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Abstract 
In this article, a model of a rotor with an asymmetric disk is presented in or-
der to represent Campbell’s diagrams and instability maps as a function of the 
rotations of the support which can significantly change the dynamic behavior 
of the rotor. Critical rotating speeds can also lead to unacceptable levels of 
vibration. Indeed, the critical speeds are a function of the dynamic rigidity of 
the rotating systems and the presence of the gyroscopic forces creates a de-
pendence between the rotating speed of rotation and the natural frequencies 
to such structures (the CAMPBELL diagrams): this implies that the correct 
determination of the critical speeds is one of the essential elements when siz-
ing such dynamic systems. 
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1. Introduction 

Spindles or rotors are defined as any element rotating around a fixed axis. They 
are used in many industrial applications and represent the centerpieces of rotat-
ing machines. Several studies of these systems have emerged, among which: The 
extended study of the dynamic behavior of a rotor mounted on a fixed support 
[1] [2]; the analysis of the stability of a beam whose equations of motion are pa-
rametric with periodic coefficients [3]; the stability and dynamic responses of a 
rotor with asymmetric geometry are studied [4] [5] [7]; studies relating to the 
dynamic behavior of on-board rotors under stresses [8], those of which the sup-
port is subjected to an earthquake [6] and to random stresses [8]. The works on 
on-board rotors interests us partially [9] [10]. 
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Here we are interested in rotors whose supports are fixed as elucidated in some 
previous studies [11] [12] [13]. 

The spindle of a rotor can be considered as a continuous elastic body with 
properties of inertia and masses distributed along its length, especially in the 
high-speed range. Thus, vibrations appear in this mechanical system, limiting its 
performance and endangering its safety. 

The dynamic analysis of continuous bodies in rotation makes it possible to 
understand their vibratory behaviors and to study their stabilities.  

The objective of this work is to analyze the dynamic behavior of a brushless 
motor with elastic bearings and rigid and fixed supports. 

The kinetic and strain energies as well as the virtual work of the components 
of the rotating flexible rotor are calculated. The proposed rotor model is based 
on the finite element method applied to a TIMOSHENKO beam. The use of the 
LAGRANGE equations provides the differential equations of the movement of 
the rotor in bending with fixed supports assumed to be rigid.  

2. Material and Results 

o Basic theoretical model 
To analyze the dynamic behavior of a rotor whose support is fixed or sub-

jected to any known movement, it is necessary to obtain the equations of the 
movement of the rotating system. The characteristics of each element of the ro-
tor are determined. Thus, the expressions of the energies and of the virtual work 
corresponding to the basic elements (disc, spindle, bearing, unbalance) are de-
termined.  

The following Figure 1 is used to establish the equations of the different cha-
racteristics of a rotor bearing at both ends. These results will then be applied to a 
brushless inrunner motor. 
o Characteristics of the different elements of the model 
 Dynamic characteristics of the disc 
 Kinetic energy of the disc 

The disc is assumed to be rigid. Only its kinetic energy is considered. 
Let R0(X0, Y0, Z0) be a Galilean frame of reference (fixed) and R(x, y, z) a main 

frame of inertia (rotating) linked to the disc (See Figure 2). 
 

 

Figure 1. Basic theoretical model. 
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The coordinate system of the two reference marks are connected through the 
angles ψ, θ and ϕ (See Figure 3 for disc rotation details). The displacements along 
the axes 0X

����
 and 0Z

���
 are denoted respectively u and w. The displacement ac-

cording to 0Y
���

 is supposed null because it is supposed that each point of the ro-
tor moves in a plane perpendicular to 0Y

���
. 

The general expression of the kinetic energy of the disk of mass md is: 

( )
0 0 0

21 1
2 2

t
d d R R R R c R RT m V C Iω ω⋅ ⋅= +

� � �               (1) 

With:  

( )

0 0
0 0
0 0

dx

c dy

dz R

I
I I

I

 
 =  
  

                      (2) 

Idx, Idy and Idz are the main moments of inertia of the disc following the direc-
tions Ox

���
, Oy
���

 and Oz
���

. 
 

 

Figure 2. Reference marks of a disc mounted on a flexible rotating spindle. 
 

