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Abstract 
Entanglement in quantum theory is a peculiar concept to scientists. With this 
concept we are forced to re-consider the cluster property which means that 
one event is irrelevant to another event when they are fully far away. In the 
recent works we showed that the quasi-degenerate states induce the violation 
of cluster property in antiferromagnets when the continuous symmetry breaks 
spontaneously. We expect that the violation of cluster property will be ob-
served in other materials too, because the spontaneous symmetry breaking is 
found in many systems such as the high temperature superconductors and 
the superfluidity. In order to examine the cluster property for these materials, 
we studied a quantum nonlinear sigma model with U(1) symmetry in the 
previous work. There we showed that the model does have quasi-degenerate 
states. In this paper we study the quantum nonlinear sigma model with SU(2) 
symmetry. In our approach we first define the quantum system on the lattice 
and then adopt the representation where the kinetic term is diagonalized. 
Since we have no definition on the conjugate variable to the angle variable, we 
use the angular momentum operators instead for the kinetic term. In this re-
presentation we introduce the states with the fixed quantum numbers and 
carry out numerical calculations using quantum Monte Carlo methods and 
other methods. Through analytical and numerical studies, we conclude that 
the energy of the quasi-degenerate state is proportional to the squared total 
angular momentum as well as to the inverse of the lattice size.  
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1. Introduction 

We find quite long history in the study of the quantum nonlinear sigma model 
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(QNLSM) [1] [2] [3] [4], since it has been derived as the effective model for two- 
dimensional Heisenberg antiferromagnets [5] [6] [7]. Another remarkable ap-
plication of this model has been made to particle physics [8] [9] [10], where it is 
called chiral Lagrangian. Using this application we have met with fruitful results 
on hadron physics [11]. Also this model is deeply connected with quantum me-
chanics of the constrained particle [12] [13], or of the particle with the attractive 
potential induced by the geometry [14] [15]. The reason why QNLSM has been 
employed in such wide fields of physics is that the model realizes the symmetry 
by the minimum degrees of freedom when the continuous symmetry is sponta-
neously broken. 

Our purpose in this paper is to show that QNLSM exhibits the quasi-degenerate 
states (QDS) which induce the violation of the cluster decomposition [16], or the 
cluster property [17]. The cluster property means that there is no relation be-
tween two events occurring infinitely apart from each other. This property has 
been considered to be fundamental in physics because, based on this property, 
we can observe the event locally and the result is irrelevant to those of other 
events which occur at the long distances. In previous works [18] [19] [20] we 
studied this property using Heisenberg spin model on the square lattice [21], 
which has been a model for many materials [22] [23]. Active studies in the 
many-body systems [17] [24] [25] [26] and in quantum field theory [27] [28] in-
cluding QCD [29] [30], on the other hand, are made on the cluster property 
about somewhat special models which are too theoretical. 

In our study [18] [19] [20] we found the cluster property violation in the sys-
tem on a lattice with spontaneous symmetry breaking (SSB). The key observa-
tion is that there exist the quasi-degenerate states with energy 

QnE  which is the 
lowest one for a quantum number Qn  related to the symmetry. In the spin sys-
tems of sN  sites it has been well known that the energy gap 0QnE E−  is pro-
portional to 2

Q sn N  [21]. 
In a previous work [31] we studied QDS of QNLSM with U(1) symmetry. The 

reason on this model is that it is the effective model for the superconductors and 
the super-fluidity. We have investigated a quantum model defined on a lattice 
using the Weyl representation [32] [33] [34] with discrete and finite variables. In 
addition, we adopted the representation where the kinetic term is diagonalized. 
Then we carried out analytical discussions so that we could implement numeri-
cal method to calculate the energy with the fixed value of Qn . From numerical 
results, which are obtained by the diagonalization, stochastic state selection me-
thod [35]-[42] and quantum Monte Carlo methods [43] [44] [45], we have ob-
served the energy gap which is composed of a term 2

Q sn N  and its correction 
terms. 

In the present work we study QNLSM with SU(2) symmetry. The formulation 
in this case is more complicated since the conjugate variables to the angle va-
riables, kθ  and kφ  at each site k, cannot be defined. In order to avoid this dif-
ficulty, we employ the Hamiltonian with the potential term given by the angle 
variables themselves. For the kinetic term, on the contrary, we use the squared 
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angular momentum which is given by the quantum numbers kl  and km . Fol-
lowing to the case of U(1) symmetry, we adopt the representation that the kinet-
ic term is diagonalized. Then we develop numerical methods including quantum 
Monte Carlo methods. Note that this method is indispensable, because we can-
not fix the quantum number directly in ordinary Monte Carlo methods based on 
the path integral. Our conclusion is that the energy of the quasi-degenerate state 
shows ( )1 sJ J N+  dependence, where J denotes the total angular momentum 
of the system. 

Let us describe the plan of this paper. In the next section we define our 
QNLSM on the square lattice with SU(2) symmetry. The Hamiltonian of our 
model is the sum of the kinetic term and the potential term. The kinetic term at 
each site is given by the square of the total angular momentum operator, where 
we fix the strength of the kinetic term to be 1. The potential term, whose 
strength is denoted by B, is formed by the angular variables at neighboring sites 
of a link. Also we explicitly express the potential term by the quantum numbers 

kl  and km  at the site k.  
In Section 3 we theoretically discuss the cases for large B as well as small B of 

our Hamiltonian. In the first subsection we derive an effective Hamiltonian 
when B is large. Note that it is a non-trivial task to find the conserved operator, 
which is the sum of the angular momentum operators at each site, in the large 
limit of B. In the next subsection we show analytical results on energy for small 
B. In this case the discussion is straightforward because we can apply the per-
turbation theory of the potential to the unperturbed Hamiltonian with 0B = . 

Section 4 is devoted to preparations for numerical study. First, we examine the 
max value of l , maxl , for the numerical calculations. Then parameters β  and 

tl  used in quantum Monte Carlo methods are also determined. In Section 5 we 
show our numerical results on lattices with 2,8,16,36sN =  and 64 sites. In the 
first subsection our discussion for large B is justified by numerical results of 

2sN = , where many excited states are calculated. The results on the 8sN ≥  
lattices are presented in the next subsection. There we employ stochastic state 
selection (SSS) method [35]-[42] for the 8sN =  lattice, while calculations for 

= 16,36sN  and 64 lattices are carried out by quantum Monte Carlo methods 
[43] [44] [45]. 

Finally we summarize our work and discuss future studies in the last section. 
Here we point out that the Hamiltonian for quite large B shows the spin weighted 
harmonics for SU(2) symmetry [46]. 

We add two subsections in Appendix. In the first subsection, we present de-
tails to derive the effective Hamiltonian for large B, which is much complicated. 
Since this Hamiltonian has the spin weighted harmonics, we are led to a con-
straint on the quantum numbers. In the second subsection we show that this 
constraint is given by the eigen function of the spin weighted harmonics. 

