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Abstract 
To achieve the monitor of rock burst in coal mine with fiber Bragg grating 
(FBG) sensing, the coupling mechanism between FBG and shock waves was 
theoretically analyzed. Based on Housner’s random shock model, the coupl-
ing mechanism between shock waves and FBG was theoretically analyzed. 
The result shows that the wave will change the period Ʌ and effective refrac-
tive index n of FBG, and further affect the initial wavelength value. The am-
plitude, phase and frequency of shock wave are directly related to the wave-
length drifts of FBG. The transmitting velocity of shock wave in rock is af-
fected by lithologic characteristics. The Elastic modulus, density and Pois-
son’s ratio of rock influence the initial wavelength value of FBG. This study 
provided a theoretical basis and practical application guidance for coal or 
rock burst monitoring with FBG sensing. 
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1. Introduction 

With mining depth of China increasing gradually, the occurrence rate of rock 
burst also increases [1] [2]. The study of mechanism and prevention of rock 
burst have always been the focus in the field of mining engineering [3] [4] [5] 
[6]. Rock burst is often accompanied with strong mine earthquake [7] [8] [9], 
which transmits in coal and rock in the form of seismic waves with random 
energy. The energy level of shock waves is closely related to the occurrence of 
rock burst, and the higher the level of waves energy is, the greater the possibility 
of rock burst is. Thus, it becomes an important means to monitor earthquake 
waves for rock burst warning [10] [11] [12]. The following methods are often 
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used: micro seismic, acoustic emission, electromagnetic radiation, etc. Jiang 
Fuxing et al. [13] developed the explosion-proof microseismic positioning mon-
itoring system and carried it out in field application, which proved its feasibility 
in coal mine. Pan Yishan et al. [14] developed a monitoring and positioning sys-
tem with kilometer-scale for breaking mine earthquake and analyzed the loca-
tion of mine earthquake by picking up the vibration wave signals. The monitor 
was consistent with the earthquakes, which provided bases for mine disaster re-
lief and loss reduction. Xie et al. [15] monitored the parameters of rock burst 
through acoustic emission, and obtained that the spatial distribution of micro-
seismic events had fractal characteristics. Li Yuanhui et al. [16] studied the vari-
ation of AE b and fractal dimension of spatial distribution under different stress 
levels in the process of rock fracture by acoustic emission, which improved the 
stability of stress monitoring of rock. Wang Enyuan et al. [17] [18] widely ap-
plied electromagnetic radiation technology in coal and rock dynamic disaster 
monitoring and early warning by studying electromagnetic radiation instru-
ment. However, due to complex underground conditions, numerous large elec-
trical equipments, serious electromagnetic interference, and the influence of wa-
ter and gas, some of the above monitoring methods are invalid. 

FBG is a kind of high-precision monitoring sensor sensing with wavelength 
drifts. Due to the merits of small size, anti-electromagnetic interference, corro-
sion resistance and so on, it has been widely used in many fields. Relevant re-
searches show that the transmission process of shock waves after earthquake can 
be monitored by FBG. Peng Baojin et al. [19], based on tilted grating filter de-
modulation, studied a FBG microstrain sensing system, and the accuracy 
reached 0.009 με. Wu Jianhui et al. [20], based on FBG sensing, set up a moni-
toring system of seismic wave with sensitivity of 0.54 pm/ms2. Because both 
earthquake and rock burst origin from sudden release of energy under high 
compressive stress concentration in rock, the shock waves generated are similar. 
Therefore, it is feasible to monitor rock burst of coal mine through FBG. Wang 
Jianda et al. [21] applied FBG sensing to underground coal mines, and devel-
oped early dynamic warning technology of rock burst as the early warning in-
dexes of monitoring system of mining stress and stress gradient. Zhang Ningbo 
et al. [22] developed a multi-point stress and displacement monitoring system 
based on FBG sensing. Through experiments and engineering practice, the ap-
plicability of the system for rock burst in roadway was verified. Ginu Rajan et al. 
[23] adopted a high-frequency FBG testing system to monitor the high-frequency 
AE signals from stress-induced crack of rock samples with different shapes un-
der compression load, and obtained the AE events consistent with the experi-
ment, which revealed that high-frequency FBG can be used as a new technology 
for rock vibration monitoring. Gong H et al. [24] established a roof stability 
monitoring system in underground coal mine with FBG sensors, which verified 
the accuracy of FBG sensor in monitoring the strain of rock compression. Lau-
dati et al. [25] designed a FBG triaxial acceleration sensor, and by measuring the 
axial deformation generated by dynamic acceleration of the fixture foundation, 

https://doi.org/10.4236/wjet.2020.84057


S. M. Wei et al. 
 

 

DOI: 10.4236/wjet.2020.84057 786 World Journal of Engineering and Technology 
 

the lowest response frequency reached 0.1 Hz, providing a technical tool for un-
derground microseismic monitoring. 

In general, the study of rock burst monitoring with FBG sensing is still in de-
velopment, and it is only achieved to receive the dynamic signal of rock burst. 
However, the research on mechanism of FBG sensing for rock burst, especially 
the transmission characteristics and influencing factors of shock waves in dif-
ferent rock are not involved. 

In this paper, based on the transmission characteristics of shock waves and the 
sensing principle of FBG, the coupling mechanism between the waves and FBG 
was studied. The purpose of study is to realize the monitor of rock burst in coal 
mine with FBG sensing, and get the factors affecting the monitoring accuracy. 

