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Abstract 
The car-following models are the research basis of traffic flow theory and mi-
croscopic traffic simulation. Among the previous work, the theory-driven mod-
els are dominant, while the data-driven ones are relatively rare. In recent 
years, the related technologies of Intelligent Transportation System (ITS) re- 
presented by the Vehicles to Everything (V2X) technology have been devel-
oping rapidly. Utilizing the related technologies of ITS, the large-scale vehicle 
microscopic trajectory data with high quality can be acquired, which provides 
the research foundation for modeling the car-following behavior based on the 
data-driven methods. According to this point, a data-driven car-following 
model based on the Random Forest (RF) method was constructed in this 
work, and the Next Generation Simulation (NGSIM) dataset was used to 
calibrate and train the constructed model. The Artificial Neural Network 
(ANN) model, GM model, and Full Velocity Difference (FVD) model are em- 
ployed to comparatively verify the proposed model. The research results sug-
gest that the model proposed in this work can accurately describe the car- 
following behavior with better performance under multiple performance in-
dicators. 
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1. Introduction 

The traffic flow theory is the theoretical basis for analyzing the operation me-
chanism of traffic flow under different traffic conditions to effectively organize 
and manage the transportation system. The car-following behavior is the driving 
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behavior that the driver follows the preceding vehicle when he/she cannot change 
lane. As the most basic driving behavior, the modeling study on car-following 
behavior is one of the core research contents of traffic flow theory, and it has re-
ceived extensive attention from researchers from multiple research fields [1] [2]. 
Compared with another common driving behavior model (i.e. the lane-changing 
model [3] [4]), the car-following model describes the longitudinal behavior of 
vehicles in the current lane, which is very common in the restricted overtaking 
section (such as ramp) and the continuous-flow facilities (such as the highway). 
Establishing an effective model is the premise of accurately describing the car 
following behavior. At present, the theory-driven models are dominant in the 
research on car-following behavior [5]. The theory-driven models represented 
by the GM model [6], Gipps model [7], OV model [8], FVD model [9], and ID 
model [10] as well as their extended models [11] [12] [13] [14] [15] have shown 
high performance in the respective research fields. However, the car-following 
behavior is a typical nonlinear and time-varying research object. For this type of 
research object, it is difficult to apply one single theoretical method to construct 
a model that can describe its characteristics with higher accuracy and strong ge-
neralization ability. Comparably, the data-driven method has shown unparalleled 
performance in describing non-linear and time-varying research objects. Dif-
ferent from the theory-driven methods, which have a clear model structure and 
are based on various premises as well as the strict mathematical derivation, the 
data-driven methods are based on data to establish a description method of the 
research object by exploring the internal connections of the data. Data-driven 
methods are not sensitive to prior knowledge and theoretical assumptions but 
are very sensitive to the quality of data. In other words, the availability of high- 
quality data directly determines whether an effective and accurate model can be 
constructed using data-driven methods. In recent years, the ITS-related tech-
nologies have been rapidly developing and popularizing, of which the core fea-
ture is informatization. In ITS, using the high-altitude or overhead image acqui-
sition system, global positioning system, smartphone, vehicle-mounted sensors, 
roadside sensors, and other V2X equipment, traffic managers and researchers 
can obtain high-precision and large-scale vehicle trajectory data, which provides 
the basis of modeling the car-following behavior based on the data-driven me-
thods. The existing car-following models based on the data-driven methods main-
ly focus on the fuzzy logic method [16] [17] [18], the ANN method [19] [20] 
[21] [22], and the combination of these two methods [23]. In the fuzzy logic 
method, it is difficult to construct the fuzzy sets and the corresponding mem-
bership functions. And in the ANN method, the structure is relatively complex 
and the train requires high-performance computing resources. In contrast, as a 
typical integrated machine learning method, the RF [24] has shown very high per-
formance in many fields [25] [26] [27] [28]. 

Based on this, a car-following model based on the RF is constructed employ-
ing high-precision, high-refresh-rate, and large-scale vehicle trajectory data by 
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exploring the internal connections of the data in this work to achieve an accurate 
description of the car-following behavior. The main contents are: in Section 2, 
the model is proposed; in Section 3, the training and verification of the model are 
carried out; and in Section 4, the conclusion is given. 

2. Model 

The RF is a parallel ensemble learning algorithm based on the Bagging ensemble 
learning theory [29] and the random subspace method [30], of which the basic 
learner is the Classification and Regression Tree (CART). The basic structure of 
RF is as shown in Figure 1. 