Since many symbols and variables are used in our paper, we list them in Table 
1 for convenience. 
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Table 1. Symbols or variables used in our work. The third column denotes the equation 
number, if any, where the symbol or the variable is defined. 

Symbol Meaning 
Def. 

Equation 

Ĥ  Hamiltonian of our model (1) 

T̂  Kinetic term of Ĥ  (2) 

B̂V  Potential term of Ĥ  (3) 

B Strength of B̂V  (3) 

k̂kV ′  Local interaction of B̂V  (4) 

,k kθ φ  Angle variables at site k  

,k kl m  State of quantum numbers ,l m  at site k (5) 

,
ˆ

kLα  Angular momentum operators  

sN  Total number of sites  

θ  Average angle of kθ  (11) 

φ  Average angle of kφ  (11) 

jka  Matrix element of orthogonal trans. (13) 

jξ  Angle by orthogonal trans. of kθ  (14) 

jχ  Angle by orthogonal trans. of kφ  (14) 

, ,
ˆ

kLξ α  Operators by orthogonal trans. of ,
ˆ

kLα  (19) 

jξ  Variable changed from jξ  (22) 

jη  Variable changed from jχ  (22) 

,
ˆ

AL ±  Effective op. of angular mo. with ± compo. (21) 

L̂φ  Effective op. of angular mo. with z compo. (26) 

ˆ
AH  Effective Hamiltonian for large B (28) 

0Ψ  Ground state for 0B =  (30) 

J Quantum number of total angular momentum  

JE  Lowest energy of J  

linkn  Link number of one site  

maxl  Maximum of l  in numerical calculations Section 4.1 

,2
ˆ

AH  Effective Hamiltonian of two particles (46) 
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2. Quantum Nonlinear Sigma Model 

We define the Hamiltonian of our model using only angle variables kθ ’s and 

kφ ’s on sites. The Hamiltonian we start with is given by  

ˆ ˆ ˆ ,BH T V≡ +                           (1) 

( ) 2 21 2
2

2 2
0

ˆ ˆ ˆ ˆ, cot csc ,
sN

k k k k k
k kk k

T T T L θ θ
θθ φ

−

=

 ∂ ∂ ∂
≡ ≡ = − + + ∂∂ ∂ 
∑



      (2) 

( )
( )

,

ˆ ˆ 0 ,B kk
k k

V B V B′
′

≡ >∑                      (3) 

( )ˆ 1 cos cos sin sin cos .kk k k k k k kV θ θ θ θ φ φ′ ′ ′ ′≡ − − −           (4) 

Here ( ),k k ′  denotes a pair of neighboring sites of a link and sN  is the total 
number of sites on the lattice. Note that we have included a constant term 1 into 

k̂kV ′  so that it becomes zero when k kθ θ ′=  and k kφ φ ′= . 
The state at each site k is described by the quantum numbers kl  and km . 

Therefore the basis state of the lattice is given by  

( ){ }
1

0
,

sN

k k k k
k

l m l m
−

=

≡ ∏  

( ) ( )
2

,
ˆ ˆ1 , .k k k k k k k z k k k k k kL l m l m l l L l m l m m= + =


         (5) 

Next we present the matrix elements of the potential term k̂kV ′ , which are de-
fined by  

( ) ˆ; | ; ; ; ,k k k k k k k k k k k k kk k k k kV l m l m l m l m l m l m V l m l m′ ′ ′ ′ ′ ′ ′ ′ ′′ ′ ′ ′ ′ ′ ′ ′≡  

; .k k k k k k k kl m l m l m l m′ ′ ′ ′≡                    (6) 

For the matrix elements of k̂kV ′ , we calculate , cos ,l m l mθ′ ′  and  
, sin e ,il m l mφθ ±′ ′ . For these calculations, we use the spherically harmonic po-

lynomials ( ),m
lY θ φ  and the equations between three Legendre polynomials 

( )m
lP x , which are given by  

( ) ( ) ( ) ( ) ( ) ( )1 12 1 1 ,m m m
l l ll xP x l m P x l m P x+ −+ = + − + +  

( ) ( ) ( ) ( )1 1 2
1 1 2 1 1 0.m m m

l l lP x P x l x P x+ +
+ −− − + − =             (7) 

Then we obtain the results, which are summarized in Table 2.  
Now we consider to calculate the matrix elements of 12V̂  for two particles de-

fined by  

( )
( ) ( ){ }1 2 1 2

12 1 2 1 2 1 2

1 2 1 2

ˆ 1 cos cos sin sin cos
11 cos cos sin sin e e .
2

i i

V

φ φ φ φ

θ θ θ θ φ φ

θ θ θ θ − − −

≡ − − −

= − − ⋅ +
       (8) 

We adopt a notation on the state of two particles.  

1 2 1 2 1 1 2 2, ; , , , .l l m m l m l m≡                   (9) 

Then the matrix elements of the potential 12V̂  are given by  
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Table 2. Non-zero matrix elements of cosθ  and sin e iφθ ± . 

Ô  l′  m′  ˆl m O lm′ ′  

cosθ  1l +  m  
( ) ( )
( ) ( )

1 1
2 1 2 3

l m l m
l l

− + + +

+ +
 

cosθ  1l −  m  
( ) ( )
( ) ( )2 1 2 1
l m l m
l l
− +

− +
 

sin eiφθ  1l +  1m +  
( ) ( )

( ) ( )
1 2

2 1 2 3
l m l m

l l
+ + + +

−
+ +

 

sin eiφθ  1l −  1m +  
( ) ( )
( ) ( )

1
2 1 2 1

l m l m
l l
− − −

− +
 

sin e iφθ −  1l +  1m −  
( ) ( )

( ) ( )
1 2

2 1 2 3
l m l m

l l
− + − +

+ +
 

sin e iφθ −  1l −  1m −  
( ) ( )
( ) ( )

1
2 1 2 1

l m l m
l l
+ − +

−
− +

 

 

1 2

1

1 2 1 2 12 1 2 1 2 2 2 1 1 12 1 1 2 2

1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 2

1 1 1 1 1 2 2 2 2 2

1 1 1 1 1 2 2

ˆ ˆ, ; , , ; , , , , ,

, , , , , cos , , cos ,
1 , sin e , , sin e ,
2
1 , sin e , , sin
2

i i

i

l l m m V l l m m l m l m V l m l m

l m l m l m l m l m l m l m l m

l m l m l m l m

l m l m l m

φ φ

φ

θ θ

θ θ

θ

−

−

′ ′ ′ ′ ′ ′ ′ ′=

′ ′ ′ ′ ′ ′ ′ ′= −

′ ′ ′ ′−

′ ′ ′ ′− 2
2 2 2e , .i l mφθ

   (10) 

Using results in Table 2 we can calculate the matrix element for each jl , jm , 

jl′  and jm′  ( )1,2j = .  

3. Analytical Discussions 

In this section we argue analytical approximations in cases that B of the potential 
term B̂V  in (3) is large (Subsection 3.1) and small (Subsection 3.2). 

3.1. Effective Hamiltonian for Large B 

In this subsection we lead an effective Hamiltonian ˆ
AH  for large B. 