2. Mechanism of Lithologic Characteristics for Shock Wave  
Monitoring of Rock Burst with FBG Sensing 

2.1. Coupling Mechanism between Shock Waves and FBG 

According to Housner’s theory of random vibration [26], the ground motion 
was regarded as the superposition of randomly arriving pulses of a certain size: 

( ) ( )
( )

1

N t

k
k

t t tα ηδ
=

= −∑                       (1) 

where η  is a constant, ( )N t  is the total number of pulses arriving between 
[0, T], kt  is the random time of pulse arrival. 

R. H. Scanlan and K. Sachs proposed to use Fourier series to simulate ground 
motion time history [27]: 

( ) ( )
( )

1
cos

N t

k k k
k

t A tα ω φ
=

= −∑                    (2) 

where kA  is the amplitude spectrum value of the vibration time history; kφ  is 
the phase spectrum value of the vibration time history; kω  is the frequency. 

The sensing principle of FBG was analyzed and deduced based on coupled 
mode theory. By solving the wave equation with Maxwell’s theory, the expres-
sion of wavelength of FBG was [28]: 

( )2B eff effn nλ = + ∆ Λ                       (3) 

where Bλ  is the FBG reflected center wavelength, effn  and Ʌ are the effective 
refractive index and grating period of the fiber core, respectively. 

As shown in Figure 1, shock waves effect on FBG will change the period of 
the fiber core. 

In combination with Equations (2) and (3), the changed refractive index pe-
riod is [29]: 

( )
( )

1
1 cos

N t

k k k
k

A tγ ω φ
=

 
′Λ = Λ + − 

 
∑                 (4) 

where, γ  is the coupling coefficient of random shock wave coupled with FBG. 
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Figure 1. Coupling course between vibration shock wave and FBG. 

 
From Equation (4), it can be obtained that when the random vibration wave is 

coupled with the fiber grating, the refractive index period of the original fiber 
grating will be redistributed. 

Substitute ′Λ  into the central wavelength energy Formula (3): 

( ) ( )
( )

1
2 2 1 cos

N t

B eff eff eff k k k
k

n n n A tλ γ ω φ
=

 
′= + ∆ Λ ≈ Λ + − 

 
∑        (5) 

According to Equation (5), when shock waves of rock burst are monitored by 
the FBG sensor, the waves will be coupled with the FBG, and the initial wave-
length of the FBG will be changed. 

2.2. Analysis of Influence Mechanism of Lithologic Characteristics 

According to Newton’s law and Hooke’s law, the rock generates volume and 
shape deformation under external forces. Two deformation spread in coal and 
rock by P and S wave. The movement direction of the P-wave is the same to the 
spreading direction, while the S-wave is perpendicular to the spreading direc-
tion. 

The velocities PV  of P-wave and sV  of S-wave can be respectively expressed 
as following [30]: 

( )
( )( )

12
1 1 2p

E
V

υλ µ
ρ ρ υ υ

−+
= =

+ −
               (6) 

( )2 1s
EV µ

ρ ρ υ
= =

+
                    (7) 

where λ  and µ  are Lamé Constants, E is the Elastic modulus, and υ is Pois-

son’s ratio. 
( )( )2 1 1 2

Eνλ
ν ν

=
+ −

, 
( )2 1

Eµ
ν

=
+

. 

When the vibration wave spreads, the relation between wavelength and wave 
velocity is expressed as following: 
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k k kV λ ω=                          (8) 

where kV  is wave speed, and kλ  is wavelength. 
By comprehensive analysis of waveguide and elastic-optic effect, sensitivity of 

FBG under uniform transverse stress is smaller than longitudinal [31]. However, 
the phase difference of shock waves makes the transverse stress on FBG not uni-
form, and this results in axial strain improvement of sensitivity. Moreover, the 
attenuation speed of P-wave is faster than S-wave, and the amplitude of S-wave 
is larger than P-wave. Therefore, only the influence of transverse wave on FBG is 
considerable. Put Equations (7) and (8) into (5), it can be gotten as following: 

( )
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1 2
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B eff k k
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E tn Aλ γ φ
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= Λ + −   +   

∑         (9) 

In order to study the influence of lithology characteristics on FBG monitoring 
shock wave, one random shock wave was taken for analysis, it meant that as-
suming k = 1 in Equation (9). Assume 0kφ = , and then get: 

( )
22 1 cos
1 2B eff

E tn Aλ γ
ρ υ λ

  
= Λ +   +   

             (10) 

According to Equation (10), when shock waves are monitored by FBG, the 
Elastic modulus, density, Poisson’s ratio and other parameters of rock will affect 
its initial wavelength. That also means that when shock waves with same para-
meters spreads in different rock, the wavelength drifts are different, and the in-
fluence is in the form of cosine, as shown in Figure 2. 

3. Conclusions 

According to the analysis of the coupling mechanism between FBG and shock 
waves, the factors influencing initial wavelength of FBG are obtained, and the 
conclusions are as follows: 
 The shock wave has coupling effect with FBG which will change its grating 

period and effective refractive index, thus finally affecting its initial wave-
length. The amplitude, phase and frequency of the shock wave will directly 
affect the wavelength of FBG. 

 

 
Figure 2. Relationship between lithologic parameters of rock and initial wavelength of 
FBG. 
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 When shock waves with the same parameters in different rocks are moni-
tored by FBG, the wavelength will be affected by the lithological characteris-
tic parameter I, and has a cosine correlation with it. Therefore, as long as the 
rock mechanics parameters are obtained, the degree of influence of the litho-
logical characteristics on the FBG monitoring can be obtained. This provides 
an important theoretical basis for coal or rock burst monitoring with FBG 
sensing, and can promote the application of optical test method for coal mine 
dynamic disaster. 
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