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Abstract 
The precise control of the shape of transversely stiffened suspended cable 
systems is crucial. However, existing form-finding methods primarily rely on 
iterative calculations that treat loads as fixed known conditions. These me-
thods are inefficient and fail to accurately control shape results. In this study, 
we propose a form-finding method that analyzes the load response of models 
under different sag and stress levels, taking into account the construction 
process. To analyze the system, a structural finite element model was estab-
lished in ANSYS, and geometric nonlinear analysis was conducted using the 
Newton-Raphson method. The form-finding analysis results demonstrate that 
the proposed method achieves precise control of shape, with a maximum shape 
error ranging from 0.33% to 0.98%. Furthermore, the relationships between 
loads and tension forces are influenced by the deformed shape of the struc-
tures, exhibiting significant geometric nonlinear characteristics. Meanwhile, 
the load response analysis reveals that the stress level of the self-equilibrium 
state in the transversely stiffened suspended cable system is primarily go-
verned by strength criteria, while shape is predominantly controlled by stiff-
ness criteria. Importantly, by simulating the initial tensioning process as an 
initial condition, this method solves for a counterweight that satisfies the re-
quirements and achieves a self-equilibrium state with the desired shape. The 
shape of the self-equilibrium state is precisely controlled by simulating the 
construction process. Overall, this work presents a new method for analyzing 
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the form-finding process of large-span transversely stiffened suspended cable 
system, considering the construction process which was often overlooked in 
previous studies. 
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1. Introduction 

Cable structures are widely utilized in various applications, such as lightweight 
roof structures [1], bridge structures [2] [3], and radar antenna [4] fields. 
These structures are favored due to their attractive shape, high strength, light 
self-weight, and adaptability, making them a popular choice for large-span 
structures. However, cables have poor shape stability and cannot withstand 
pressure force or bending moments. As a result, they exhibit significant dis-
placement when there are changes in load distribution, making cable struc-
tures less conducive to carrying loads efficiently. To address this issue and im-
prove the performance of cable structures, one approach is to create a trans-
versely stiffened suspended cable system by installing transverse members [5]. 
This structural system consists of cables, transverse members, counterweight 
members, and support structures. The transverse members interact with the 
cables to maintain the structural shape, and tension in the cables, and balance 
the dead load, resulting in a self-equilibrium state with sufficient stiffness. The 
addition of transverse members enhances the stability and stiffness of the 
cables, transfers loads from the transverse members to the cables, and collec-
tively resists wind and temperature loads, thus improving the overall perfor-
mance of the roof structure [6]. 

Designing and constructing a transversely stiffened suspended cable system 
poses challenges due to the unique characteristics of cables. During construction, 
the shape of the structure and tension distribution undergo significant changes. 
Until reaching the design configuration, the structure remains unstable and dy-
namic [7]. Additionally, the nonlinear relationship between cable displacement 
and strain, as well as the interaction between cable shape and tension [8], further 
complicate the determination of the self-equilibrium state. Therefore, accurately 
determining the self-equilibrium state is crucial for various structures that con-
tain flexible members [9], including cable-membrane structures [10], cable net-
works [11] [12], tensegrity structures [13], and cable domes [14]. This process is 
known as form-finding analysis. Among various numerical form-finding me-
thods [15] [16] [17], the force density method [18], dynamic relaxation method 
[19] [20], and nonlinear finite element method [21] [22] are commonly used. 
Equations are created by discretizing the structure, and a computer program is 
employed to solve for the self-equilibrium state. However, the force density me-
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thod and dynamic relaxation method are more suited for structures dominated 
by flexible members, as they do not consider the deformation of rigid members, 
leading to errors in the calculation results. Accurately calculating the deforma-
tion of rigid members requires considering the material properties of these 
members during the form-finding process, which can be achieved through non-
linear finite element methods [23]. 

The transversely stiffened suspended cable system consists of both rigid and 
flexible members. The rigid members are fixed according to the building scheme 
[24], while the position of the flexible cables varies based on the applied loads 
[25]. Therefore, it is crucial to adjust counterweights to achieve harmony be-
tween the cables and beams. The traditional iterative methods used in nonlinear 
finite element analysis treat loads as fixed known conditions, resulting in the in-
ability to accurately control the shape of the cables. This discrepancy between 
the simulation results and the desired effect is unsatisfactory. Moreover, the 
iterative methods overlook the influence of the construction process on the 
self-equilibrium state, which forms the basis of load response analysis. Inaccu-
rate modeling with significant errors can lead to serious safety risks. Hence, it is 
essential to develop a method that considers the construction process and pre-
cisely controls the shape of the self-equilibrium state. 

