SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

Article citations

More>>

Mohagheghi, M. and Shayegan, J. (2009) Thermodynamic Optimization of Design Variable and Heat Exchanger Layout in HRSGs for CCGT, Using Genetic Algorithm. Applied Thermal Engineering, 29, 290-298.
http://dx.doi.org/10.1016/j.applthermaleng.2008.02.035

has been cited by the following article:

  • TITLE: Performance Optimization of Dual Pressure Heat Recovery Steam Generator (HRSG) in the Tropical Rainforest

    AUTHORS: Sidum Adumene, Barinaadaa Thaddeus Lebele-Alawa

    KEYWORDS: HRSG, Effectiveness, Exhaust Gas Flow, Exhaust Gas Temperature, Steam Flow, Heat Duty

    JOURNAL NAME: Engineering, Vol.7 No.6, June 30, 2015

    ABSTRACT: This work evaluates the performance optimization of heat recovery steam generator system in Afam VI power plant, Rivers State. Nigeria. Steady state monitoring and direct collection of data from the plant was performed including logged data for a period of 12 months. The data were analysed using various energy equations. Hysys software was used to model the temperature across the heating surfaces, and MATLAB software was used to determine the heat transfer coefficient, heat duties, steam flow, effectiveness of the HRSG. The optimization technique was carried out by varying the exhaust gas flow, exhaust gas temperature, steam pressure and the theoretical introduction of duct burner for supplementary firing. The results show that between 490℃ and 526℃, the percentage increase in the overall heat absorbed in the HRSG is 37.39%. It also show that for an increase in the exhaust gas mass flow by 80 kg/s, the steam generation increase by 19.29% and 18.18% for the low and high pressure levels respectively. The overall result indicates an improvement in the HRSG energy efficiency and steam generation. As the exhaust gas mass flow and temperature increases, the steam generation and system effectiveness greatly improved under the various considerations, which satisfy the research objective.