When B is large the difference between kθ  and kθ ′ , as well as the difference 
between kφ  and kφ ′ , should be small for any pair ( ),k k ′ . We, therefore, in-
troduce the averages θ  and φ  with the deviations from them,  

1 1

0 0

1 1, , , .
s sN N

k k k k k k
k ks sN N

θ θ θ θ θ φ φ φ φ φ
− −

= =

≡ ∆ ≡ − ≡ ∆ ≡ −∑ ∑         (11) 

Here sN  is the total number of sites on the lattice. Assuming 1kθ∆   and 
1kφ∆   for all k, we obtain  
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( ) ( )
( ) ( ) ( )

( ) ( ){ }
( ) ( ){ }

2 22

2 22

ˆ 1 cos cos

sin sin cos
1~ sin
2
1 sin .
2

kk k k

k k k k

k k k k

k k k k

V θ θ θ θ

θ θ θ θ φ φ

θ θ θ φ φ

θ θ θ φ φ

′ ′

′ ′

′ ′

′ ′

= − + ∆ + ∆

− + ∆ + ∆ ∆ − ∆

∆ − ∆ + ∆ − ∆

= − + −

          (12) 

Then we introduce an orthogonal matrix kjA a =    ( 1 TA A− = ), whose ele-
ments have the following property,  

1 1

0 0
, .

s sN N

kj k j kk kj kj jj
j k

a a a aδ δ
− −

′ ′ ′ ′
= =

= =∑ ∑                   (13) 

Using this matrix A, we change the variables kθ  and kφ  to jξ  and jχ  
defined by  

1 1

0 0
, .

s sN N

j kj k j kj k
k k

a aξ θ χ φ
− −

= =

≡ ≡∑ ∑                     (14) 

In addition, we impose 0 1k sa N=  for all k so that 0 sNξ θ=  and  

0 sNχ φ= . Then we see that  

( ) ( )
1 1

1 1
, .

s sN N

k k kj k j j k k kj k j j
j j

a a a aθ θ ξ φ φ χ
− −

′ ′ ′ ′
= =

− = − − = −∑ ∑          (15) 

Note that here we used  
1 1

0 0
, .

s sN N

k kj j k kj j
j j

a aθ ξ φ χ
− −

= =

= =∑ ∑                   (16) 

The potential B̂V  is therefore approximated as  

( ){ }2

, 1

ˆ ~ , sin ,
2B j j j j

j j

BV C j j ξ ξ θχ χ′ ′
′≥

′ +∑  

( )
( )

( )( )
,

, .kj k j kj k j
k k

C j j a a a a′ ′ ′ ′
′

′ ≡ − −∑                (17) 

Let us consider the kinetic term T̂  in (2) next. Our purpose is to derive the 
squared angular momentum for all particles in the effective Hamiltonian. Here 
we mention only essential parts of the derivation. A detailed discussion is given 
in Appendix A1. 

Using matrix A we introduce new operators of the angular momentum,  

( )
1

, , ,
0

ˆ ˆ , , .
sN

j kj k
k

L a L x y zξ α α α
−

=

≡ =∑                   (18) 

Note that  
1

, , , , , , ,
0

1

0

ˆ ˆ ˆ ˆ

e cot ,

s

s
k

N

j x j y j kj k
k

N
i

kj k
k k k

L L iL a L

a i

ξ ξ ξ

φ θ
θ φ

−

± ±
=

−
±

=

≡ ± =

 ∂ ∂
= ± + ∂ ∂ 

∑

∑
 

1 1

, , ,
0 0

ˆ ˆ ,
s sN N

z j kj z k kj
k k k

L a L a iξ φ

− −

= =

 ∂
= = − ∂ 
∑ ∑  
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1

, , ,
0

ˆ ˆ .
sN

k kj j
j

L a Lα ξ α

−

=

= ∑                        (19) 

Since , ,
ˆ ˆ, 0k kL Lα α ′  =   and , , , ,

ˆ ˆ, 0j jL Lξ α ξ α ′  =  , we find  

( )
( )

1 12
2

, ,
0 0 , ,

1
2

, , , , , , , , , ,
0

ˆ ˆ ˆ

1 ˆ ˆ ˆ ˆ ˆ .
2

s s

s

N N

k j
k j x y z

N

j j j j z j
j

T L L

L L L L L

ξ α
α

ξ ξ ξ ξ ξ

− −

= = =

−

+ − − +
=

= =

 = + + 
 

∑ ∑ ∑

∑



            (20) 

Then we approximate , ,
ˆ

jLξ ±  assuming that B is large. For 0j =  the result is, 
as is discussed in Appendix A1,  

, , 0
1ˆ ˆ~ ,j A

s

L L
Nξ ± = ±  

1

1

ˆ e cot csc .
sN

i
A j j

j jj

L i iφ θ θ η ξ
θ φ ηξ

−
±

±
=

  ∂ ∂ ∂ ∂ ≡ ± + + −   ∂ ∂ ∂∂   
∑ 



     (21) 

Here we have introduced new variables jξ  and jη  instead of jξ  and jχ ,  

( )0 0, , sin 1 .j j j j jξ ξ η χ η θχ≡ ≡ ≡ ≥                (22) 

For 1j ≥  we see that  

, ,
ˆ ~ e cot ,i

j
j j

L iφ
ξ θ

ξ χ
±

±

 ∂ ∂ ± + ∂ ∂  
 

( )
2 2

2
, , , , , , , , 2 2

1 ˆ ˆ ˆ ˆ ~ cot .
2 j j j j

j j

L L L Lξ ξ ξ ξ θ
ξ χ+ − − +
∂ ∂

+ +
∂ ∂

            (23) 

As for , ,
ˆ

z jLξ  we obtain, without any approximations,  
1 1 1

, ,
0 0 0

21 1
2

, , 2
0 0

ˆ

ˆ, .

s s s

s s

N N N
j

z j kj kj
k k jk k j

N N

kj kj z j
k j j j j

L a i i a

i a a i L

ξ

ξ

χ
φ φ χ

χ χ χ

− − −
′

′= = = ′

− −

′
′= = ′

∂ ∂ ∂
= − = − ∂ ∂ ∂ 

∂ ∂ ∂
= − = − = −

∂ ∂ ∂

∑ ∑ ∑

∑ ∑
         (24) 

To summarize the results, we obtain for 0j =   

( )2 2
, ,0

, ,

1 1ˆ ˆ ˆ ˆ ˆ ˆ~ .
2 A A A A

x y z s

L L L L L L
Nξ α φ

α
+ − − +

=

 + + 
 

∑              (25) 

Here we used that  

( ), ,0
0

1ˆ ˆ ˆ, .z
ss

L i i L L i
NN

ξ φ φχ φφ
∂ ∂ ∂

= − = − = ≡ −
∂ ∂∂

          (26) 

For 1j ≥ , on the other hand, we find  

( )

2 2 21 1 1
2 2

, , 2 2 2
1 , , 1 1

2 2 2 21 1
2

2 2 22
1 1

ˆ ~ cot

cot 1 .