In this work, we proposed a form-finding method that considered the con-
struction process and analyzed different sag and stress levels. The method com-
bined the principles of the force density method and nonlinear finite element 
method, focusing on a transversely stiffened suspended cable system located in 
the central area of a roof structure project. The structural finite element model 
was established by ANSYS software, and geometric nonlinear analysis was per-
formed using the Newton-Raphson method. By simulating the initial tensioning 
process and incorporating the target shape, we determined the necessary coun-
terweight to achieve the self-equilibrium shape and actively adjusted the loads 
to precisely control the shape. Additionally, we simulated the downward press-
ing process during construction to efficiently solve the self-equilibrium state of 
the structure. Furthermore, we conducted load response analysis based on the 
form-finding results, investigating the effects of counterweight, geometric shape, 
cable tension force, and other parameters on the structural performance during 
the form-finding process. 

2. Engineering Background 

The project is situated in Hangzhou, China. Drawing inspiration from the aes-
thetics of Chinese traditional culture and blending it with a modern pursuit of 
flight, the structure’s design resembles unfolded wings, as depicted in Figure 1. 
The overall dimensions of the structure encompass a length of 394.8 meters and 
a width of 155.4 meters, covering a total site area of approximately 61,000 square 
meters. The upper section of the structure features a steel truss-cable roof com-
prising south and north extended roofs, along with a central cable area. In  
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Figure 1. Architectural rendering of this project. 
 
contrast, the lower part of the structure comprises eight buildings, with the inner 
buildings firmly connected to the upper portion while allowing movement on 
the outer side through sliding articulations. 

The central cable area of the structure adopts a transversely stiffened sus-
pended cable system, with a longitudinal span of 109.2 meters. Along the longi-
tudinal direction, there are 18 cables supported by side trusses arranged in pa-
rallel on both sides. The spacing between the cables is 8.4 meters, while the dis-
tance between the cables and side trusses is 6.3 meters. In the transverse direc-
tion, there are 25 beams and counterweights spanning 155.4 meters. The spacing 
between the beams varies from 3.9 to 4.2 meters, and there is a distance of 4.95 
meters between the beams and the extended roof on both sides. The cables and 
beams are arranged perpendicular to each other, forming a net-like structure. 
The cables are connected to the extended roof through articulations at both 
ends, while the beams are rigidly connected to the side trusses on both sides. 
This arrangement ensures the self-equilibrium of the structural shape, cable ten-
sion, and constant load, resulting in a distinctive concave curved building shape. 

3. Form-Finding Method Analysis 

The objective of the form-finding analysis is to determine the self-equilibrium 
state of the structure upon completion of construction. The solution process in-
volves several steps, including modeling, solving for the self-equilibrium state, 
and verifying the results. The modeling phase entails determining the structural 
topology, support conditions, loading conditions, materials of the members, sec-
tion dimensions, geometric shape, and tension distribution. These inputs are 
used to establish the equilibrium equations. However, since the tension distribu-
tion is interrelated with the geometric configuration, an initial value set through 
estimation is often insufficient to achieve the desired self-equilibrium state. To 
solve for equilibrium, one criterion is selected as the controlling factor, and the 
other variables are calculated using the equilibrium equations. The equations are 
presented below: 
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[ ]K U P⋅ =                            (1) 

[ ] [ ] [ ]G EK K K= +                         (2) 

The stiffness matrix [K] is composed of two parts: the geometric stiffness ma-
trix [K]G and the linear elasticity stiffness matrix [K]E. The former is related to 
cable tension, while the latter is connected to sections. The column vector of 
nodal displacements is represented as U, while the column vector of nodal loads 
is denoted as P. 