 

Figure 3. Details of the disc rotations (Euler’s angles). 
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That is: 

( ) ( )2 2 2 2 21 1
2 2d d dx x dy y dz zT m u w I I Iω ω ω= + + + +� �             (3) 

We can further simplify this expression by putting forward the following hy-
potheses: symmetrical disc, low bending of the spindle… 

Thus, the kinetic energy of the disc is simplified to become: 

( ) ( )2 2 2 2 2

Effet GyroscopiqueTranslation Rotation

1 1 1
2 2 2d d dx dy dyT m u w I I Iθ ψ φψθ φ= + + + + +� � �� �� �

���������� �������
      (4) 

 Dynamic characteristics of the Spindle 
The spindle is considered to be a beam of circular section, deformable and 

characterized by its kinetic and potential energies (of deformation). 
 Kinetic energy of the spindle 

The elementary kinetic energy dTa of a spindle can be deduced by extending 
the kinetic energy of the disk by considering an infinitely thin spindle section of 
thickness dy, of section S (assumed constant as show in Figure 4), of mass vo-
lume ρa and inertia of section Iax and Iaz (also assumed to be constant), In addi-
tion by taking as elementary mass: dma = ρaSdy and as moments of inertia of the 
elementary mass dIax and dIaz in the reference R(xyz); and finally with Ix and Iz as 
quadratic moments of inertia of the section of the elementary mass.  

The elementary kinetic energy of an infinitely thin section of a spindle is then 
written: 

( ) ( )2 22 2 21 1d d d d d
2 2a a ax ayx y zazT m u w I I Iω ω ω= + + + +� �           (5) 

Considering that the cross sections of the beam are circular, the expression of 
the kinetic energy of the spindle is then obtained by integrating it over the entire 
length L: 

( ) ( )2 2 2 2 2
0 0 0

d d 2 d
2 2

La a s
a a s a

L
s

LS IT u w y y I y I Lρ ρ
θ ψ ρ ϕ θψ ρ ϕ= + + + + +∫ ∫ ∫� � � � �� �  (6) 

with:  

( )2 2
0

d
2

LaS u w yρ
+∫ � � : the expression of the kinetic energy of translation of a 

beam in bending. 
 

 

Figure 4. The flexible spindle with its infinitely thin elementary section. 
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( )2 2
0

d
2

La sI yρ
θ ψ+∫ � � : the side effect of the rotational energy of the spindle. 

0
2 d

L
a sI yρ ϕ θψ∫� � : the gyroscopic effect. 

2
a sI Lρ ϕ� : the rotational energy of the spindle. 

 Spindle strain energy  
Considering a point B of the cross section of the spindle (Figure 5), u∗  and 

w∗  are the displacements of the geometric center C of the spindle along the x 
and z axes in the rotating frame, the displacements u∗  and w∗  are expressed 
in the fixed coordinate system. 

The expression of the strain energy becomes: 
2* *

0
d d

2a s

LEU z x S y
y y
θ ψ ∂ ∂

= − + ∂ ∂ 
∫ ∫                    (7) 

And finally: 
2 22 2

2 20
d

2
s

a
LEI u wU y

y y

    ∂ ∂ = +   ∂ ∂     
∫                    (8) 

 Dynamic characteristics of the bearings 
In general, the bearings, considered to be non-rigid, induce external forces 

acting on the spindle. These stresses come from stiffness or damping as in [9] 
(Figure 6). 

Les caractéristiques associées à ces efforts sont:  
 xxk , zzk , xxc , zzc : stiffnesses and dampers according to the directions of the 

spindle X0 et Z0. 
 xzk , zxk , xzc , zxc : stiffness and damping in one direction (X0 or Z0) but af-

fected by the other direction; and represent mating constants. 
The characteristics of stiffness and damping of the bearings are assumed to be 

known. 
 

 
(a)                                   (b) 

Figure 5. The displacement of the geometric center of the spindle: (a) for a constant 
speed of rotation of the spindle; (b) for a variable speed of rotation of the spindle. 
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Figure 6. Damping and stiffness of the bearing. 
 

u xx xz xx xz

w zx zz zx zz

F K K c cu u
F K K c cw w
        

= − −        
        

�
�

               (9) 

where où uF  et wF : the components of generalized forces. 
The virtual work of these forces: 

u ww F u F wδ δ δ= +                       (10) 

 Dynamic characteristics of the Unbalance: 
An unbalance is a quantity of matter located at a distance from the axis of ro-

tation and capable of causing the appearance of centrifugal inertial forces. In our 
case, we will consider a single unbalance of mass mb, located at point B in the 
plane of the disc (xOz) at a distance d from its geometric center C (Figure 7). 

Kinetic energy of unbalance: 

2 2 2 21 2 cos 2 sin
2b bT m u w d ud wdϕ ϕ ϕ ϕ ϕ = + + + − � � �� � � �       (11) 

2u�  et 2w�  being negligible, then we have: 

2 21 2 cos 2 sin
2b bT m d ud wdϕ ϕ ϕ ϕ ϕ = + − � � �� �          (12) 

o Brushless motor spindle modeling 
Here (in Figure 8) we will use the model studied by Lalanne/Ferraris [1] and 

adapt it to an experimental brushless inrunner motor as in [9]. 
The rotor characteristics are as follows:  

 For the disc: 
- Internal radius Rd1 = 0.001 m 
- External radius Rd2 = 0.015 m 
- Thickness h = 0.03 m 
- Density: ρd = ρ = 7800 kg/m3 

- Young modulus: Ed = E  
- Position: l1 = L/3 
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Figure 7. The unbalance. 
 