s s s

s s

N N N

j
j x y z j jj j j

N N

j jj j jj

Lξ α
α

θ
ξ χ χ

θ
ξ χ ηξ

− − −

= = = =

− −

= =

 ∂ ∂ ∂ − + − 
∂ ∂ ∂  

  ∂ ∂ ∂ ∂   = − + + = − +   
∂ ∂ ∂∂      

∑ ∑ ∑ ∑

∑ ∑


          (27) 
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Finally we represent the effective Hamiltonian ˆ
AH  using jξ ’s and jη ’s in-

stead of jξ ’s and jχ ’s, which is given by  

( )

( )( )

2

2 21

22
1 , 1

1 1ˆ ˆ ˆ ˆ ˆ ˆ
2

, .
2

s

A A A A A
s

N

j j j j
j j jjj

H L L L L L
N

B C j j

φ

ξ ξ η η
ηξ

+ − − +

−

′ ′
′= ≥

 = + + 
 

 ∂ ∂ ′− + + +  ∂∂ 
∑ ∑  



      (28) 

From the first term of ˆ
AH  we conclude that the energy of our model con-

tains the term of ( )1 sJ J N+ , where J is the quantum number of the angular 
momentum of the system with the size sN . 

It should be noted that ˆ
AL ±  and L̂φ  are generators of SU(2) and these ge-

nerators commute with ˆ
AH .  

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , 2 , , 0, , 0.A A A A A A AL L L L L L L H L Hφ φ φ± ± + − ±
       = = = =           (29) 

3.2. Energy for Small B 

In this subsection we discuss the energy when B in the potential term(3) is small. 
First we consider energy for 0B = , where no interaction exists between par-

ticles and the ground state is given by  
1

0
0

0, 0 .
sN

j j
j

l m
−

=

Ψ ≡ = =∏                    (30) 

Since the kinetic term is given by ( )1k kk l l +∑  with the angular momentum 

kl  at site k, the eigen energy is given by  

( ) ( )
1

0

0
1 .

sN

k k
k

E l l
−

=

= +∑                       (31) 

Then the lowest energy with the total angular momentum J is given by the 
case we have 1kl =  for only J sites among all sN  sites.  

( ) ( )0 1 1 1 2 .JE J J= ⋅ ⋅ + =                     (32) 

Let us discuss the energy with 0J =  by the perturbation theory for small B 
with the ground state 0Ψ . Since the potential term contains the constant, the 
first order contribution is given by  

( )

( )

1
0 0 0

,
1 .

2
s link

k k

N nE B B
′

⋅
∆ = Ψ Ψ = ⋅∑               (33) 

Note that ( ), 1k k ′∑  equals to the total number of the links on the lattice. The 
second order contribution is given by  

( )

( )
( ) ( ) ( )

22
0 2 00 0

, 0, 10 2

1 ˆ, , ,kk
k k m

E k k m BV
E E

′
′ = ±

′∆ = Ψ Ψ
−

∑ ∑  

( )2
,

, , 1, 1, 0, 0 .k k k k j j
j k k

k k m l m m l m m l m′ ′
′≠

′Ψ ≡ = = = = − = =∏    (34) 

The matrix element ( )2 0
ˆ, , Bk k m V′Ψ Ψ  is given by non-zero terms of  

ˆ1, 1, 0, 0 0, 0 .k k k k kk k k k kl m m l m m V l m l m′ ′ ′ ′ ′= = = = − = = = =  
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From Table 2 in Section 2 we find that it is −1/3 for 0m = , while it is 1/3 for 
1m = ± . Therefore  

( )2 2
0 .

24
s linkN nE B ⋅

∆ = −                      (35) 

Thus we obtain the energy of the ground state in the second order perturba-
tion theory including the constant contribution,  

( ) ( ) ( ) ( )2 0 1 2 2
0 0 0 0 .

2 24
s link s link

J
N n N nE E E E B B=

⋅ ⋅
= + ∆ + ∆ = ⋅ − ⋅        (36) 

Now let us consider the case 1J ≥  with the condition that total M is equal to 
J. We find the degenerate states of the lowest energy ( )0 2JE J= . Each of these J 
sites, say { }1 2, , , Ji i i  sites, has the quantum number 1l =  as well as 1m = , 
while other sites have 0l =  and 0m = . Explicitly, this state is defined by  

{ }
{ }

1 2
1 2

, , ,
1, , , ,

1, 1 0, 0 .
k kJ

J

i i j ji i i
k J j i i i

l m l mψ
= ∉

≡ = = = =∏ ∏




       (37) 

For small B we assume that the lowest energy state JΨ  is totally symmetric 
with { }1 2, , , Ji i i . This state is given by  

{ }
{ }1 2

1 2
, , ,

, , ,

1, .
J

J s

J i i i
i i i N J

C C
C

ψ
  Ψ ≡ ≡ 
  
∑





             (38) 

Note that we have 
sN JC  combinations to select sites { }1 2, , , Ji i i . The first 

order energy is given by  
( )1 ˆ .J J B JE V∆ = Ψ Ψ                        (39) 

Since B̂V  has the constant term ( ), 1k kB ′∑  in addition to the interactions, 
ˆ

J B JVΨ Ψ  is the sum of the contributions from the diagonal elements of B̂V  
and that of the off-diagonal elements. Namely, we denote  

( ),

ˆ , 1 .
2

s link
J B J diag offd diag J J

k k

N nV V V V B B
′

⋅
Ψ Ψ = + ≡ Ψ Ψ = ⋅∑     (40) 

In order to obtain offdV  let us first calculate the matrix element  

( ) ( )1 2 1 2, , , , , ,
ˆ

J Jkki i i i i iVψ ψ′′ ′ ′
 

, for ( ),k k ′ , which is the pair of neighbor sites of the 
link, with conditions  

{ } { }1 1 2 3 2 3, , , , , , , , .J Ji k i k i i i i i i′ ′ ′ ′ ′= = =                (41) 

Note that we need these conditions for the matrix element to be non-zero. 
Using Table 2 we obtain the matrix element  

{ } { }2 2, , , , , ,
ˆ

ˆ0, 0 1, 1 1, 1 0, 0
1 0, 0 sin e 1, 1
2

1, 1 sin e 0, 0
1.
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= = = = = = = = =
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× = = = =
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 

    (42) 
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Now we need to calculate the number totalN  which gives us the element (42) 
to offdV . In order to derive totalN , first we count a number of possible cases for 

1i , which is 1sN sC N=  clearly. Second, we count the number of possible cases 
for 1i′ . It is 1linkn linkC n= , because the site 1i′  has to be connected with the site 

1i  through a link from 1i . Then we count a number of possible cases for 
{ }2 3, , , Ji i i . They can be putted at any site except for the two sites 1i  and 1i′ . 
Therefore the count number is 2 1sN JC− − . Thus the number totalN  is given by  

( )
( ) ( )1 1 2 1

2 !
.

