SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Article citations

More>>

Ganguli, S. and Singh, J. (2010) Estimating the Solar Photovoltaic Generation Potential and Possible Plant Capacity in Patiala. International Journal of Applied Engineering Research, Dindigul, 1, No. 2.
http://www.ipublishing.co.in/jarvol1no12010/EIJAER1024.pdf

has been cited by the following article:

  • TITLE: Solar PV Energy Generation Map of Karnataka, India

    AUTHORS: Jaymin Gajjar, Sagar Agravat, T. Harinarayana

    KEYWORDS: Solar Energy Generation Map, Solar Photovoltaic (PV) Plant, Karnataka, PVSyst, Meteonorm, KPCL, Kolar, Belgaum, Raichur, Mandya

    JOURNAL NAME: Smart Grid and Renewable Energy, Vol.6 No.12, December 30, 2015

    ABSTRACT: A massive plan has been drawn by the Karnataka state of India to initiate several solar power plants at different locations. In view of this, it is of great help to have reliable estimation on solar PV energy generation. Four solar PV power plants in Karnataka state are fully operational installed by Karnataka Power Corporation Limited (KPCL). They are located at Kolar, Belgaum and Raichur with 3 MW capacity each and at Mandya with 5 MW capacity. In the present study, using ground mounted weather station data solar power generation has been estimated and compared with actual generation for two consecutive years of 2012 and 2013 for one location initially, namely 3 MW Kolar Solar PV Plant. The procedure is repeated for rest of the plants. The simulated results have been corrected with ground mounted weather data. After such corrections, the simulated results have been compared with the actual energy generation of the four plants. Results showed a close match with a small deviation of about 5%. The model then applied throughout the state for every 0.25 degree station intervals in a grid manner. The annual energy generation obtained for the state varies from 1.53 to 1.73 MUs/MW. Central and south eastern part of the state are found to yield significantly higher solar power generation as compared to the northern part and south western part of Karnataka. Interestingly, north western part of Kodagu district has shown the least potential of 1.53 MUs/MW as compared to other parts. This can be attributed mainly due to low irradiation and high temperature condition at this location. The energy generated map from our study will be useful and helpful for both solar developers and decision makers of Karnataka state.