From Figure 1, we can obtain that the core characteristics of the RF method 
are “random” and “parallel”. The “random” gives the RF method the perfor-
mance with high prediction accuracy and strong generalization ability, and the 
“parallel” gives the method the high training and working efficiency. The “ran-
dom” of the RF method is reflected in two aspects: the randomness of the sample 
and the randomness of the attributes of the sample. The “parallel” of the RF 
method is embodied in that one can train all the T decision trees contained in 
the RF at the same time, thereby greatly improving the efficiency of training and 
working. 

The training process of the RF method is as shown in Figure 2. 
As shown in Figure 2, in the RF method, when the data set is input, it selects 

the input data set according to the Bagging theory, and randomly extracts the 
sample set. For the m data in the input data set, the probability P of each data 
not being selected is: 

( )1 1 mP m= −                          (1) 

Taking the limit of Equation (1), one can obtain 
 

 
Figure 1. Basic structure of the RF method. 
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Figure 2. Training process of the RF method. 

 

1lim 0.368
m

P
e→∞

→ ≈                        (2) 

From Equation (2), we can see that 63.2% of the data is randomly selected 
from the input data set for the training of one of the decision trees in each round 
of sampling, which is the sample randomness mentioned above. For ensemble 
learning, the stronger the independence of the basic learners it contains, the bet-
ter the performance of the assembled learner. It is almost impossible to construct 
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completely independent basic learners, and the random extraction principle of 
the Bagging theory guarantees the relative independence of the basic learners to 
the greatest extent, referring to the Equation (1) and (2). 

When applying the RF method, there are points that need to be determined: 
1) Input of the model; 
2) Number of attributes in the split attribute set; 
3) Impurity function; 
4) Size of the forest. 
The process of training the RF method is the process of training the decision 

tree it contains. The core of this process is how to segment features. Given the 
relatively low number of features involved in this study, the exhaustive method 
is adopted, which traverses all the values of each feature to find the optimal seg-
mentation. The impurity is used to evaluate the optimal degree of segmentation. 
For each child node, the calculation method of impurity [31] is 

( ) ( ) ( ), left right
i ij left right

s s

n n
G x u H X H X

N N
= +               (3) 

where ix  is the segmentation variable, ijy  is a segmentation value of the seg-
mentation variable, leftn  and rightn  respectively are the number of training sam-
ples of the left and right child nodes after segmentation, sN  is the number of 
training samples of the current node, leftX  and rightX  respectively are the train-
ing sample sets of the left and right child nodes, and ( )H X  is the impurity 
function. The commonly used impurity functions are shown in Table 1. 

The first two impurity functions are suitable for the classification problem, 
while the latter two impurity functions are suitable for the regression problem. 

Based on the characteristics of the RF method and considering the characteris-
tics of the research object car-following behavior, the structure of the RF-based 
car-following model constructed in this research is as shown in Figure 3. 

 
Table 1. Optional impurity function in the RF method. 

Impurity Function Equations 

Gini Impurity ( ) ( )1m mk mk
k

H X p p= −∑
 

Information Entropy ( ) ( )logm mk mk
k

H X p p= −∑
 

Mean Square Error ( ) ( )21
m

m m
i Nm

H X y y
N ∈

= −∑
 

Absolute Mean Error ( ) ( )21
m

m m
i Nm

H X y y
N ∈

= −∑
 

 

 
Figure 3. Structure RF-based car-following model. 

https://doi.org/10.4236/wjet.2021.93033


H. L. Shi et al. 
 

 

DOI: 10.4236/wjet.2021.93033 508 World Journal of Engineering and Technology 
 

In the model, the input is the velocity ( )v t  of the object vehicle at the cur-
rent moment t, the headway ( )x t∆  between the object vehicle and its preced-
ing vehicle at the current moment t, the relative velocity ( )v t∆  between the 
object vehicle and its preceding vehicle at the current moment t, and the output 
is the acceleration ( )1a t +  of the object vehicle at the next moment 1t + . And 
the impurity function ( )H X  employed in this work is 

( ) ( )1

m
m m

i Nm

H X y y
N ∈

= −∑                     (4) 

Then the training process for a certain node in the RF is equivalent to the fol-
lowing optimization problem 

( ) ( )* *
,, arg min ,x y i ijx u G x u=                   (5) 

Substituting Equation (4) into Equation (5), we can obtain 

( ) ( ) ( )2 21,
i left i right

i left i right
y X y Xs

G x u y y y y
N ∈ ∈

 
= − + −  

 
∑ ∑          (6) 

Equation (6) is the solution method of each node in the RF-based car-following 
model constructed in this research. 