Taking force-finding analysis as an example, the calculation of the self-equi- 
librium state involves controlling the shape of the cables. The process begins by 
calculating the unbalanced forces at the nodes and iteratively adjusting the cable 
tensions until the displacements of all nodes are within a specified limit. Since 
the shape of cable structures is influenced by loads, precise control of the 
shape requires solving for both tension distribution and counterweights through 
form-finding analysis. In this case, any variation in either parameter can affect 
the node displacements. When using iterations alone, it becomes challenging to 
determine the cause of unbalanced displacements and effectively adjust parame-
ters to achieve self-equilibrium. To address this, the construction process is tak-
en into consideration in this study. By simulating the structure’s construction, 
the counterweights are solved first, followed by controlling the convergence of 
the structural shape towards the self-equilibrium shape. This approach provides 
a way to solve for the self-equilibrium state of the structure. 

3.1. Construction Steps and Flow of Form-Finding 

The construction of a transversely stiffened suspended cable system can be seen 
as a cumulative installation process involving cables and beams. During con-
struction, the structure is initially constructed by tensioning and anchoring the 
cables. Subsequently, the cables are pressed downward using beams. This con-
struction process can be divided into two stages: the initial tensioning process 
and the pressing downward process. In the initial tensioning process, the struc-
ture is in a state where only one cable is present, and the cables are loaded solely 
by self-weight. This loading can be controlled by the target initial tension force 
T0. During the pressing downward process, the displacement of the cables is in-
duced by placing beams on top of them. This process modifies both the shape 
and tension of the cables. The structure achieves balance through the use of 
counterweights, with the desired shape being the target at this stage. The self- 
equilibrium state model of the cable is depicted in Figure 2, with the dashed 
lines indicating the positions of the cables during the initial tensioning process. 
The loads can be adjusted by utilizing the counterweights. 

The construction process revealed that the self-equilibrium state of the trans-
versely stiffened suspended cable system is determined by the initial state of the 
cables and the pressing downward process. As a result, the solution process for 
determining the self-equilibrium state in form-finding analysis is divided into  
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Figure 2. Self-equilibrium state model of the cable. 

 
two stages: the initial state and the construction process for simulation. The flow 
of the form-finding method is summarized in Figure 3. 

3.2. Initial State Analysis 

The form-finding calculations are based on the following assumptions: The 
cables are assumed to be ideally flexible, meaning they cannot resist bending 
moments and pressure. The working state of the cables follows Hooke’s law. All 
loads are concentrated at nodes, and cable segments do not resist loads. 

In the initial state analysis, the structure’s beams have not been installed, and 
the cables are fully flexible. The initial state can be calculated using the force 
density method [18] with the initial tension force T0. The equations for this cal-
culation are represented as follows in Equation (3): 

[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]

T
0 0 0

T
0 0 0

T
0 0 0

x

y

z

⋅ ⋅ ⋅ =

⋅ ⋅ ⋅ =

⋅ ⋅ ⋅ =

C Q C X P

C Q C Y P

C Q C Z P

                     (3) 

where [ ]C  is topology matrix; [ ]0Q  is the force density matrix associated with 
the initial tension force 0T . 0xP , 0yP  and 0zP  are nodal load vectors, which 
are calculated based on the self-weight of the structure. 0X , 0Y  and 0Z  are 
node coordinate vectors, which are solved using these equations. This method 
utilizes force density as a control parameter and mathematically calculates the 
coordinates of nodes such that the total force at the nodes approaches zero. 

3.3. Construction Process Analysis 

During the analysis of the construction process, beams and counterweights are 
placed on the cables to build up tension, which alters the tension distribution 
and shape of the cables. This process is repeated multiple times until all compo-
nents are installed and a self-equilibrium state is reached. However, since the 
force density method does not consider material properties, Equation (3) cannot 
account for the variation in cable length caused by the loads. Therefore, the non-
linear finite element method [21] [22] is employed in this process. When the 
equilibrium state of the ith iteration is known, the (i+1)th equilibrium state can be 
calculated using Equation (4): 

[ ] 1 1i i i i+ +⋅ = − +K U P P R                       (4) 

Here, R represents the residual caused by the geometric nonlinear effect. The  
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Figure 3. Flowchart of form-finding calculation. 

 
shape of the self-equilibrium state is determined by the building scheme, and the 
initial state is obtained from Equation (3). Setting the self-equilibrium state as 
the sth equilibrium state, the total displacement of nodes ,x sU , ,y sU  and ,z sU  
can be expressed as follows: 