1 ! 1 !s link s

s
total N n N J s link

s

N
N C C C N n

N J J− −

−
= ⋅ ⋅ = ⋅ ⋅

− − −
     (43) 

We, therefore, obtain the contribution offdV ,  

2 .
3 3 1

s
offd total link

s

N JB BV N C n J
N

− ≡ ⋅ − = − ⋅  − 
             (44) 

Including the contribution from the diagonal elements we obtain the energy 
in the first order perturbation theory,  

( ) ( ) ( )1 0 1
1 2 .

2 3 1
s link s

J J J link
s

N n N JBE E E J B n J
N≥

−
= + ∆ = + −

−
          (45) 

For our model on the square lattice we fix 4linkn = .  

4. Preparations for Numerical Study 
4.1. Parameter lmax  

In numerical calculation we assign quantum numbers ( ),k kl m  to the state at 
each site k, where max0 kl l≤ ≤  and k km l≤ . The parameter maxl  is not a physi-
cal one but should be large enough so that the energy eigen value we numerically 
calculate is almost irrelevant to the value of maxl . Since total number of states 
amount to ( ){ }21

sN

maxl + , we need more and more computer resources for larg-
er maxl . 

Let us numerically examine the effect of maxl  on energy eigen values. In Ta-
ble 3 and Table 4 we present the energy eigen values with several values of B on 
the 5sN =  lattice, which are obtained by the diagonalization. The results in 
Table 3 (Table 4) are calculated for fixed value 0M =  ( 4M = ). Values of maxl  
 
Table 3. Energy on the 5sN =  lattice for various values of B and maxl . Here we fix 

0M = . These results are obtained by the diagonalization. 

maxl  0.5B =  1B =  2B =  5B =  10B =  

2 4.72835 8.64712    

3 4.72832 8.64422 14.18348   

4  8.64421 14.18118 24.73659  

5   14.18116 24.72723 36.51471 

6    24.72698 36.49760 

7     36.49677 
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Table 4. Energy on the 5sN =  lattice for various values of B and maxl . Here we fix 
4M = . These results are obtained by the diagonalization. 

maxl  0.5B =  1B =  2B =  5B =  10B =  

2 11.82175     

3 11.80849 14.74603    

4 11.80843 14.74394 19.38923   

5  14.74393 19.38851 29.34678  

6   19.38851 29.34457 40.89607 

7    29.34452 40.89215 

 
are shown in the first column of these tables. Note that it is a reasonable as-
sumption that the energy with less value of J is smaller than that with greater 
value of J. We therefore consider that by fixing M we can obtain the energy eigen 
value with J M= . 

In Table 3 we show the lowest energies with 0M =  for several values of B 
and maxl . There we find that the difference between the eigen values with 

max 2l =  and max 3l =  for 0.5B =  is small enough. While the results indicate 
that we should employ max 7l =  when 10B = . It is clear that larger value of 

maxl  is necessary when B increases. We also see that values of maxl  for 4M =  
in Table 4 should be larger than those for 0M =  in Table 3. 

4.2. Parameters β  and tl  

For larger lattices with 16,36sN =  and 64 we calculate the energy gaps using 
quantum Monte Carlo methods [43] [44] [45]. In quantum Monte Carlo me-
thods, we need two technical parameters, which are the inverse temperature β  
and Trotter number tl . To calculate the lowest energy, we should employ large 
β  as well as large tl . Since we are interested in the energy differences, we ex-
amine how the differences depend on values of β  and tl . In Table 5 we 
present the energy differences on 16sN =  lattice with 12,14.4β =  and 16 and 
with several values of tl  between 120 and 200. Here we find the results are con-
sistent within the statistical error. Therefore, in order to save our CPU time, we 
fix 12β =  and 120tl =  in our Monte Carlo study. As for parameter maxl , we 
employ max 3l =  taking account of the statistical error. 

5. Numerical Study 
5.1. sN = 2  Case with Large B 

In the previous section we present the effective Hamiltonian for large values of B 
with sN  sites. Here we fix 2sN =  and denote the Hamiltonian by ,2

ˆ
AH . 

From (28) in Subsection 3.1 it is given by  

,2
ˆ ˆ ˆ ,A L OH H H= +  
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Table 5. Energy differences on the 16sN =  lattice obtained by quantum Monte Carlo 
methods for various values of inverse temperature β  and Trotter number tl . Here we 

fix 2.0B = . The energy difference ( )E J∆  is defined by ( ) ( )0E J E−  and its error is 

estimated by the statistical fluctuation only. 

β  tl  ( )4E∆  ( )8E∆  

12 120 2.12 ± 0.07 6.83 ± 0.06 

12 144 2.26 ± 0.08 6.95 ± 0.08 

14.4 144 2.00 ± 0.06 6.88 ± 0.07 

14.4 180 2.17 ± 0.07 6.93 ± 0.07 

16 160 2.04 ± 0.06 6.82 ± 0.07 

16 180 2.03 ± 0.08 6.83 ± 0.06 

16 200 2.06 ± 0.06 6.87 ± 0.06 

 

( ) ( )
2

2
,2 ,2 ,2 ,2 ,2

1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,
2 2 2L A A A A AH L L L L L Lφ+ − − +

 ≡ = + + 
 


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11
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AL i i L iφ
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±
±

  ∂ ∂ ∂ ∂ ∂ ≡ ± + + − ≡ −  ∂ ∂ ∂ ∂∂   




 

( )
2 2

2 2
1 122

11

ˆ 2 .OH B ξ η
ηξ

 ∂ ∂
≡ − + + + 

∂∂ 




               (46) 

When we represent ,2
ˆ

AH  by variables ρ  and τ , where 1 cosξ ρ τ=  and 

1 sinη ρ τ= , we have  

,2
ˆ ˆ ˆ ˆe cot csc , ,i

AL L L L iφ
φ τ τθ θ

θ τ
±

±
∂ ∂ ≡ ± − − ≡ − ∂ ∂ 

 

2 2 2 2
2

2 2 2
1ˆ cot csc 2cos ,
2LH θ θ θ

θ φ τθ φ τ
  ∂ ∂ ∂ ∂ ∂ = − − − + +  ∂ ∂ ∂∂ ∂ ∂   

 

2 2
2

2 2 2
1 1ˆ 2 .OH Bρ
ρ ρρ ρ τ

 ∂ ∂ ∂
= − + + + ∂∂ ∂ 

              (47) 

Since the eigen values of ˆ
LH  and ˆ

OH  in (47) are well known, we see the 
eigen energy of ,2

ˆ
AH  is given by  

( ) ( ) ( ),2
1, , , 1 2 2 1 ,
2AE J M n m J J B nρ τ ρ= + + +  

0,1,2, , , 2, , 2, ,n m n n n nρ τ ρ ρ ρ ρ= = − − + −   

, 1, 2, , , 1, ,0,. , 1, .J m m m M J J J Jτ τ τ= + + = − − + −        (48) 

Note that 
11

n n nρ ηξ= +


 with 
11

, 0,1,2,n nηξ =


 ,  

1 11 1
2 2m n n n n n nτ η ρ η ρξ ξ= − = − = −

 

 and therefore 2mτ∆ = . The condition of 
J mτ≥  in (48) is non-trivial. The reason for this condition is described in Ap-
pendix A2. 