The size of the forest is determined by the iterative method during the train-
ing process, and the detailed information about this is given in Section 3. 

3. Calibration and Training 
3.1. Data Preprocessing 

The effectiveness and accuracy of the data-driven model depend on the quality 
of the training data. The US101 dataset provided by the NGSIM project initiated 
by the Federal Highway Administration is utilized to complete the training and 
verification of the proposed model. The NGSIM project aims to provide 
high-precision vehicle trajectory data required for research in the transportation 
field. It has the characteristics of abundant data, complete objects, high accuracy, 
and acquisition frequency of 0.1 s/time, and it is widely used in car-following 
behaviors and other research fields. The validity of this data set has been widely 
recognized. However, the total amount of the data set is abundant, and many 
data are not suitable for this research. The preprocess needs to be carried out. 

The NGSIM project implemented vehicle trajectory data collection on differ-
ent road sections in December 2003, April 2005, and June 2005. The US101 data 
set employed in this work was collected on Hollywood Expressway (No. US-101) 
in June 2005, and the lane setting of the data collection section is as shown in 
Figure 4. 

The US101 data set contains microscopic car-following trajectory data such as 
the position, velocity, and acceleration of 6101 different types of vehicles. The 
specific data fields include Vehicle ID, Frame ID, Total Frames, Global Time, 
Local X, Local Y, Global X, Global Y, Vehicle Length, Vehicle Width, Vehicle 
Class, Vehicle Velocity, Vehicle Acceleration, Lane Identification, Preceding Ve-
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hicle, Following Vehicle, Spacing, and Headway. For the usage in this work, the 
above data fields contain redundant ones, specifically: Local X, Local Y, Global 
X, Global Y, Vehicle Length, Vehicle Width, Vehicle Class, Vehicle Acceleration, 
and Following Vehicle. 

Although the US101 data set contains large-scale car-following trajectory data 
up to 6101, it cannot be directly used for the l training and verification of the 
constructed model. The preprocess needs to be carried out, and the detailed process 
is as shown in Figure 5. 

 

 
Figure 4. Lane setting of the US101 road section. 

 

 
Figure 5. Preprocess process of the data set. 

https://doi.org/10.4236/wjet.2021.93033


H. L. Shi et al. 
 

 

DOI: 10.4236/wjet.2021.93033 510 World Journal of Engineering and Technology 
 

By traversing and processing all the items included in the US101 data set one 
by one according to the process shown in Figure 5, a data set containing 2152 
groups of car-following trajectory data suitable for this study is obtained. 70% of 
them (1506 groups in total) are randomly selected as the training set, and the 
remaining 30% (646 groups in total) is used as the validation set. 

3.2. Model Calibration and Training 

Input the training set into the RF-based car-following model, and the model is 
trained based on this. In the training of the model, the size of the trees contained 
in the RF has a significant impact on the training quality. Among the previous 
research and application, there are no certain rules for setting the size of the 
trees. The common processing method is to rely on expert experience to set the 
initial value and repeat the process of testing, adjusting parameters and retesting, 
and finally get the optimal setting value, which is the so-called iterative method. 
Based on the iterative method, the size of the trees is set as a value in a given in-
terval, and the optimal value of the parameter is determined by examining the 
prediction error of the model under the corresponding value. Considering the 
scale of the data set and the features used in the research, the interval is set as 
[ ]10,210 , and the size of the trees is set as treeS . Then we can obtain  

10,11,12, , 209,210treeS =  . 
The corresponding error under different values of treeS  is as shown in Figure 6. 
From Figure 6, one can obtain that with the increase of treeS , the error is 

considerably decreased when treeS  is less than 100. The error decreased slightly 
with the increase of treeS , and there are also some fluctuates of the error, when 

treeS  is more than 110. Considering that more consumption of computing re-
sources with the increase of treeS  and the amount of error reduction caused by  

 

 
Figure 6. Errors under different values of treeS . 
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this increase in the unit is becoming less and less significant, the treeS  in the 
proposed model is set as 110. Based on this, the training of the model is con-
ducted. 

