SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

Article citations


Deehan Jr., G. A., Brodie, M. S., & Rodd, Z. A. (2013). What Is in That Drink: The Biological Actions of Ethanol, Acetaldehyde, and Salsolinol. Current Topics in Behavioral Neurosciences, 13, 163-184.

has been cited by the following article:

  • TITLE: Hypothesizing Darkness Induced Alcohol Intake Linked to Dopaminergic Regulation of Brain Function

    AUTHORS: Kenneth Blum, Marlene Oscar-Berman, Rajendra D. Badgaiyan, Eric R. Braverman, Mark S. Gold

    KEYWORDS: Photoperiod; Alcohol Intake; Dopamine; Reward Pathway; Serotonin and Melatonin; Nocturnal

    JOURNAL NAME: Psychology, Vol.5 No.4, March 31, 2014

    ABSTRACT: Understanding the role of neurotransmission in the prefrontal cortex and mesolimbic brain regions has become the subject of intensive neuroscience research worldwide. In the 1970s, our group provided evidences that rats exposed to darkness significantly augmented their alcohol intake. At that time, we proposed that melatonin was the culprit. At around the same time, our laboratory, amongst a few others, proposed that dopamine-adducts with acetaldehyde to induce alcohol intake both in rodents and in humans. While the work in these areas has declined considerably over the years, more recent scientifically sound studies continue to show the importance of these earlier controversial ideas involving alcohol abuse and alcoholism. A review of the literature has provided impetus to systematically access the newer genetic and molecular neurobiological findings relevant to the physiological and psychological motives for high alcohol consumption in animals and humans alike. Thus, we hypothesize that darkness-induced alcohol intake is linked not only to serotonergic-melatonin mechanisms, but also to dopaminergic regulation of brain mesolimbic pathways involving neuronal expression switching in response to long photoperiods affecting gene expression.