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Abstract 
With the advent of new materials, microchip industry is investigating new 
architecture to further scale down the device size. New technologies are on the 
way to achieving this goal without compromising with the device’s perfor-
mance and benefits. In this new scenario, corona charge deposition technique 
(CCDT) has become an indispensable part of the thin film industry. Due to 
the non-invasive and non-destructive nature of corona charge ions, they are 
effectively being used to improve the device properties. They are also useful to 
understand the electrical properties of insulators and other materials. Corona- 
Kelvin non-contact metrology or the C-KM is the most recent development in 
this field. In this review, the applications of corona charge deposition tech-
nique in the semiconductor industry have been reviewed. Further, the me-
thodology involved is described. The advances as well as challenges and im-
provements including the future research are also discussed. 
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1. Introduction 

The scaling down of the microchip has somewhat reached to its limits [1]. New 
technology [2] [3], new materials [4] [5] and new architecture [6] [7] [8] are 
under investigation for the same or better performance benefits. The thermally 
grown SiO2 is not the only dielectric in use for device fabrication. The thermal 
budget has brought many other dielectrics, high-k as well as low-k dielectrics 
and advanced material in the forefront. This has partially replaced the SiO2, high-k 
dielectric for front-end of-line fabrication (FEOL) and low-k dielectrics for back- 
end-of-line applications (BEOL) [9]. Even silicon is not the only device material 
and is now has to be replaced by silicon on insulator (SOI) [10] [11], strained 
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silicon, Si Ge [12] [13], SiC, and GaN [14] [15] [16]. Different depositions and 
surface passivation techniques are either in use or under investigation to meet 
the requirements and improve device performance [13] [17] [18]. Non-contact 
metrology is standardized and in use for industrial application although improve-
ments are required in this field [19] [20] [21] [22]. 

In the present context, corona charge deposition technique has emerged as a 
novel tool in the thin film industry. Due to the non-invasive and non-destructive 
nature of corona charge ions [23], it is the most widely used deposition tech-
nique to check for defects at the Si/SiO2 surface [24]. The sample can be dis-
carded at an early stage of processing if needed, making the device fabrication 
process cost-effective. The ease of application of corona charge ions at room tem-
perature has proved it to be more reliable than other higher temperature processes. 
The wide range of applications includes analysis and improvement of device 
properties [24] [25] [26] [27], understanding the electrical properties of insula-
tors and other materials [25] [26] [27] [28], failure analysis of ICs [29] and non- 
contact metrology [19] [20] [21] [22]. 

In this paper, the status of all these fields of application of corona charge de-
position is reviewed. The advances, challenges and improvements associated with 
the application of this technique have also been discussed.  

2. Study of SiO2 Film and Oxidation under Corona Discharge 

During the early 70’s, efforts of the RCA laboratory initially employed corona 
discharge in air to study the electric breakdown field of thermally grown SiO2 
films [25]. The procedure was non-contact and non-destructive. Corona charge 
was applied on bare Si/SiO2 surfaces, eliminating the need of a metal electrode, 
thus making it completely different from the conventional approach. The con-
ventional approach used metal-oxide-semiconductor (MOS) capacitors to meas-
ure the electrical parameters of the Si/SiO2 surface. 

One study reported that the corona discharge set-up that was employed, was a 
point to plane corona discharge system [23]. This was mostly in use for labora-
tory investigations. It is limited to mapping of a small region of the device sur-
face. The external bias applied by corona ions causes bending of the bands in sil-
icon and gives rise to a surface potential across the Si-SiO2 surface. Kelvin Probe 
[28] was used to measure the surface potential, in which positive as well as nega-
tive corona discharge was employed. The results obtained with this set-up were 
remarkable as the steady value of electric field E with negative corona charging 
was found to be twice as large as it is for positive corona charging. The other 
remarkable feature of these experiments was that the field thus measured was 
independent of the conductivity type, and doping level of the silicon. The elec-
tric breakdown field of SiO2 thus measured was found to be higher than what 
has been reported in other publications [25]. 

One study employed a negative point oxygen corona discharge to study the 
stress relaxation mechanism in SiO2 films [26]. In this study, isotope tracer 
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structures were used to study the corona induced relaxation mechanism. Ap-
parently, the stress relaxation mechanism was the deciding factor in oxidant 
transport through the film. 