4. Verification and Discussion 

To verify the validity and accuracy of the RF-based car-following model con-
structed in this research, the performance of the model is evaluated utilizing the 
verification set. Then, the representative data-driven model (the one based on 
the ANN) and theory-driven models (the GM model and the FVD model) are 
employed to compare with and verify the proposed model with the same data set 
(the verification set). Before the verification, the training or the calibration of the 
above models are carried out according to the previous research: the aforemen-
tioned ( )v t , ( )x t∆  as well as ( )v t∆  are set as the input of the ANN model 
and the Genetic Algorithm is employed to calibrate parameters in the GM model 
and the FVD model. After the training or the calibration of these models, the ve-
rification set is used to evaluate the performance of the proposed model in this 
work. The Mean Error (ME), Mean Absolute Error (MAE), Mean Absolute Rel-
ative Error (MARE) and Root Mean Squared Error (RMSE) are employed as the 
evaluation indicators, and the equations of these indicators are 

( )
1

1ME
N

ci mi
i

d d
N =

= −∑                      (7) 

1

1MAE
N

ci mi
i

d d
N =

= −∑                      (8) 

1

1MARE
N

ci mi

i ci

d d
N d=

−
= ∑                     (9) 

( )2

1

1RMSE
N

ci mi
i

d d
N =

= −∑                   (10) 

where N is the total amount of data, cid  is the output value of the i-th object 
vehicle, and mid  is the measured value of the i-th object vehicle. 

The above evaluation indicators are used to evaluate the performance of the 
proposed model in this work and the models employed to compare with the pro-
posed model. The evaluation results are as shown in Table 2. 

The ME refers to the arithmetic mean of the errors of all output values relative  
 

Table 2. Evaluation results of the models. 

Evaluation  
Indicators 

Model 
ME MAE MARE RMSE 

RF-Based Model 0.1673 1.5746 0.4356 1.0753 

ANN Model 0.1952 1.7853 1.9174 1.1346 

GM Model 1.1712 3.2715 2.6371 1.2174 

FVD Model 1.1548 3.0187 2.5986 1.1949 
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to the measured ones, which reflects the average deviation between the output 
value and the measured value. The MAE further introduces the absolute value to 
avoid the problem of inaccurate evaluation caused by the offset of the positive 
and negative ones. The RMSE index is very sensitive to extra large and small 
values, and thus it can reflect the obvious degree of the deviation between the 
output value and the measured value. ME, MAE, RMSE reflect the degree of the 
error, while MARE reflects the proportion of the error in the samples. From Ta-
ble 2, we can see that the four models show considerably different performances 
with the same data set. Among these models, the performance of the model pro-
posed in this work is better than the others. According to the evaluation indica-
tors, the performance improvement range of the model proposed in this work is 
up to 85.716% and can maintain 5.227% at the lowest level. In addition, the fit 
degree of the two data-driven models to the measured data is significantly better 
than that of the two theory-driven models. Among the data-driven models, com-
pared with the ANN model commonly used in previous research, the performance 
improvement of the model proposed in this work can reach up to 77.282%. Among 
the theory-driven models, the FVD model, in which more factors are considered, 
shows better performance than the GM model. This is consistent with the research 
consensus in the field of modeling car-following behavior, which verifies the va-
lidity and reliability of the employed evaluation system. Compared with the FVD 
model, the performance improvement of the model proposed in this work is up 
to 85.513%, and the value can reach up to 85.716% when compared with the GM 
model. Even considering the lowest improvement range, the value is 11.672% 
when compared with the FVD model, and that is 10.009% when compared with 
the GM model. 

5. Conclusion 

The theory-driven car-following behavior model still has shortcomings in terms 
of prediction accuracy and generalization ability. The application of the ITS faci-
litates the collection of large-scale, high-quality vehicle trajectory data, which is 
the research foundation for the car-following models based on data-driven me-
thods. In this work, a data-driven car-following model was constructed based on 
the RF method, and the NGSIM data set was used to train and verify the model. 
The results show that compared with the data-driven model and theory-driven 
models that are widely used in the previous research, the model proposed in this 
work has better performance represented by four typical evaluation indicators, 
which verified the validity and accuracy of the model. Compared with typical 
data-driven methods, such as the ANN method, the RF method employed in this 
work not only has better prediction accuracy, but also has the advantages of low 
computational power consumption and extensive trial range. It is not required for 
the RF method to achieve excellent training performance with a high-performance 
GPU. With the appropriate data set, the RF method can theoretically be suitable 
for solving a considerable part of scientific issues, including regression and clas-
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sification issues. This maps to the car-following behavior and the lane-change 
behavior, when talking about the traffic flow theory. The application efficiency 
of random forest method in other traffic flow theories, other than car-following 
behavior and even broader fields is worthy of further exploration. 
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