 

Figure 8. The spindle schematic of the brushless in runner motor. 
 

- Mas ( )2 2 1
2 1 1.65 10 kgd d dm R R hρ −= π − = ×  

- Inertias: ( )2 2 2 5 2
1 23 3 2.17 10 kg m

12
d

dx dz d d
mI I R R h −= = + + = × ⋅  

( )2 2 5 2
1 2 1.86 10 kg m

2
d

dy d d
mI R R −= + = × ⋅  

 For the spindle: 
- Length L = 0.05 m 
- cross-section radius Ra = 0.001 m 
- ρ = 7800 kg/m3 

- E = 2 × 1011 Pa 
- Area of the cross-section 2 6 23.142 10 maS R −= π = ×  

- Quadratic moment of inertia 
2

12 41.57 10 m
2

a
s

RI −π
= = × . 

- For unbalance: 
- Mass mb = 10−4 kg 
- Distance d = 0.02 m 
- For the bearing: 
- Stiffness 0xxk =  et 0zzk =  

The behavior of the spindle is that of the first mode of a beam in bending, of 
constant section and in support at both ends (Figure 9):  

( ) sin sin sin 62.83
0.05

y yf y y
L
π π

= = =  

The total kinetic energy T is given by:  
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Figure 9. The first mode of vibration. 
 

a d bT T T T= + +                          (13) 

( ) ( )

( ) ( ) ( )

2 2 2 2 2
0 0 0

2 2 2 2 2

2 2

1 1d d 2 d
2 2

1 1 1 2
2 2 2

1 2 cos 2 sin
2

a a a s a s a s

d dx dy

L L L

b

T S u w y I y I y I L

m I I

m d ud wd

ρ ρ ψ θ ρ ϕ ψθ ρ ϕ

ψ θ ψ θ ϕψθ ϕ

ϕ ϕ ϕ ϕ ϕ

 = + + + + +  
 + + + + + +  

 + + − 

∫ ∫ ∫�� � � �� �

� �� � � � �

� � �� �

(14) 

By replacing the following expressions with their values: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2 2

1 1

2 2

, ; ,

, ; ,

, ; ,

w y t f y q t w y t f y q t

y t g y q t y t g y q t

y t g y q t y t g y q t

ψ ψ

θ θ

= =

= − = −

= =

� �

� �
� �

            (15) 

Kinetic energy will be written as: 

( ) ( )2 2
1 2 1 2 1 2cos sinT q q q q q q Csteϕ ϕ ϕ ϕ= + − + − +a b c� �� � � � �         (16) 

The strain energy is given by: 
2 22 2

2 20

1 d
2 a s

L u wU E I y
y y

    ∂ ∂ = +   ∂ ∂     
∫                  (17) 

By replacing the following expressions with their values: 

( ) ( )
2

12
u h y q t

y
∂

=
∂

; ( ) ( )
2

22
w h y q t

y
∂

=
∂

                 (18) 

( )2 2
1 2U q q= +d                          (19) 

Apply the Lagrange equation: 

d
d iq

i i i

T T U F
t q q q
 ∂ ∂ ∂

− + = ∂ ∂ ∂ �
                    (20) 

There will be the following system: 
2

1 2 1 2
2

2 1 2

2 2 sin cos

2 2 cos sin

aq b q dq bq c c

aq b q dq c c

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

 − + − = +


− + = +

��� � �� � ��

� �� � �� �
          (21)  

Conditions:   
 Constant speed  

tϕ = Ω  et ϕ = Ω� , alors 0ϕ =��                 (22) 
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 And with:  
2a m= ; b β=  et 2d k=                  (23) 

The general form will be: 
2

1 2 1
2

2 1 2

sin

cos

mq q kq c t

mq q kq c t

β

β

 − Ω + = Ω Ω


+ Ω + = Ω Ω

�� �

�� �
               (24) 

The natural frequency is determined for the two possible cases (rotor stopped 
and rotor rotating) 
- Rotor stopped ( 0Ω = ):  

01 02 0
k
m

ω ω ω= = =                    (25) 

- Rotor rotating ( 0Ω ≠ ):  

2 22 2
2 0

1 0 2 2 2

41 1
2

m
m

ωβω ω
β

 Ω  = + − +
 Ω 

            (26) 

2 22 2
2 0

2 0 2 2 2

41 1
2

m
m

ωβω ω
β

 Ω  = + + +
 Ω 

            (27) 

with: 
2
0

k
m

ω =  et 2 2
0m kmω =                 (28) 

To each of the values 1ω  and 2ω  corresponds a mode: 
 When 1ω ω=  et 1 0ω ω<  (1st mode ): 

The movement along the Ox
���

 axis is π/2 ahead of the movement along the 
Oz axis but have the same amplitudes. These points turn in the opposite direc-
tion of the rotation of the rotor so we say that we have a reverse or retrograde 
precession as in [13] Figure 10. 
 When 2ω ω=  et 2 0ω ω>  (2nd mode): 

The following movement Ox
���

 is late compared to the movement according to 
Oz
���

 of π/2, but they have the same amplitudes. We say in this case that we have 
a direct precession as in [13] Figure 11. 
 