Later, another study carried out whole wafer mapping of the SiO2 film on sili-
con employing the corona charging technique [27]. The apparatus used in this 
study was like the one used in a photocopier. Negative air corona discharge was 
used in this paradigm. The maximum corona charge is limited by Fowler-Nord- 
heim tunneling of electrons from the Si to the SiO2 conduction band. The me-
thod was fast and gave whole wafer mapping in 10 - 20 minutes. Defect areas on 
the oxidized wafer could easily be located by corona charging as corona charge 
didn’t get deposited on pinholes or defect areas. 

The first review on uses of corona charge deposition technique in the semi-
conductor industry was published in late 1980s [24]. Applications of air corona 
charge deposition technique (CCDT) were used to understand the kinetics of 
oxide growth and physics of oxides. This article also proposed the usage of the 
methodology in device evaluation and failure analysis of high voltage devices. 
Failure analysis of junction field effect transistor (JFET) clearly established that a 
device is good by design, not because it is free from surface ions [29]. For these 
experiments, negative surface ion deposition from a dry air corona discharge 
was applied using a needle electrode and a control grid system. 

One study reported that the corona discharge technique can be employed for 
oxidation of silicon [30]. A negative point to plane corona discharge in oxygen 
atmosphere at room temperature and above (25˚C - 500˚C) was employed to 
grow SiO2 on Si wafers. As expected, the oxidation rate was a strong function of 
temperature. The oxide growth rate was much higher under corona discharge as 
compared to conventional thermal oxidation of silicon. The measured refractive 
index of corona grown oxide (CGO) for thick oxide was comparable to thermal 
oxide. The poor quality of CGO was revealed in another experiment by the re-
search group, by the CV and IV characteristics of the MOS capacitors fabricated 
on this oxide [31]. For low temperature processing, this oxide can be selectively 
used. 

Fourier Transform Infrared Spectroscopy (FTIR) analysis of silicon dioxide 
grown under negative corona discharge was reported by one study [32]. The re-
sults indicated properties of a fully relaxed silicon dioxide film with a contradic-
tory nature. The results can be comprehensively explained only by assuming the 
presence of some mixed phase of SiO2. 

3. Improvement of Device Performance 

Device quality improvement by deposition of corona charge ions is one of the 
precursors to explore and apply this technique. The study of transport of de-
trapped charges in thermal wet grown silicon dioxides electrets has been carried 
out employing this technique [33]. Electrets are dielectric material with qua-
si-permanent electric charge or molecular dipoles. They are located on the sur-
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face or the bulk of the dielectric. Therefore, electrets can store charges for a very 
long time as their decay time constant is much longer than the lifetime of the 
device, which has the dielectric [34] [35]. This property of electrets has made 
them suitable for applications in sensor technologies [36] [37], acoustic trans-
ducers [38] [39], micro relay switches [40], and dosimeters [41] [42]. Electrets 
can be organic or inorganic. Due to their compatibility with the silicon tech-
nology, inorganic electrets are of considerable importance in the field of mi-
cromechanics, and optoelectronics. The study of thermal silicon dioxide elec-
trets formed by corona discharge and rapid thermal annealing suggests that 
electrets could be an effective means of improving the efficiency of Si based so-
lar cells [17]. 

None-the-less, application of electrets films in micro devices is quite limited 
due to the limitations imposed by the corona discharge technique [43]. This 
technique necessitates those electrets films be formed on a flat surface of the base 
material. Injection of charged particles by ion implantation has the same limita-
tion [44]. Electret films are hardly applicable to the side walls of very-high as-
pect-ratio trench structures that are widely used in modern MEMS devices. Tech-
niques other than corona charge deposition and organic materials are being ex-
plored for this reason [45] [46]. 

Reducing surface recombination, also known as surface passivation, is of ut-
most importance for optoelectronic devices, especially solar cells. The interfaces 
and surfaces consist mainly of dangling bonds due to the abrupt discontinuity in 
lattice structure. These surface dangling bonds play a key role in unwanted sur-
face recombination of photo generated electron-hole pairs. Different materials, 
methods and metrics are in use for surface and interface passivation including 
corona charge deposition technique. The technique has been explored for long 
term stability of the cells also. Recent reviews on solar cell technology discuss the 
developments in the last 20 years [47] [48]. The study chronologically discusses 
the materials, deposition methods, different dielectrics, and dielectric surface 
passivation methods along with the manufacturing details for silicon solar cells. 
The review presented by the authors [47] [49] reveals that c-Si based technology 
still dominates the solar cell industry. It is also well understood that among all 
the dielectric materials, surface passivation by SiO2 is the most compatible with 
c-Si for solar cell applications. Additional surface passivation by corona charge 
deposition has been explored to further increase the efficiency of the solar cells 
[13] [48]. 

