure developed by Fraunhofer Institute–IFAM, by building a graphical reproduction of the analyzed surface and calculating an expected laser reflection intensity acquired by a laser sensor device, the proposed method is assessed by using the simplest case: a flat surface, and an optimal case: an intact riblet surface. The results corroborate the calculations to be applied to further steps from more complex cases of degradation and to diverse riblets geometries. Based on Huygens-Fresnel and Fraunhofer diffraction theories, the calculations developed and demonstrated in this paper improved the nondestructive tests to support the status identification of the micro structured coatings, e.g. riblet structures based on shark skin used in shipping and aerospace industries. This work is assured required quality of the riblet coating identifying the number of structures and expected geometry using implemented calculations to foresee the laser reflection intensity acquired by a laser sensor device with 3 detectors, for instance, a riblet structure could be graphically reproduced, analyzed and completely identified based on the application of the theoretical optics applied on this work.