SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

Article citations

More>>

Green, S.R. and Wald, R.M. (2013) Examples of Backreaction of Small Scale Inhomogeneities in Cosmology. Physical Review D, 87, Article ID: 124037. http://arxiv.org/abs/1304.2318

has been cited by the following article:

  • TITLE: Gedanken Experiment for Degree of Flatness, or Lack of, in Early Universe Conditions

    AUTHORS: Andrew Walcott Beckwith

    KEYWORDS: HUP, Stress Energy Tensor, Quantum Bounce, Infinite Quantum Statistics, Heavy Gravity

    JOURNAL NAME: Journal of High Energy Physics, Gravitation and Cosmology, Vol.2 No.1, January 7, 2016

    ABSTRACT: This document will from first principles delineate the degree of flatness, or deviations from, in early universe models. We will, afterwards, make comparison with recent results we have looked at concerning metric tensor fluctuations and comment upon the role of what early universe gravitational energy may play a role in the presumed deviation from flat space results. Note that N~Sinitial(graviton)~1037will be tied into the presumed results for initial state density, in ways we will comment upon, leading to observations which are supporting the physics given by Equation (26) of this document as with regards to Gravitational waves, from relic conditions. The deviations from flat space may help confirm the conclusions given by Buchert, Carfora, Kolb, and Wiltshire allegedly refuting the claim by Green and Wald that “the standard FLRW model approximates our Universe extremely well on all scales, except close to strong field astrophysical objects”, as well as give additional analysis appropriate for adding detail to expanding experimental procedures for investigating non FLRW models such as the Polynomial Inflation models as given by Kobayashi, and Seto, as well as other nonstandard cosmologies, as brought up by Corda, and other researchers. As well as improve upon post Bicep 2 measurements which will avoid GW signatures from interstellar dust, as opposed to relic GW. We hope that our approach may help in the differentiation between different cosmology models. Most importantly, our procedure may help, with refinement of admissible frequency range, avoid the problem of BICEP 2, which had its presumed GW signals from presumed relic conditions identical to dust induced frequencies, as so identified by the Planck collaboration in reference [25] which we comment upon in the conclusion.