 

Figure 10. Reverse precession. 
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Figure 11. Direct precession. 
 

Using data from the symmetrical rotor of our Motor: 
- The equation of the system becomes: 

1 2 5 6 2
1 2 1

1 2 5 6 2
2 1 2

1.32 10 1.84 10 1.22 10 1.73 10 sin

1.32 10 1.84 10 1.22 10 1.73 10 cos

q q q t

q q q t

− − −

− − −

 × − × Ω + × = × Ω Ω


× + × Ω + × = × Ω Ω

�� �

�� �
   (29) 

The natural frequencies when stopped are: 

10 20 0 961 rds sω ω ω= = =                     (30) 

The natural frequencies in rotation are: 

8
5 3 2

1 2
1.90 109.24 10 9.72 10 1 1ω −

 ×
 = × + × Ω − +
 Ω 

         (31) 

8
5 3 2

2 2
1.90 109.24 10 9.72 10 1 1ω −

 ×
 = × + × Ω + +
 Ω 

         (32) 

Campbell’s diagrams (Figure 12 and Figure 13) represent the resonant fre-
quencies of the rotor as a function of the rotational speeds: 

With Campbell’s diagram, the functions ω1 = ω1(Ω) and ω2 = ω2(Ω) are cut by 
the lines ω = Ω (synchronous case) and ω = sΩ (asynchronous case) which gives 
points of intersections A and B for the first, and C and D for the second (C and 
D does not exist on our diagram because there is no asynchronous case). Ω10, 
which is the point of intersection of curves ω1 (direct mode) and ω2 (indirect or 
retrograde mode) is the resonant frequency of the rotor at standstill. A and B are 
the points at which the rotational speed of the rotor coincides with its resonant 
frequencies. 
 The Resonant Amplitudes: 
By considering the centrifugal force of the unbalance (2nd member): 

2
1 2 1

2
2 1 2

sin

cos

mq q kq c t

mq q kq c t

β

β

 − Ω + = Ω Ω


+ Ω + = Ω Ω

�� �

�� �
                  (33) 

Solutions are in the form: 
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Figure 12. This diagram allows us to see the pulsation for which the system enters into resonance. 
 

 

Figure 13. This diagram allows us to see the speed of rotation causing the resonance frequency. 
 

1 1

2 2

e

e

j t
p e

j t
p e

q A

q A

Ω

Ω

 =


=
                          (34) 

With 1
1 1e ej

e eA A Φ=  et 2
2 2e ej

e eA A Φ=  
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Then 1 2e
π

Φ = −  et 2 0eΦ =  

Thus 1 2e eA A= ; so the orbits described by the rotor are circles. 

( )
( )

2 2 2

1 2 22 2 4e e

c k m
A A

k m

β

β

Ω − Ω − Ω
= =

− Ω − Ω
                 (35) 

Note that this function has a limit of c
m β−

 when Ω tends to infinity  

The critical speed of a rotor subjected to an unbalance corresponds to the val-
ue of Ω for which the displacement is infinite. That is, when the denominator is 
equal to 0.  

c
k

m β
Ω =

−
                        (36) 

This value corresponds to point B of the Campbell diagram because of the in-
fluence of the stiffness symmetries of the bearings 

3. Conclusion 

The model developed with the Rayleigh-Ritz method is used in this study be-
cause of its simplicity. It sets up a model making it possible to treat simple cases 
and to highlight basic phenomena. It consists in replacing the unknown field by 
a finite number of unknown coefficients, which results in a field of displace-
ments smaller than the exact solution. So, the approximate model is more rigid 
than the exact model. Finally, she uses few degrees of freedom to write the equa-
tions of motion. This allows us to quickly have information on the dynamic be-
havior of the rotor, with little precision. Thus, to avoid high amplitude responses 
that can lead to their destruction, the natural frequencies of the system must be 
distinct from the excitation frequencies throughout the operating range. For this, 
the critical speed was determined using the Campbell diagram; which is to be 
avoided, so as not to cause the resonance of the system. Technically, this speed is 
quickly exceeded by the engine when starting, to reach the operating range which 
is beyond 1000 rpm. 
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