, 0

, 0

, 0

x s s

y s s

z s s

= −

= −

= −

U X X
U Y Y

U Z Z
                         (5) 

Considering the total displacement of nodes and Equation (4), the column 
vector of nodal loads sP  can be calculated as the sum of nodal loads from the 
initial state to the sth equilibrium state: 

[ ]
1

1 0
0

s

s i i
i

−

+
=

= ⋅ + +∑P K U P R                      (6) 

Equation (6) is solved using the Newton-Raphson method, with a conver-
gence criterion determined as follows (in kN): 

0.005<R                             (7) 

The nodal loads sP  obtained from Equation (6) represent the loads on the 
cable-beam connections. However, due to differences in the stiffness of the sup-
porting structure, the load values of nodes on the same beam may vary, making 
it challenging to achieve during construction. To address this, the actual coun-
terweight s′P  on beams is taken as the average value of all nodes on the beam. 
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The total loads remain consistent with the results obtained from Equation (6). 
The self-equilibrium state calculated from Equation (4) using s′P  generally aligns 
with the desired target shape. 

3.4. Element Type and Section Properties 

The structural model is created using the general finite element software ANSYS 
(version 19.2). The form-finding method is implemented using the ANSYS pa-
rametric design language (APDL). The model consists of an upper steel cable 
roof and lower support structures in the central zone. The connection between 
the lower support structures on both sides is a sliding hinge support. The model 
is illustrated in Figure 4, and the element types for each component are pre-
sented in Table 1. 

The extended roof trusses comprise various I-beam, square, and round steel 
sections of different sizes. The lower supporting structure is a concrete frame- 
shear wall structure, which includes beams, columns, and walls of different sec-
tions and sizes. The cable section has a diameter of 113 mm, equivalent to two 80 
mm diameter circular solid sections made of galvanized stainless steel. The 
transverse beam is a hollow circular steel pipe with a section measuring 245 mm 
OD and 14 mm thickness. It is constructed from Q355B mild steel. 
 

 
Figure 4. Finite element model. 
 
Table 1. Element types of components. 

Components Truss Cable Beam Support Wall 

Element type Link 8 Link 10 Beam 44 Link 8 Shell 63 
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3.5. Simulation Steps for Form-Finding 

The simulation process is divided into several steps, as illustrated in Figure 5. 
Step 1 involves analyzing the initial installation to determine the shape of the 

single cable. Element birth and death technology is applied to simulate only the 
cables, and the model is updated based on the calculation results. 

Step 2 simulates the installation of both the cables and the support structure 
using element birth and death technology. The shape of the cable obtained from 
Step 1 is used, and initial strain is given to the cable elements. 

Step 3 involves solving for the counterweight by forcing the cable to deform to 
the target shape through displacement loading. The constraint reaction force is 
then read to calculate the counterweight. Upon completion of the calculation, 
the constraints are released, and the model is restored to the state of Step 2. 

Step 4 is the construction analysis, during which beams are gradually installed 
according to the calculated counterweight and connected with the side trusses. 
The beam installation order is from both sides towards the center. 

Step 5 completes the form-finding analysis after all beams are installed. At this 
point, the structure’s self-equilibrium shape is largely consistent with the target 
shape. 

4. Results 
4.1. Form-Finding Results 

The form-finding analysis was conducted for a total of 16 models, considering 
four types of mid-span drops (3.5 m, 5.46 m, 7.28 m, and 10.92 m) and four 
types of maximum stress levels of the cables (20%, 40%, 60%, and 80%). The re-
sults of these analyses are presented in Table 2. The data in Table 2 demon-
strates that the maximum shape error for each model falls within the range of  
 

 
Figure 5. Simulation steps for form-finding: (a) step 1, (b) step 2, step 3, (c) step 4 and 
(d) step 5. 
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Table 2. The results of form-finding analysis. 

