SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Article citations

More>>

Bernstein, D.P. and Osypka, M.J. (2003) Apparatus and Method for Determining an Approximation of the Stroke Volume and the Cardiac Output of the Heart. US Patent 6,511,438 B2.

has been cited by the following article:

  • TITLE: Correlation of Electric Cardiometry and Continuous Thermodilution Cardiac Output Monitoring Systems

    AUTHORS: Vishwas Malik, Arun Subramanian, Sandeep Chauhan, Milind Hote

    KEYWORDS: Pulmonary Artery Catheter, Electrical Cardiometry, Cardiac Output, Thermodilution

    JOURNAL NAME: World Journal of Cardiovascular Surgery, Vol.4 No.7, July 14, 2014

    ABSTRACT: Purpose: Impedance Cardiography (ICG) with its drawbacks to reliably estimate cardiac output (CO) when compared to reference methods has led to the development of a novel technique called Electrical Cardiometry (EC). The purpose of this study was to compare EC-CO with the Continuous CO (CCO) derived from Pulmonary Artery Catheter (PAC). Methods: 60 patients scheduled to undergo coronary artery surgery necessitating the placement of PAC were studied in the operating room. Standard ECG electrodes were used for EC-CO measurements. Simultaneous CO measurement from EC and PAC was done at three predefined time points and were correlated. Results: A significant high correlation was found between the EC-CO and CCO at the three time points. Bland and Altman analysis revealed a bias of 0.08 L/min, a precision of 0.15 L/min, with a narrow limit of agreement (-0.13 to 0.28 L/min). The percentage error between the methods was 3.59%. Conclusion: The agreement between EC-CO and CCO is clinically acceptable and these two techniques can be used interchangeably. Mediastinal opening has no effect on the correlation between these two modalities.