In order to confirm the eigen values in (48) we carry out numerical calcula-
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tions of the system with two particles. We employ the diagonalization to obtain 
all energy values when max 7l = . The results are shown in Figure 1 ( 18B = ) and 
Figure 2 ( 50B = ). The lower (upper) line in the figures plots ,2AE  for ( )0 1nρ = . 
From these figures we find that the ,2AE  describes the numerical results well, 
especially for 50B =  found in Figure 2. In addition, by the extensive calcula-
tions, we successfully observe the excited energy near the upper lines. Here we 
should note two features. The first one is that the lowest value of J is 1 for 

1nρ = . The reason is as follows. When 1nρ =  (
1

1nξ =


 and 
1

0nη =  or 
1

0nξ =


 
and 

1
1nη = ), which means we have the excited state of 1ξ  or 1η , we obtain 

1mτ =  or 1mτ = − . Because of the condition J mτ≥  in (48) J should be 
greater than or equal to 1. The second feature is that the two states near the up-
per lines are almost degenerate. We hardly can distinguish the state of 1mτ =  
from that of 1mτ = − , especially for 50B = . 
 

 

Figure 1. Energy versus ( )1J J +  for 18B =  and 2sN = . Energies obtained by the 

diagonalization are plotted by filled red circles and blue and green triangles. Analytic re-

sults ( ) ( )1 2 2 2 1J J B nρ+ + +  are represented by the violet line ( 0nρ = ) and the 

orange line ( 1nρ = ). It should be noted that blue and green triangles are close to each 

others. 
 

 

Figure 2. Energy versus ( )1J J +  for 50B =  and 2sN = . Energies obtained by the 

diagonalization are plotted by filled red circles and blue and green triangles. Analytic re-

sults ( ) ( )1 2 2 2 1J J B nρ+ + +  are represented by the violet line ( 0nρ = ) and the 

orange line ( 1nρ = ). It should be noted that blue and green triangles are close to each 

others. 
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These results strongly support our theoretical arguments on the effective Ha-
miltonian ˆ

LH  in (47) which includes the additional terms of τ∂ ∂ . 

5.2. Larger Lattices  

For the numerical study on 8sN =  lattice, we apply stochastic state selection 
(SSS) method, which is easy to implement and reliable. We find that max 4l =  is 
enough to keep the precision of SSS method. For the lattices with 16,36sN =  
and 64 we use quantum Monte Carlo methods with 12β = , 120tl =  and 

max 3l = . 
Let us first calculate the energy eigen values for small value of B. In Subsection 

3.2 we made theoretical study for this case, where we found that the energy dif-
ferences are described by the liner function of J. Figure 3 shows our numerical 
results for 0.3B =  and 8,16,36sN =  and 64 as a function of J. Solid lines in 
the figure are obtained by the least square fit. We find that all data of each lattice 
shows good linearity and the slopes show little dependency on the lattice size. In 
the perturbation theory in Subsection 3.2, the energy ( )1

1JE ≥  in (45) for large sN  
linearly depends on J and the slopes of the lines are 2 4 3B−  at the first order 
of B. When 0.3B =  this slope is 1.6, which should be compared with the nu-
merical result 1.75 ± 0.01. We therefore conclude that for 0.3B <  our model is 
in a phase where the energy linearly increases as J becomes large. We see that in 
this region of small B the gap energy is constant even if the lattice size is large, so 
we call this phase “gaped energy state (GES) phase”. 

Next we present our results for large B, which would be given by a linear func-
tion of ( )1J J +  derived from the Hamiltonian ˆ

AH  (28) in Subsection 3.1. 
We show the energy for 2.0B =  in Figure 4 as a function of ( )1J J + , to-
gether with solid lines obtained by the least square fit. We find good linearity for  
 

 

Figure 3. Energy with 0.3B =  plotted as a function of J. The red crosses, the violet aste-
risks, the blue diamonds and the orange circles are results for 8,16,36sN =  and 64, re-
spectively. The data for 8sN =  are obtained by SSS method, while others are by quan-
tum Monte Carlo methods. In the figure we plot (

sJ NE C− ), where 8 0C = , 16 4C = , 

36 14C =  and 64 29C = , so that we can see the data easily. The error of the data is smaller 
than the magnitude of the symbol. The solid lines are obtained by the least square fit. 
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Figure 4. Energy with 2.0B =  plotted as a function of ( )1J J + . The red crosses, the 

violet asterisks, the blue diamonds and the orange circles are results for 8,16,36sN =  
and 64, respectively. The data for 8sN =  are obtained by SSS method, while others are 
by quantum Monte Carlo methods. In the figure we plot (

sJ NE C− ), where 8 20C = , 

16 44C = , 36 104C =  and 64 187C = , so that we can see the data easily. The error of the 
data is smaller than the magnitude of the symbol. The solid lines are obtained by the least 
square fit. 
 
any lattice size, which holds even for 2.0B = . Our argument in Subsection 3.1 
leads us that the slope should be 1 sN  for quite large B. When the slopes in 
Figure 4 is fitted to ( ), s sc B N N , values of ( ), sc B N  distribute from 1.5 to 2.0 
for 8,16,36sN =  and 64. 

Now we will numerically confirm that the energy differences are described by 
( )1 sJ J N+  for quite large B. We carry out our calculations on 5sN =  lattice 

since we have to employ large value of maxl , which we fix max 7l =  according to 
results in Table 3 and Table 4. Using the diagonalization we find  
( ), 5 1.302,1.154,1.100sc B N = =  and 1.067 for 2,5,10B =  and 20, respectively. 

These results indicate that ( ), sc B N  becomes 1 when B is quite large, which 
strongly supports our theoretical arguments in Subsection 3.1. In the region of 
large B the gap energy decreases when the lattice size becomes large. We there-
fore conclude that the system is in “SSB phase” since there exist QDS, which is a 
characteristic feature of SSB. 

From our results we see at least two different phases, GES phase with small B 
and SSB phase with large B. In Figure 5 ( 8,16sN = ) and Figure 6 ( 36,64sN = ) 
we show the differences between the obtained results and values given by the fit-
ted lines using D1 and D2, whose definitions are  

{ }2
1 1 1

1 ,J
Jdata

D E a J b
n

≡ − −∑  

( ){ }2
2 2 2

1 1 .J
Jdata

D E a J J b
n

≡ − + −∑                 (49) 

Here datan  is a number of the calculated energy JE . ( )1 2a a  and ( )1 2b b  of 
the fitted lines are numerically determined imposing ( )1 2D D  should be minimum.  
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Figure 5. 1D  and 2D  defined by (49) as a function of B. The red circles (the violet tri-
angles) plot 1D  ( 2D ) for 8sN = , while the black circles (the blue triangles) plot 1D  
( 2D ) for 16sN = . We employ the data with 0,1, 2,3J =  and 4 to calculate them. 

