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Abstract 
The bifacial silicon solar cell, placed at temperature (T) and illuminated from 
the back side by monochromatic light in frequency modulation (ω), is studied 
from the frequency dynamic diffusion equation, relative to the density of 
excess minority carriers in the base. The expressions of the dynamic recom-
bination velocities of the minority carriers on the rear side of the base 
Sb1(D(ω, T); H) and Sb2(α, D(ω, T); H), are analyzed as a function of the 
dynamic diffusion coefficient (D(ω, T)), the absorption coefficient (α(λ)) and 
the thickness of the base (H). Thus their graphic representation makes it 
possible to go up, to the base optimum thickness (Hopt(ω, T)), for different 
temperature values and frequency ranges of modulation of monochromatic 
light, of strong penetration. The base optimum thickness (Hopt(ω, T)) de-
creases with temperature, regardless of the frequency range and allows the 
realization of the solar cell with few material (Si).  
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1. Introduction 

This work aims to determine the optimum thickness of the base [1] [2] [3] of the 
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bifacial silicon solar cell (n+/p/p+) [4] [5] [6] [7] [8]. The base (p) of the bifacial 
silicon solar cell (n+/p/p+) maintained at temperature (T), is studied under mo-
nochromatic illumination (λ) in frequency modulation (ω).  

The monochromatic light chosen, induces an absorption coefficient (α(λ) = 
6.02 cm−1) [9] [10] and penetrates deep into the silicon material. The frequency 
dynamic diffusion equation relating to the density of the excess charge minority 
carriers in the base of the solar cell is solved. The boundaries of this zone, which 
are the junction (n+/p) in x = 0 and the rear face (p/p+) in x = H, impose condi-
tions that use the recombination velocities of minority carriers, respectively (Sf) 
[11] [12] [13] [14] [15] and (Sb) [16]-[24]. Taking into account the dynamic 
diffusion coefficient (D(ω, T)) related to the temperature (T) [25] [26] [27] and 
the frequency (ω) of modulation [28]-[33], as well as the recombination veloci-
ties (Sf) at the junction and (Sb) at the rear side, the expression of the dynamic 
photocurrent density of the minority charge carriers Jph(Sf, Sb, α, H, D(ω, T)) is 
established and represented graphically as a function of (Sf), for different tem-
peratures and frequency zones.  

From this representation, the expressions Sb(α, H, D(ω, T)) and Sb(H, D(ω, 
T)) of the dynamic rate of recombination of the minority charge carriers on the 
rear side of the base, are deduced. The graphic technique of representation 
[34]-[44] of these expressions as a function of the base thickness (H), makes it 
possible to determine the optimum thickness (Hopt), for given temperature val-
ues and for different frequency zones. The optimum thickness (Hopt(T)) is 
represented by curves as function of temperature, for each frequency range stu-
died. 

The modeling analysis of these curves, through the effects of temperature 
(thermal agitation), frequency (relaxation time) and a low absorption coefficient 
(deep penetration), shows the possibility of developing the bifacial solar cell by a 
reduction in thickness, according to the conditions of use while producing an 
optimal photocurrent. 

2. Theory  

The structure of the n+-p-p+ bifacial silicon solar cell at (T) temperature and 
back illuminated with monochromatic light in frequency, is represented by Fig-
ure 1. 
 

 

Figure 1. Schematic drawing of bifacial solar cell structure AC back illuminated. 
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The excess minority carriers’ density δ(x, t) generated in the base of the solar 
cell, under monochromatic illumination, is governed by the following continuity 
equation [31] [32] [33]: 

( ) ( ) ( ) ( ) ( )2

2

, , ,
, , ,

x t x t x t
D T G x t

tx
δ δ δ

ω ω
τ

∂ ∂
× − = − +
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         (1) 

The expression of the excess minority carriers’ density is written, according to 
the space coordinates (x) and the time t, as: 

( ) ( ), e j tx t x ωδ δ −= ⋅                         (2) 

Ac Carrier generation rate G(x, t) is given by the relationship: 

( ) ( ), e j tG x t g x ω−= ⋅                         (3) 

With: 

( ) ( ) ( ) ( )( ) ( ) ( )
0 1 e H xg x I R α λα λ λ λ − ⋅ −= ⋅ ⋅ − ⋅                (4) 