To the author’s knowledge, first experimental investigation of field effect pas-
sivation of the Si-SiO2 interface of thermal oxide by negative as well as positive 
corona charges was carried out on the oxides of solar cells and lifetime test struc-
tures in 1999 [50]. The extended SRH (Shockley-Read-Hall) formalism [51] was 
used to account for energy dependent capture cross sections over the band gap 
for a continuum of defect states present at the Si-SiO2 interface. The influence of 
injection level, doping concentration and oxide charge was predicted and expe-
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rimentally analyzed. For solar cells as well as lifetime test structures, a dramatic 
influence was observed on the surface recombination velocity (Seff) at the Si-SiO2 
interface. Though the previously predicted extremely low values or Seff well be-
low 1 cm/s was not achieved experimentally, it was possible to reduce Seff with 
high negative and even more with high positive charge densities. The results of 
the experiments on solar cell correlate well with the ones obtained on lifetime 
structures. 

Recent study [52] shows that very large improvements in the passivation prop-
erties of films can be achieved by modifying their charge density. The detailed 
study of the long-term stability of the surface passivation and comparison with 
other techniques presented by other reports establishes the superiority of the 
corona passivation technique [13] [52]. However, the stability of the experimen-
tal solar cell structure needs to be extended to the practical life span of a solar 
cell before it can be used in industry. 

Another study investigates the corona charged Si-SiO2 interface under differ-
ent operating conditions [53]. For corona charged SiO2 the passivation quality 
was also investigated. An improved lifetime was observed above room tempera-
ture implying that the passivation quality improves above room temperature for 
corona charged SiO2. However, at temperature greater than 50˚C, a degradation 
of the surface passivation was observed [53] [54]. Since solar cells operate at high 
temperatures, the technology needs further improvement. 

4. Non-Contact Metrology 

Non-contact metrology is the new trend in the semiconductor industry with the 
advent of newer materials and dielectrics, e.g., SOI (silicon on insulator), strained 
Si, SiGe, high k-dielectrics like Ta2O3, HfO2, Al2O3, a-silicon (amorphous sili-
con), Photo CVD SiO2 etc., and the fabrication processes. With the gradual tran-
sition of the industry from 130 nm to 65 nm and below [55] the FEOL features 
have reached atomic dimensions. Monitoring electrical properties of dielectrics 
with corona-Kelvin non-contact metrology is the standard practice in industry 
due to the ease of application as well as their non-invasive and non-destructive 
nature. 

Modifications are in place for high-k dielectrics as well. Non-contact metrol-
ogy helps making measurements of device properties possible at an early stage of 
fabrication. It has replaced or complement the traditional C-V (Capacitance- 
Voltage) and I-V (Current-voltage) measurements on MOS (metal oxide semi-
conductor) capacitors basically designed for Si based technology [18] [19] [20] 
[21]. In general, the metrology involves three elements, 1) Air corona discharge 
is used to place a precise amount of electric charge on a dielectric surface, 2) The 
surface voltage is monitored with the help of a vibrating Kelvin Probe and, 3) 
The semiconductor surface barrier potential, Vs, separate from the dielectric 
potential is determined/ measured. For oxides on SiC [56] [57], this metrology 
has been applied to the determination of the capacitance-voltage dependence, 
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and Fowler-Nordheim characteristics of as grown dielectrics [58]. Tunneling due 
to substrate emission in oxide films on silicon can be accomplished by biasing 
the structures; with deposited corona ions and measuring the resulting potential 
decay with a Kelvin probe [59] [60]. The device reliability studies reported ac-
cumulation of positive charge in the oxide at a field higher than 11 MV/cm [59]. 
The Corona-Kelvin or C-KM metrology has been used for characterization of 
plasma nitrided SiO2 also [19]. 

The first non-contact electrical measurement was performed in 1881 [28], and 
with more developments in the coming years [61]-[68]. Surface photo voltage 
(SPV) measurements for characterization of semiconductors was finally fully 
implemented by RCA in 1983 [69]. ASTM standards were developed for non- 
contact measurements of recombination lifetime and diffusion length [70] [71] 
[72] [73].  