 

 

Figure 6. 1D  and 2D  defined by (49) as a function of B. The red circles (the violet tri-
angles) plot 1D  ( 2D ) for 36sN = , while the black circles (the blue triangles) plot 1D  
( 2D ) for 64sN = . We employ the data with 0, 2, 4,6J =  and 8 ( 2, 4,6,8J =  and 10) 
for 36sN =  (64) to calculate them. 

 
In these figures we find that D1 increases when B becomes large, while D2 de-
creases. We see that D1 is smaller than D2 for 8sN =  when 0.8B < , while 

1 2~D D  at 0.8B = . The value of B where D1 is comparable with D2 depends on 
the lattice size, which are roughly 0.8, 0.9, 1.1 and 1.15 for 8,16,36sN =  and 64. 
These results indicate that the value of B where 1 2~D D  is observed to increase 
slightly when the lattice becomes large. 

6. Summary and Discussion 

What we are interested in is to observe the violation of the cluster property [16] 
[17], when the continuous symmetry in the system breaks spontaneously. In re-
cent work [31] we examined the nonlinear sigma model with U(1) symmetry. 
Then we came to a conclusion that there exist QDS, the quasi-degenerate states, 
whose energies are dependent on the quantum number of the angular momen-
tum and the system size. 
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In the present work we studied the nonlinear sigma model with SU(2) sym-
metry. This model is more interesting than the one with U(1) symmetry because 
of deep connection with Heisenberg spin model. Using the improved technique, 
we examined to see if the model has QDS. We considered the quantum model 
defined on the square lattice and employed the representation where the kinetic 
term is diagonalized, so that we can carry out numerical calculations with the 
fixed quantum numbers. 

Before studying the model numerically we made analytical discussions for 
large B and for small B, where B is the strength of the potential term. In the re-
gion of large B we found that the energy gap is proportional to ( )1 sJ J N+ , 
where sN  denotes the system size and the quantum number J is the total angu-
lar momentum for the system. We, therefore, see this gap becomes 0 in the limit 

sN →∞ . Since this result means that there exist QDS, which is a characteristic 
feature of SSB, we called this phase “spontaneous symmetry breaking (SSB) 
phase”. When B is small, on the other hand, we found that the energy gap hardly 
depends on sN . We therefore call this phase “gaped energy state (GES) phase”. 
In this phase we also derived that the energy gap is proportional to J. 

Our numerical results in Section 5, which we have obtained by the diagonali-
zation on the 2sN =  lattice, by stochastic state selection method [35]-[42] on 
the 8sN =  lattice and by quantum Monte Carlo methods on the 16,36sN =  
and 64 lattices, strongly support that the model has these two phases. 

Finally two comments are added. The first comment is on the study of the 
phase transition between GES phase and SSB phase. Many researchers have dis-
cussed the scaling behavior of the susceptibility and others at the critical point 
using the renormalization group method [6] [7] [47]. We notify that our Hamil-
tonian and our numerical approach would be quite useful for these studies. In 
the present work about the two-dimensional nonlinear sigma model, we have 
observed that the system is in GES phase when the interaction is weak, while it is 
in SSB phase with the strong interaction. We expect that our approach will also 
be prosperous in investigations of the one-dimensional nonlinear sigma model, 
which is intriguing in research of the field theory [48]. 

The second comment is on representations of SU(2). In our present study for 
large B we derived operators ˆ

AL ±  of the angular momentum, which includes an 
additional term in comparison with the conventional one. This term is well 
known in fields of mathematical physics, where relations between the genera-
lized SU(2) algebra and the special functions [46] [49] [50] were studied. Our 
ˆ

AL ±  and L̂φ  operators show the generalized algebra, which is called the spin- 
weighed harmonics. In investigations of gravity, monopole and so on we can 
find many works on this algebra. In the study of gravity this algebra was first de-
rived 50 years ago [51], while we can also find this algebra in a recent work [52]. 
In the study of the monopole, this algebra has been first proposed in [53] and 
further studies in [54] [55] have made it clear that the Hamiltonian with the po-
tential due to the monopole has the spin-weighed harmonics. We see that our 
Hamiltonian for large B is another example for this algebra. We therefore think 
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that this Hamiltonian should be studied more extensively from algebraic point of 
view. 
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Appendix 
A1. Derivation of the Effective Kinetic Term for Large B 

In Subsection 3.1 we defined θ , kθ∆ , φ  and kφ∆ . We also defined , ,
ˆ

jLξ ±  
using ˆ

kL±  and the orthogonal matrix kjA a =    as well. In this subsection of 
Appendix we derive effective , ,

ˆ
jLξ ±  presented in (21) and (23). 

First note that we have the following relations from the Equation (16) for the 
differential operators,  

1 1 1 1

0 0 0 0
, .

s s s sN N N N
k k

kj kj
k k k kj j k k j j k k

a a
θ φ

ξ ξ θ θ χ χ φ φ

− − − −

= = = =

∂ ∂∂ ∂ ∂ ∂ ∂ ∂
= = = =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∑ ∑ ∑ ∑    (50) 

For later use we also need the following relations,  
1 1

0 0
, ,

s sN N

kj kj
j jk j k j

a a
θ ξ φ χ

− −

= =

∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂∑ ∑  

1 1 1 1

0 0 , 0 0
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s s s sN N N N

k kj kj j j
k k j j jk j j

a aφ χ χ
θ ξ ξ

− − − −
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′= = = =′

∂ ∂ ∂
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− − − −

′
′= = = =′

∂ ∂ ∂
= =

∂ ∂ ∂∑ ∑ ∑ ∑  
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We will approximate , ,
ˆ

jLξ ±  under the conditions 1kθ∆   and 1kφ∆  . 
We expand  

( ) ( ){ }e e ~ e 1 ,kk i ii i
kiφ φφ φ φ± ± ∆± ±= ± ∆  

( ){ } ( )2cot cot ~ cot csc .k k kθ θ θ θ θ θ= + ∆ − ∆            (52) 

Then we obtain  

{ } ( ){ }

1 1
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( ) ( )
1

2
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i
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Because of (51) we find the first term becomes  

, e cot .i
j

j j

Z iφ θ
ξ χ

±
±

 ∂ ∂
= ± +  ∂ ∂ 

               (54) 

For 1j ≥  terms , jQ± , , jR±  and , jS±  are negligible compared to , jZ± , 
while ,0Q± , ,0R±  and ,0S±  are comparable with ,0Z± . The reason is as follows. 
When ( )~k Oθ∆ ∆  and ( )~k Oφ∆ ∆  with 1∆ , we also see that  
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   (55) 

From these estimations we find  

( ) ( ) ( ) ( ),0 ,0 ,0 ,0~ 1 , ~ 1 , ~ 1 , ~ 1 ,Z O Q O R O S O± ± ± ±  

( ) ( ) ( ) ( ), , , ,
1~ , ~ 1 , ~ 1 , ~ 1 1 .j j j jZ O Q O R O S O j± ± ± ±

  ≥ ∆ 
    (56) 