I0 is the incident photon flux on the rear (p+), at the solar cell base depth (x = 
H), while α(λ) and R(λ) are respectively the optical [9] [10] absorption and ref-
lection coefficients of Si material D(ω, t) is the complex diffusion coefficient of 
excess minority carrier in the base under T temperature. Its expression is given 
by the relationship [22] [23] [31] [32] [33]:  
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                  (5) 

D(T) is the temperature-dependent diffusion coefficient given by Einstein’s 
relationship  

( ) ( ) bT K T
D T

q
µ ⋅ ⋅

=                        (6) 

T is the temperature in Kelvin, Kb is the Boltzmann constant: 
23 2 1 11.38 10 m Kg S KbK − − −= × ⋅ ⋅ ⋅  

The mobility coefficient [25] [26] [45] for electrons µ(T), is expressed accord-
ing to the temperature and is given by:  

( ) 19 2.421.43 10T Tµ −= ×                       (7) 

By replacing Equations (2) and (3) in Equation (1), the continuity equation 
for the excess minority carriers’ density in the base is reduced to the following 
relationship: 
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L(ω, T) is the complex diffusion length of excess minority carriers’ in the base 
given by: 
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,
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The solution is expressed as following: 

( ) ( ) ( )
( ) ( ), , , cosh sinh e

, ,
H xx xx T A B K

L T L T
α λδ λ ω

ω ω
− ⋅ −   

= ⋅ + ⋅ + ⋅   
      

  (10) 
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Coefficients A and B are determined through the boundary conditions: 
 At the junction (x = 0) 
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 On the back side in the base (x = H)  
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(Sf) and (Sb) are respectively the recombination velocities of the excess mi-
nority carriers [46] at the junction and at the back surface. The recombination 
velocity Sf is imposed by the external load which fixes the solar cell operating 
point [11] [12] [47] [48] [49] [50]. At low value, it becomes intrinsic component 
which represents the carrier losses associated with the shunt resistor in the solar 
cell electrical equivalent model under open circuit operation [7] [15] [50]. The 
minority carrier recombination velocity (Sb) on the back surface is the conse-
quence of the electric field created by the junction (p/p+) which rejects the carri-
er toward the junction (n+/p) [51] [52].  

3. Results and Discussions  
3.1. Ac Diffusion Coefficient and Frequency Domains 

Previous works [18] [19] [29] [30] [53] [54] [55] have shown that the dynamic 
diffusion coefficient of minority carriers in the base of the solar cell is of con-
stant amplitude at low frequencies (steady state: ω < ωc, ωc is the cut-off fre-
quency) and it decreases at high frequencies (dynamic regime: ω < ωc). The am-
plitude of the diffusion coefficient of minority carriers decreases very rapidly 
with frequency. The higher the frequency, the lower the relaxation time of the 
minority carriers, then this produces as a consequence a greater probability of 
recombination of minority carriers, hence the drastic decrease of the diffusion 
coefficient, which corresponds to the third frequency interval. For the rest of the 
study, three frequencies from these intervals will be taken into account. 

3.2. Photocurrent 

Ac photocurrent density at the junction is obtained from ac minority carriers’ 
density in the base and δ(x, Sf, Sb, H, ω, T, α(λ)) is given by the following ex-
pression: 
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where q is the elementary electron charge. 
Figures 2-4 show ac photocurrent versus junction surface recombination ve-

locity respectively, for different frequency values (ω = 103 rad∙s−1, ω = 105 rad∙s−1, 
ω = 106 rad∙s−1). 
 

 

Figure 2. Module of Ac photocurrent density versus junction recombination velocity for 
different diffusion coefficient values (ω = 103 rad∙s−1; α = 6.2 cm−1). 
 

 

Figure 3. Module of ac photocurrent density versus junction recombination velocity for 
different diffusion coefficient values (ω = 105 rad∙s−1; α = 6.2 cm−1). 
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Figure 4. Module of ac photocurrent density versus junction recombination velocity for 
different diffusion coefficient values (ω = 106 rad∙s−1; α = 6.2 cm−1). 
 

The amplitude of the density of the dynamic photocurrent (Jph), as function of 
the recombination rate (Sf) at the junction, for different temperature values, is 
represented by the Figures 2-4, corresponding to the three frequency domains, 
shows three zones. At low values of (Sf), the amplitude of the photocurrent den-
sity is zero, regardless of temperature, for the three frequency domains and cor-
responds to the open circuit operation of the solar cell. The amplitude of the 
photocurrent density increases rapidly with (Sf), and reaches an asymptotic val-
ue corresponding to the short-circuit operation of the solar cell. The amplitude 
of the short-circuit photocurrent density (Jph,sc) decreases with temperature and 
frequency. Indeed, the density profile of minority carriers at depth in the base of 
the short-circuited solar cell is modified with temperature (amplitude reduction) 
[56] and with frequency (by reducing the relaxation time) [18] [19] [20] [21] 
[29] [30] as suggested throughout Equations (5), (6) and (9). 