Mid-span 
sag 

Maximum 
stress level 

Initial 
tension 

C.C. 
Maximum 
shape error 

Mid-span 
sag 

Maximum 
stress level 

Initial 
tension 

C.C. 
Maximum 
shape error 

3.5 m 20% 360.50 kN 0.17 0.72% 7.28 m 20% 166.15 kN 1.01 0.35% 

3.5 m 40% 416.00 kN 1.00 0.68% 7.28 m 40% 170.81 kN 2.63 0.53% 

3.5 m 60% 500.00 kN 1.79 0.81% 7.28 m 60% 175.80 kN 4.23 0.69% 

3.5 m 80% 652.00 kN 2.59 0.98% 7.28 m 80% 181.35 kN 5.82 0.86% 

5.46 m 20% 222.50 kN 0.63 0.39% 10.92 m 20% 112.73 kN 1.65 0.33% 

5.46 m 40% 234.50 kN 1.88 0.51% 10.92 m 40% 114.15 kN 3.96 0.53% 

5.46 m 60% 248.20 kN 3.11 0.66% 10.92 m 60% 115.63 kN 6.27 0.72% 

5.46 m 80% 264.00 kN 4.32 0.80% 10.92 m 80% 117.14 kN 8.55 0.91% 

Note: The mid-span sag refers to the sag in the mid-span of cables in a self-equilibrium state. The maximum stress level is the ratio 
of the maximum stress to the design strength of the cables in the self-equilibrium state. Initial tension represents the tension force 
of cables in the initial state analysis. C.C. denotes the coefficient of counterweight, which is the ratio of the sum of the counter-
weight obtained from form-finding. The maximum shape error is the ratio of the maximum error to the target shape. 

 
0.33% to 0.98%. This indicates that the method employed accurately controls the 
self-equilibrium shape. When comparing models with the same mid-span sag, it 
is observed that increasing the initial tension results in a higher coefficient of 
counterweight (C.C.) and an elevated maximum stress level. Since the initial 
tension primarily affects the cable shape in the initial state, the C.C. is derived 
from the disparity between the self-equilibrium state and the initial state. An 
augmentation in the initial tension leads to a corresponding increase in the C.C., 
which subsequently amplifies the maximum stress level. Furthermore, for every 
20% increment in the maximum stress level, the C.C. for mid-span drops of 3.5 
m, 5.46 m, 7.28 m, and 10.92 m increased approximately by 0.8, 1.2, 1.6, and 2.3, 
respectively. This implies that the relationship between the loads and stress in 
cable structures is influenced by the self-equilibrium shape of the structure, ex-
hibiting pronounced geometric nonlinearity characteristics. 

4.2. Load Response Results 

The results of the form-finding analysis must be verified to ensure that the 
structure meets safety requirements. In accordance with Article 3.2.13 of the 
Technical Specification for Cable Structures (JGJ257-2012), the ratio of maxi-
mum deflection to span for transversely stiffened suspended cable systems 
should not exceed 1/250. The design strength of cables typically ranges from 0.4 
to 0.5 times the standard strength. Therefore, in compliance with these stan-
dards, the maximum deflection and design strength selected for this study were 
436.8 mm and 435.6 MPa, respectively. 

It is important to note that the results of load response can be calculated using 
load combinations based on the actual engineering situation, with load values 
listed in GB 50009-2012. Displacement response is calculated using nominal 
combinations to simulate the limit state of normal use, while stress response is 
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calculated using fundamental combinations to simulate the limit state of load- 
bearing capacity. Table 3 provides the control load combinations for displace-
ment response. It is explicitly stated that the maximum upward displacement is 
controlled by wind load and temperature load, while the maximum downward 
displacement is controlled by live load and temperature load. The displacement 
response of the structure is primarily influenced by temperature loads. Since the 
value of the live load is greater than the value of the wind load, the displacement 
downward is greater than the displacement upward. 

Furthermore, we conducted calculations for the displacement response, and 
the results are presented in Table 4. The model names indicate the mid-span sag 
and stress level of each model, for example, the 3.5 m-20 model has a mid-span 
sag of 3.5 m and a stress level of 20%. As the load combinations involve two di-
rections, the displacement response of the structure also includes both upward 
and downward movements, which should be within the limit of 436.8 mm. As 
shown in Table 4, increasing the stress level of the model can reduce the dis-
placement response, indicating that enhancing the geometric stiffness of the cables 
improves deformation resistance. Additionally, increasing the mid-span sag  

 
Table 3. Control load combinations of displacement response. 