Let us calculate ,0Q± , ,0R±  and ,0S±  then. Using (51) we obtain  
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s

s

N
i

l
l ls

N
i

l
l ls

R i
N

i
N

φ

φ

θ ξ ξ
χ χ

θ ξ
χ

−
±

±
=

−
±

=

 ∂ ∂
= − − 

∂ ∂ 

∂
= −

∂

∑

∑
 

( )( )
1

,0 0
0 0

1

1

1 e cot

1 e cot ,

s

s

N
i

l
l ls

N
i

l
l ls

S i i
N

N

φ

φ

θ χ χ
χ χ

θ χ
χ

−
±

±
=

−
±

=

 ∂ ∂
= ± − 

∂ ∂ 

∂
=

∂

∑

∑

 

1
2

,0 ,0 ,0
1

1 e csc cot .
sN

i
l l l

l l l ls

Q R S i i
N

φ χ θξ θχ
ξ χ χ

−
±

± ± ±
=

 ∂ ∂ ∂
+ + = − 

∂ ∂ ∂ 
∑   (57) 

Hereafter we use lξ  and lη  instead of the variables lξ  and lχ ,  

( )0
0 0, , sin sin 1 .l l l l l

s

l
N
ξ

ξ ξ η χ η χ χ θ≡ ≡ ≡ = ≥          (58) 

Then  
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( )
1

00 0 0 0

, sin 1 ,
sN

k k

k k l lk

l
ξ η

θ
χ χ χ η η χ ηξ

−

=

 ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ = + = = ≥ 
∂ ∂ ∂ ∂ ∂ ∂ ∂∂  

∑




 

1 1

0 10 0 0 0

1 cot ,
s sN N

k k
k

k kk kk sN
ξ η

θ η
ξ ξ ξ η ηξ ξ

− −

= =

 ∂ ∂∂ ∂ ∂ ∂ ∂ = + = + 
∂ ∂ ∂ ∂ ∂∂ ∂  

∑ ∑


 

 

( )1 .
l l

l
ξ ξ
∂ ∂

= ≥
∂ ∂ 

                      (59) 

With these variables we obtain the approximate expression of , ,0L̂ξ ±  in (53),  

, ,0
1ˆ ˆ~ ,A

s

L L
Nξ ± ±  

1

1

ˆ e cot csc .
sN

i
A l l

l ll

L i iφ θ θ η ξ
θ φ ηξ

−
±

±
=

  ∂ ∂ ∂ ∂ ≡ ± + + −  
∂ ∂ ∂∂   

∑ 



      (60) 

Here we find that ˆ
AL ±  and L̂ iφ φ= − ∂ ∂  are new generators of SU(2),  

ˆ ˆ ˆ ˆ ˆ ˆ, , , 2 .A A A AL L L L L Lφ φ± ± + −
   = =                  (61) 

Using (60) we have  

( ) ( ), ,0 , ,0 , ,0 , ,0
1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ~ .
2 2 A A A A

s

L L L L L L L L
Nξ ξ ξ ξ+ − − + + − − +

 + + 
 

      (62) 

For 1j ≥ , , jQ± , , jR±  and , jS±  are negligible compared to , jZ±  so that 

, ,
ˆ

jLξ ±  is approximated by  

, , ,
ˆ ~ e cot .i

j j
j j

L Z iφ
ξ θ

ξ χ
±

± ±

 ∂ ∂
= ± +  ∂ ∂ 

             (63) 

Then we obtain  

( )
2 21 1

2
, , , , , , , , 2 2

1 1

1 ˆ ˆ ˆ ˆ ~ cot .
2

s sN N

j j j j
j j j j

L L L Lξ ξ ξ ξ θ
ξ χ

− −

+ − − +
= =

 ∂ ∂ + − + 
∂ ∂  

∑ ∑      (64) 

A2. Reason Why J mτ≥  in sN 2=  Case with Large B 

In this subsection we present the reason why J should be greater than or equal to 
mτ  in (48). Let us denote the wave function for the Hamiltonian  

,2
ˆ ˆ ˆ

A L OH H H= +  by ( ), , , , , ,J M n mρ τ
θ φ τ ρΨ . First note that ˆ

LH , ˆ
OH , L̂φ  and 

L̂τ  defined in Subsection 5.1 commute with each other,  

ˆ ˆ ˆ ˆ ˆ ˆ, 0, , 0, , 0,L O L LH H H L H Lφ τ     = = =       

ˆ ˆ ˆ ˆ ˆ ˆ, 0, , 0, , 0.O OH L H L L Lφ τ φ τ     = = =                   (65) 

Then this wave function with quantum numbers J, M, nρ  and mτ  satisfies  

( ) ( ) ( ), , , , , ,
1ˆ , , , 1 , , , ,
2L J M n m J M n mH J J

ρ τ ρ τ
θ φ τ ρ θ φ τ ρΨ = + Ψ  

( ) ( ) ( ), , , , , ,
ˆ , , , 2 2 1 , , , ,O J M n m J M n mH B n

ρ τ ρ τρθ φ τ ρ θ φ τ ρΨ = + Ψ  

( ) ( ), , , , , ,
ˆ , , , , , , ,J M n m J M n mL M

ρ τ ρ τφ θ φ τ ρ θ φ τ ρΨ = Ψ  
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( ) ( ), , , , , ,
ˆ , , , , , , .J M n m J M n mL m

ρ τ ρ ττ τθ φ τ ρ θ φ τ ρΨ = Ψ          (66) 

From the third and fourth equations in (66) we have  

( ) ( ) ( ), , , , , ,, , , e e .imiM
J M n m J M m n mf g τ

ρ τ τ ρ τ

τφθ φ τ ρ θ ρΨ =         (67) 

By ,2
ˆ

AL + , on the other hand, the eigen function of φ  with eigen value M 
changes to that with 1M + , while the eigen function of τ  with eigen value 
mτ  does not change. Then we obtain the equation for ( ), ,J J mf

τ
θ  since there 

exists no 1M J= +  state,  

( ) ( ){ }
( ) ( ){ }

( ) ( ) ( )

,2 , , ,

, , ,

, ,1
, , ,

ˆ e e

ˆ ˆe cot csc e e

d
e e cot csc 0.

d

imiJ
A J J m n m

imi iJ
J J m n m

J J mi J im
n m J J m

L f g

L L f g

f
g J m f

τ
τ ρ τ

τ
τ ρ τ

ττ
ρ τ τ

τφ

τφ φ
φ τ

φ τ
τ

θ ρ

θ θ θ ρ
θ

ρ θ θ
θ

+

+

∂ = − − 
∂ 

  = − + = 
  

   (68) 

The solution is given by  

( ), , sin cos .
2 2

J m J m

J J mf C
τ τ

τ

θ θθ
+ −

   =    
   

             (69) 

Since we need that the solution (69) is finite, we have the condition that 
0J mτ+ ≥  as well as 0J mτ− ≥ . 
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