3.3. Back Surface Recombination Velocity Determination and  
Base Thickness Optimization with Both, Temperature and  
Frequency 

The plot of ac photocurrent density amplitude versus minority carriers’ recom-
bination velocity at the junction shows a bearing sets up, for very large Sf, and 
corresponds to short-circuit current density (Jphsc). Then in this zone, we can 
write [12] [13] [14] [55]:  

( )( )
5 110 cm s

, , , , ,
0ph

Sf

J Sf Sb H T
Sf
ω α λ

−≥ ⋅

∂
=

∂
            (15) 

The solution of Equation (15) leads to the ac recombination velocity in the 
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back surface expressions given by Equations (16) and (17): 
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Figures 5-7 representation two expressions of back surface recombination 
velocity versus solar cell base thickness, for different temperature values, respec-
tively in the three frequency domains. Tables 1-3, give the results obtained, for 
the solar cell base optimum thickness again temperature, in the three frequency 
domains. 

The optimum thickness is extracted from Figure 4, Figure 5 and Figure 9 for 
given temperatures and for the three frequency domains. The results are pre-
sented in the Tables 1-3. 

Deduced from Tables 1-3, Figure 8 and Figure 9 are respectively the plots of 
Hopt again temperature and diffusion coefficient for frequency domains. 
 

 

Figure 5. Sb1 and Sb2 versus base thickness for different values of the temperature (ω = 
103 rad∙s−1; α = 6.2 cm−1). 
 
Table 1. Optimum thickness obtained, for different temperatures and for the frequency 
range (ω = 103 rad∙s−1). 

T (K) 200 215 230 250 265 280 300 315 

D (cm2/s) 66.65 60.14 54.65 48.55 44.69 41.33 37.48 34.97 

Hop (cm) 0.0108 0.0104 0.0101 0.0098 0.0094 0.0092 0.0089 0.0086 
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Figure 6. Sb1 and Sb2 versus base thickness for different values of the temperature (ω = 
105 rad∙s−1; α = 6.2 cm−1). 
 

 

Figure 7. Sb1 and Sb2 versus base thickness for different values of the temperature (ω = 
106 rad∙s−1; α = 6.2 cm−1). 
 
Table 2. Optimum thickness obtained, for different temperatures and for the frequency 
range (ω = 105 rad∙s−1). 

T (K) 200 215 230 250 265 280 300 315 

D (cm2/s) 33.3278 30.0751 27.3285 24.2770 22.3491 20.6683 18.7395 17.4851 

Hop (cm) 0.0089 0.0086 0.0083 0.0080 0.0078 0.0076 0.0074 0.0072 
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Figure 8. Optimum thickness versus temperature for different frequency values. 
 

 

Figure 9. Optimum thickness versus diffusion coefficient for different frequency values. 
 
Table 3. Optimum thickness obtained, for different temperatures and for the frequency 
range (ω = 106 rad∙s−1). 

T (K) 200 215 230 250 265 280 300 315 

D(cm2/s) 6.63 5.98 5.44 4.83 4.45 4.11 3.73 3.48 

Hop (cm) 0.0072 0.007 0.0068 0.0066 0.0065 0.0064 0.0063 0.0062 

4. Discussions 

The modeling of the curves gave the mathematical correlations of the optimum 

https://doi.org/10.4236/wjcmp.2023.131003


K. Loum et al. 
 

 

DOI: 10.4236/wjcmp.2023.131003 49 Advances in Aging Research 
 

thickness of the base Hopt(T) and Hopt(D), respectively as a function of the 
temperature (Figure 8) and the diffusion coefficient of the minority carriers of 
the base (Figure 9), according to the three frequency regimes: 

1) Frequency regime: 310 rad sω ≤   

( )( ) 51.8 10 0.014Hop cm T T−= − × × +              (18) 

( )( ) 56.9 10 0.0063Hop cm D D−= × × +              (19) 

2) Frequency regime: 3 510 rad s 10 rad sω< ≤  

( )( ) 51.4 10 0.012Hop cm T T−= − × × +              (20) 