Measurements of device parameters can be divided into three main groups: 
the characterization of bulk substrate material, the near surface region, and the 
dielectric films [74]. The parameter associated with the bulk is minority carrier 
lifetime, diffusion length, and iron concentration (Fe). The most used techniques 
are photoconductance decay (PCD) and the SPV (Surface Photo Voltage) in 
commercially available metrology. SPV measurements are often associated with 
corona charging. 

Typical parameters characterizing the near surface region are generation life-
time, near surface recombination lifetime and near surface doping. It is the near 
surface region properties which govern the device performance. Commercially 
available metrology employs the non-contact corona charging technique for the 
measurement of electrical doping profiling as well as the recombination lifetime 
[19] [20] [75]. 

Characterization of dielectrics and interfaces include equivalent oxide thick-
ness (EOT), leakage current, total charge, flat band voltage, density of interface 
traps, soft breakdown field and mobile ion concentration. The two techniques 
mostly in use for this purpose are the Corona oxide semiconductor (COS) tech-
nique [75]; and the corona oxide characterization of semiconductor (COCOS) 
technique [21] [76]. As the name suggests, both the techniques carry on the de-
position of corona charge on the dielectric surface to apply bias to the dielectric 
and the semiconductor. For high-k, ultrathin dielectrics non-contact C-V tech-
nique is based on a differential quasistatic C-V that is generated using time re-
solved metrology combining corona charging and contact potential difference 
(CPD) [22]. For ultra-thin dielectrics in the presence of substantial leakage cur-
rent, steady state method has also been utilized [77]. Non-contact metrology had 
been reviewed in 2003 to discuss the advantages, define the problem areas and 
suggested improvements [74]. The questions and concern raised by the authors 
of this study after the experimental investigation of the metrology convey that it 
is not in a robust profile. They recommend additional efforts to make this 
promising metrology reliable and standardized in a better way. 

https://doi.org/10.4236/wjnse.2022.122002


I. Prasad 
 

 

DOI: 10.4236/wjnse.2022.122002 19 World Journal of Nano Science and Engineering 
 

The corona charging technique has been used in numerous electron spin re-
sonance (ESR) experiments also by several groups to study the defects centers in 
Si/SiO2 system. Low field corona biasing [78] [79] [80] [81] [82] as well as high 
field corona biasing [83] [84] has been used by different groups; and their results 
differ from each other. The corona charging technique has been termed “inhe-
rently unreliable”, and invasive, when applied to thin oxides on silicon by one 
group. Their study shows that it modifies the inherent properties of the entity to 
such an extent that the study of ESR-active defects can be completely disrupted 
[85]. However, experimental study carried on low as well as high fields for both 
thick and thin oxide films establish the non-invasive nature of the corona charging 
technique [86]. The author argues that a distinction must be made between high 
and low field corona biasing. High or low fields biasing by corona charge are like 
high/ low field stressing via conventional gate electrode. A comparison between 
biasing with 7 MV/cm (high field) and 4 MV/cm (low field) for the same time 
period revealed that generation of defect centers takes place only when high field 
corona biasing is applied. High fields generate large densities of paramagnetic 
centers and are therefore damaging. Their findings are consistent with those re-
ported by other authors [87] [88] [89] [90] [91]. Low fields don’t generate defect 
center and are therefore safe to use [78] [79] [80] [81] [82]. The results are the 
same irrespective of the thickness of oxides. [86] However, these claims have 
been refuted in another study [87]. Defect generation at the Si-SiO2 interface was 
observed at electric field as low as ~ ±1.2 MV/ cm establishing the corona charge 
biasing technique as fully invasive and non-reliable. The authors used (Capacit-
ance-Voltage) CV technique and minority carrier lifetime measurements instead 
of ESR as the chief characterization tool. 

5. Device Cooling with Corona Charge 

The latest approach to electronics cooling is by employing a corona discharge. 
The idea was conceived in 2003 [92] and is in use at industrial level.  