Number Load combination Number Load combination 

6 1.0DL + 1.0ADL + 1.0TLDN 16 1.0DL + 1.0ADL + 0.6WLUP + 1.0TLDN 

10 1.0DL + 1.0ADL + 0.7LL + 1.0TLUP 17 1.0DL + 1.0ADL + 0.6WLDN + 1.0TLUP 

Note: The dead load (DL) is determined based on material density. The additional dead load (ADL) represents the counterweight 
that is determined through form-finding analysis. The live load (LL) is determined for a non-accessible roof with a value of 0.5 
kN/m2. Wind load (WL) is determined based on the wind tunnel test report, considering the most unfavorable case envelope value 
with a range of ±0.12 kN/m2. Temperature load (TL) is determined based on the local environment, calculated through the closing 
temperature, maximum temperature, and minimum temperature with values of +33˚C and −29˚C. TLUP and TLDN indicate an 
increase or decrease in temperature load, while WLUP and WLDN represent upward and downward wind loads. 
 
Table 4. The results obtained from displacement response. 

Model name 
Maximum  

displacement 
(upward/mm) 

Maximum  
displacement 

(downward/mm) 

Model  
name 

Maximum  
displacement 
(upward/mm) 

Maximum  
displacement 

(downward/mm) 

3.5m-20 −432.35 447.69 7.28m-20 −196.55 207.72 

3.5m-40 −358.16 418.05 7.28m-40 −175.73 191.21 

3.5m-60 −310.78 386.19 7.28m-60 −165.99 187.05 

3.5m-80 −276.05 356.41 7.28m-80 −158.82 184.83 

5.46m-20 −260.35 269.72 10.92m-20 −139.10 146.24 

5.46m-40 −231.86 258.32 10.92m-40 −122.77 133.09 

5.46m-60 −215.05 252.76 10.92m-60 −115.96 126.77 

5.46m-80 −201.45 244.62 10.92m-80 −112.47 123.40 

https://doi.org/10.4236/wjet.2024.122015


J. Y. Chen et al. 
 

 

DOI: 10.4236/wjet.2024.122015 240 World Journal of Engineering and Technology 
 

can also reduce the displacement response, implying a reduction in the ratio of 
displacement change caused by axial deformation of the cables. 

Next, we performed calculations for the stress response. The control load 
combination for stress response is listed in Table 5, and the results are shown in 
Table 6. As displayed in Table 5, the maximum stress is generated by dead load, 
live load, and wind load. The maximum stress is controlled by dead load and live 
load, while the minimum stress level is controlled and generated by wind load 
and temperature load. Since the load combinations involve two directions, the 
stress response of the structure includes both maximum and minimum stress 
levels. The maximum stress level should be less than 100%, and the minimum 
stress level should be higher than the stress level under dead load, which is ap-
proximately 5% to 15%. As depicted in Table 6, for the 20% and 40% stress level 
models, increasing the mid-span sag can reduce stress response. However, for 
the 60% and 80% stress level models, the increase in mid-span sag has a lesser 
effect on stress response. This trend is influenced by two factors. Firstly, an in-
crease in mid-span sag leads to an increase in counterweight, resulting in a 
greater stress response. Secondly, the relationship between load and stress re-
sponse is affected by geometric nonlinearities. With an increase in mid-span sag, 
the ratio of load to stress response is reduced, thereby decreasing stress response. 
The stress level of the model impacts the range between maximum and mini-
mum stress response. Therefore, adjusting the model stress level can satisfy the 
demand for both maximum and minimum stress response and fully utilize the 
cables’ capabilities. 
 

Table 5. Control load combinations for stress response. 

Number Load combination Number Load combination 

10 1.0DL + 1.0ADL + 1.5WLUP + 0.9TLUP 20 1.3DL + 1.3ADL + 1.5LL + 0.9WLDN 

11 1.0DL + 1.0ADL + 0.9WLUP + 1.5TLUP 21 1.35DL + 1.35ADL + 1.05LL 

 
Table 6. The results obtained from stress response. 