( )( ) 41.1 10 0.0055Hop cm D D−= × × +              (21) 

3) Frequency regime: 510 rad s ω<  

( )( ) 8 2 54.9 10 3.4 10 0.012Hop cm T T T− −= × × − × × +        (22) 

( )( ) 43.1 10 0.0051Hop cm D D−= × × +             (23) 

The results through Figure 8, show that, regardless of the frequency range of 
modulation of the incident light, the optimum thickness decreases with temper-
ature (Equations (18), (20) and (22)). The increase in the density of the photo-
generated carriers with temperature causes the maximum density of the minori-
ty carriers to be reduced towards the junction (p/p+) which is the illuminated 
surface [56]. Obtaining a large photocurrent then imposes a reduction in the 
thickness of the base. On the other hand, the increase in the diffusion coefficient 
of the minority charge carriers consequently leads to the increase in the opti-
mum thickness (Figure 9), which is modeled by Equations (19), (21) and (23). 
The optimum thickness of the base is large at low frequencies corresponding to 
the static regime (ωτ  1) whatever the temperature (Figure 8). In this interval 
of low frequencies, the relaxation time of the minority carriers is important 
(large values of D in Equation (5)), allowing a large distance of travel (Einstein 
relation). A large optimum thickness of the base is then obtained [43] [57] [58] 
(Figure 9). On the other hand, at high frequency values, the relaxation time (ωτ 
 1) of minority carriers is reduced, as well as the coefficient (Equation (5)) and 
the scattering length (Equation (9)) of minorities corresponding to a short travel 
distance, then the optimum thickness [57] [58] of the base needed to collect the 
charge carriers is small, regardless of the temperature. Previous work on solar 
cells, monofacial, bifacial or multi-vertical junctions, corroborates these results, 
showing the reduction of the optimum thickness of the base of the silicon solar 
cell under illumination, according to the front (n+) [34] [58] or rear (p+) [38] 
[43] [57], while it is subjected to: 
 Monochromatic light with constant flux [59] and absorption coefficient 

α(λ)).  
 Monochromatic light (α(λ)) in frequency modulation (ω) [22] [23] [43] [57] 

[58]. 
 Constant B magnetic field [60] [61]. 
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 Irradiation by charged particles [43] [62]. 
 Temperature variation [22] [63]. 
 Combination of several parameters leads to a situation of resonance of mi-

nority carriers’ diffusion coefficient in the base of the solar cell under mag-
netic field: 

1) In frequency [64]. 
2) In temperature, under front [36] [37], rear [39] [41], or vertical illumina-

tion [65]. 
3) And under irradiation of charged particles, in frequency [66]. 
4) Frequency and temperature [40] [42]. 
The analysis of the physical mechanisms [1] [24], through the phenomological 

parameters of the material [67], would lead to the development of optimized and 
economical solar cells [68] [69], taking into account above all the external phys-
ical factors, which constitute the operating environment. 

5. Conclusions 

The study of the density of the minority charge carriers in the base of the bifacial 
solar cell (n+/p/p+) silicon, under a given temperature and under monochromat-
ic illumination in frequency modulation by the back side (p+), showed the effect 
of the frequency, by the folding of the maximum density towards the junction 
(p/p+) and the increase of the density of the photogenerated carriers with tem-
perature. The graphic technique for the determination of the optimum thickness 
of the base of the bifacial solar cell (n+/p/p+) at temperature (T) and subjected to 
monochromatic illumination (α(λ)) in frequency modulation (ω) by the back 
side, was used. The analysis of the dynamic photocurrent density curve as a 
function of the recombination velocity of minority carriers at junction (Sf), the 
dynamic recombination velocity expressions of minority carriers on the back 
side (Sb(α, H, D(ω, T))), and (Sb(H, D(ω, T)) were deduced.  

The graphical representation of the expressions of the dynamic recombination 
velocity of the minority carriers on the back side as a function of the thickness 
(H), made it possible to extract the base optimum thickness (Hopt), for each 
frequency domain and for different temperature values. The representation of 
the optimum thickness (Hopt(T)) gives a curve profile that is modeled by a 
function decreasing with temperature (T), regardless of the frequency of mod-
ulation of the incident light. 

The variations of the dynamic coefficient (D(ω, T)) of diffusion of the charge 
minorities are obtained by the variation of the frequency of modulation of the 
monochromatic light incident on the rear side (p+). Thus the base optimum 
thickness Hopt decreases sharply with the frequency regime whatever the tem-
perature (T). 
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