The new design replaces the mechanical fan used for heat dissipation in elec-
tronic devices by electric wind generated by corona discharge [92]. The next 
generation of electronic devices have “ionic wind” or “electric wind” to cool the 
device [92] [93]. The basic concept as discussed by the different research groups 
is to generate the ionic wind or electric wind between the two electrodes using 
corona discharge technique. One of the electrodes generates positively charged 
gaseous ions; and the other, the collector electrode attracts it. When these ions 
move through the air flow duct between the two electrodes, they collide with 
other air molecules. Momentum transfer takes place between them, and the air 
flow begins. The electronic system is situated in the air flow duct, towards which 
these electrons and air molecules are directed. At the end of the duct, they finally 
get collected by the collector electrode. Different aspects and experimental de-
sign of the new technology is being explored by different research groups [92] 
[93] [94]. 
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6. Discussion 

The wide range of applications has established the corona technique as the most 
promising technique in the semiconductor industry. DC positive as well as nega-
tive corona discharge systems are in practice for deposition of surface ions [24] 
[75]. Only unipolar space charge limited coronas are used. The primary reason 
of using such corona is the absence of free electrons or bipolar conduction co-
ronas like streamers. The saturation current for unipolar coronas is given by Is 
≊2 με0 V2/d for an applied voltage V and point to plane distance d [23]. At room 
temperature and pressure, DC positive corona discharge ions in dry air primari-
ly consists of H3O+ ions and negative corona discharge comprises of 3CO−  ions. 
Corona ions thus generated have been reported as non-invasive and non-des- 
tructive [23]. The technique has been safely applied for detection of defects in 
oxides during device fabrication procedures as well as testing of the product, i.e., 
the failure analysis of IC’s [24] [29].  

Corona charge deposition technique is in practice to study the electrostatic 
properties of oxide as well [25] [26] [27] [75]. More convincing results have been 
obtained with this technique as compared to that with the conventional metal 
electrode [25] [26] [27]. The technique was successfully applied on oxidized 
samples to determine the oxide charge density (Qo), interface trap density (Dit), 
and flat band voltage (VFB). On junction devices, near surface doping density 
could be measured and with some modification’s minority carrier lifetime could 
also be determined [75]. 

Corona ions deposition technique has been applied to study the defect centers 
in Si/SiO2 surface in ESR (electron spin resonance) experiments [86]. However, 
the non-invasive nature of corona charge ions has been studied and challenged 
at the same time. Different groups involved in ESR studies of Pb centers em-
ploying this technique have frequently challenged this concept [87]. For MEMs 
devices also this technique appears to be the limiting factor. Further investiga-
tion is needed to successfully apply it to charge the electret films in MEMs de-
vices [43]. The field of oxidation of silicon under corona discharge needs further 
investigation [30] [31] [32]. 

Silicon wafer solar cells are the leading photovoltaic cells changing the com-
mercial market of electricity. All the three types of solar cells commercially availa-
ble are based on silicon with a maximum efficiency reported between 20% - 26% 
[95] [96] [97]. III-V/c-Si tandem solar cells are also being investigated for better 
energy yield and an efficiency of >25% has been reported [98]. Corona charge 
deposition technique is under investigation for further improvement of the per-
formance of the solar cells. 

Corona charge deposition is widely used in commercial device reliability cha-
racterization. An extensive study to review the prospects of the metrology for 
ULSI technology has been carried out by one group [74]. The authors provide 
qualitative and quantitative estimates of the accuracy on the parameters that 
characterize the bulk material, near surface region and the dielectric/ interface 
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region. In-depth study on lifetime and concentration of heavy metals as well as 
their diffusion length, doping concentration, generation lifetime and recombina-
tion lifetime of carriers, surface voltage, stress induced leakage current and in-
terface trap density has been presented. An estimation of deviation of the para-
meters from their “true (mathematically calculated) values” reveals that the co-
rona based non-contact electrical metrology needs to be improved and further 
standardization is required [74]. 

Corona discharge technique is all set to replace the mechanical fan by gene-
rating “ionic wind” for electronic device cooling. Different aspects of the design 
are under investigation [92] [93] [94].  

7. Conclusions 

In the present review, the many applications of the corona charge deposition 
technique in thin film industry have been presented. The important conclusions 
are as follows:  

1) Corona charge deposition is a useful method of device characterization and 
testing in the semiconductor industry.  

2) The technique is under investigation for improving the efficiency of Si 
based solar cells. The experimental results achieved so far at the laboratory level 
have been promising. 

3) It is the latest technology in use with the Kelvin Probe for non-contact me-
trology. It is in use at the industry level. However, the in-depth study of the co-
rona based non-contact metrology reveals the need of further improvement and 
standardization.  

4) It is the newest technology for device cooling. Corona based “ionic wind” is 
the next generation cooling fan for electronic devices. Different aspects of the 
design and technology are under investigation. 
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