Model name Maximum stress level Minimum stress level Model name Maximum stress level Minimum stress level 

3.5m-20 48.98% 8.35% 7.28m-20 40.17% 13.63% 

3.5m-40 70.64% 29.39% 7.28m-40 65.29% 33.20% 

3.5m-60 92.27% 50.26% 7.28m-60 89.83% 52.46% 

3.5m-80 113.98% 70.89% 7.28m-80 114.6% 72.12% 

5.46m-20 43.61% 12.31% 10.92m-20 36.28% 14.69% 

5.46m-40 67.61% 32.19% 10.92m-40 61.80% 33.09% 

5.46m-60 90.94% 51.74% 10.92m-60 88.14% 52.15% 

5.46m-80 114.32% 71.51% 10.92m-80 113.15% 70.32% 
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5. Discussion 

The form-finding process for transversely stiffened suspended cable systems is a 
crucial design process. It involves determining the section, shape, tension dis-
tribution, and counterweight of the system. The complex relationships between 
these parameters make it challenging for designers to adjust them based on the 
structural response. The effectiveness of parameter adjustments largely depends 
on the designer’s experience. Therefore, it is important to establish the range of 
unknown parameters and improve the efficiency of loop parameter control 
through load response analysis. 

Structural verification encompasses strength, stiffness, and stability. The cable 
structure primarily experiences tensile forces and is equipped with transverse 
members to ensure good stability performance. Strength and stiffness criteria are 
verified by examining load responses under different combinations of loads. 
These load combinations are determined based on the structure’s function, ar-
rangement, and working environment. Consequently, it becomes necessary to 
adjust the results obtained from the form-finding analysis using load responses. 

Strength verification includes assessing cable stress, beam stress, and the 
bearing capacity of the support. The bearing capacity of the support determines 
the cable’s maximum tension and section size. Beam stress is influenced by the 
counterweight, similar to that of a multi-span continuous beam. The stress re-
sponse of the cable comprises three components: self-weight, construction ten-
sion, and load response. Taking the 3.5 m drape model as an example (as shown 
in Figure 6), the stress composition of different models reveals minimal varia-
tion in the self-weight and load response parts, whereas the construction tension  
 

 
Figure 6. The plot of maximum stress level versus stress level of sample 3.5 m 
model. 
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part shows significant differences. The cable’s self-weight contributes to ap-
proximately 10% of the stress level, while the stress response under load increas-
es 2 to 4 times more than the decrease. Consequently, during form-finding anal-
ysis, it is suitable to control the stress level of the model within the range of 28% 
to 40% to optimize cable performance. 

Stiffness criteria are verified by examining displacement responses. Due to 
geometric nonlinearities, the relationship between displacement and cable strain 
is nonlinear and influenced by the shape of the cable. Cable strains are partly 
generated by changes in cable stress due to applied loads. By increasing the li-
near elastic stiffness through section area or enhancing geometric stiffness by 
raising the model’s stress level, the stress variation can be reduced, thereby mi-
nimizing displacement response. The other portion of cable strain is caused by 
temperature load, which is determined by the local climate and cannot be al-
tered. Consequently, increasing cable section, stress level, and mid-span sag can 
help reduce displacement response. If enhancing the cable section and stress lev-
el to their limits still fails to meet the structural stiffness requirements, it indi-
cates an unreasonable structural shape, necessitating modifications to the shape 
design. 

6. Conclusion 

In this study, we have developed a form-finding method for transversely stif-
fened suspended cable systems that takes the construction process into account. 
The validity and accuracy of the method have been verified through an actual 
project. The results of the form-finding analysis demonstrate that the maximum 
shape error for each model falls within the range of 0.33% to 0.98%. This indi-
cates that the method can effectively control the self-equilibrium shape with high 
accuracy. Increasing the initial tension leads to a corresponding increase in the 
counterweight, resulting in higher maximum stress levels. The relationship be-
tween loads and stress is influenced by the structure’s shape, and the presence of 
geometric nonlinearities is evident. Load response analysis reveals that the cable 
section and cable tension are primarily governed by strength criteria. It is rec-
ommended to maintain the self-equilibrium stress level within the range of 28% 
to 40% in order to optimize cable performance. It also demonstrates that shape 
control is primarily influenced by stiffness criteria. Increasing the cable section, 
cable tension, and mid-span sag all contribute to reducing displacement re-
sponse. Overall, the method that takes the actual construction process into ac-
count has shown great potential for real-life applications. 
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