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Abstract 
A six-element Yagi-Uda array is optimally designed using Central Force Op-
timization (CFO) with a small amount of pseudo randomly injected negative 
gravity. CFO is a simple, deterministic metaheuristic analogizing gravita-
tional kinematics (motion of masses under the influence of gravity). It has 
been very effective in addressing a wide range of antenna and other problems 
and normally employs only positive gravity. With positive gravity the six ele-
ment CFO-designed Yagi array described here exhibits excellent performance 
with respect to the objectives of impedance bandwidth and forward gain. This 
paper addresses the question of what happens when a small amount of nega-
tive gravity is injected into the CFO algorithm. Does doing so have any effect, 
beneficial, negative or neutral? In this particular case negative gravity improves 
CFO’s exploration and creates a region of optimality containing many de-
signs that perform about as well as or better than the array discovered with 
only positive gravity. Without some negative gravity these array configurations 
are overlooked. This Yagi-Uda array design example suggests that antennas 
optimized or designed using deterministic CFO may well benefit by including 
a small amount of negative gravity, and that the negative gravity approach 
merits further study. 
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1. Introduction 

The Yagi-Uda array (Yagi) has been around for nearly one hundred years [1] 
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[2], undoubtedly because of its ability to provide excellent performance across a 
wide range of antenna measures, always in a simple geometry and often in a 
compact one as well [3]. The basic Yagi comprises a single driven dipole element 
(DE) flanked by a single parallel parasitic reflector (REF) on one side and any 
number of parasitic parallel directors on the other (Di). A typical six-element 
geometry is shown in Figure 1 (red dot marking DE feedpoint). The X-axis is 
the Yagi’s “boom”, and the array’s elements are an arranged along it in the X-Y 
plane parallel to each other and to the Y-axis as shown. REF, the element that is 
closest to the Y-axis, is closer to DE than the first director and longer than DE 
while the Di are shorter, but these characteristics do not by any means constitute 
absolute design requirements, as they simply are typical geometry that produces 
appropriate phase and current relationships between the array elements. 

A complete Yagi design must include the lengths and diameters of each ele-
ment and the inter-element spacings. A six-element array thus has seventeen de-
sign parameters (six element lengths, six diameters, and five spacings). If the 
feedpoint input impedance is considered a design variable as well (discussed be-
low), then the design/optimization (D/O) problem comprises eighteen dimen-
sions. Many Yagis have far more than six elements, and every additional one 
adds three more design parameters (variables) to the problem. 

There is no accurate analytical approach to Yagi array design using models 
that assume purely sinusoidal element current distributions and that neglect 
their mutual couplings. These assumptions lead to inaccuracies, and as a result 
many design approaches are inherently approximate or based entirely on empir-
ical data [3] [4] [5]. The difficulty in analytically calculating a Yagi’s element 
currents is highlighted by the fact that there is no known formula for expressing 
the current distribution on even the simplest of radiating elements, a single cen-
ter fed dipole in free space [6]. 

2. Methodology 
2.1. Background 

Over the past two decades or so, in response to the limitations described above, 
Yagi D/O largely has been done using metaheuristics, that is, algorithms that 
provide acceptable solutions in reasonable times without being exact or having a  

 

 
Figure 1. Schematic 6-Element Yagi. 
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mathematical proof that the optimal solution eventually will be found [7]. Many 
Global Search and Optimization (GSO) algorithms have been applied to the Yagi 
design problem against a variety of performance measures using various tech-
niques, as examples: Gain, impedance, bandwidth using Particle Swarm Opti-
mization (PSO) [8]; Yagi design using Multi-Objective Differential Evolution 
(DE) [9]; 6-Element array design based on Gain-Impedance Multiobjective Op-
timization [10]; Overview of Yagi design methods, many of them GSO’s [11]; 
Evolutionary methods for Yagi design [12]; Maximum gain optimization using 
Biogeography Based Optimization (BBO) variants [13]; Ultrawideband 6-element 
Yagi design using CFO/Variable Z0 [14]; 6-Element Yagi design using Dominat-
ing Cone Line Search (DCLS) [15]; Dipole array optimization using Fitness- 
Adaptive DE [16]; Yagi design using Genetic Algorithms [17]; Wideband 6-ele- 
ment Yagi design using Adaptive DE [18]. These are only a sampling of the do-
zens if not hundreds of GSO approaches to Yagi-Uda array design. 

This paper reports results for a typical 6-element Yagi design developed with a 
basic Central Force Optimization (CFO) implementation that includes a small 
amount of pseudo randomly injected negative gravity. CFO is a deterministic 
evolutionary metaheuristic that analogizes gravitational kinematics (motion of 
masses under the influence of gravity) [19], and it has been applied to antenna 
D/O on a variety of structures, [20]-[28] being representative examples. CFO 
and modifications have been further developed and applied to a variety of other 
problems as well, [29]-[38] serving as examples. CFO is fundamentally determi-
nistic, which in fact was a prime consideration in its formulation. Every CFO 
run with the same setup yields the same results, thereby eliminating the need for 
statistical analysis of possibly hundreds or even thousands of runs as required by 
fundamentally stochastic GSO’s. Determinism can be very important in dealing 
with “real world” antenna problems, and also others, because one of the un-
knowns in a real problem is defining a suitable fitness function. This task is 
made much simpler by using a metaheuristic whose results depend only on user 
input and not on the randomness of a stochastic algorithm. This issue is dis-
cussed in detail with examples in [39]. 

CFO explores a D/O problem’s landscape by flying through its decision space 
(DS) “probes” whose trajectories are governed by equations analogous to those 
governing gravitational kinematics. DS comprises vectors ( )1, ,

dNx x=X �  whose 
components xi are the Nd Yagi array design (decision) variables (element lengths, 
spacings, diameters, and Z0) with their allowable ranges (min/max values for 
each). Each such vector represents a complete array design. A CFO run begins 
with an Initial Probe Distribution (IPD) whose configuration is determined by 
the algorithm designer. The possibilities are limitless, and some IPD’s work bet-
ter than others. In many recent CFO implementations a “probe line” IPD has 
been used in which CFO’s probes are arranged uniformly on lines parallel to the 
DS axes and intersecting along DS’s principal diagonal. For the work reported 
here, however, a pseudo random π-fraction IPD was used because it is simpler. 
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π-fractions also were used to determine the degree of injected negative gravity. 
As a result, and as expected, the target and actual levels of negative gravity are 
not precisely equal. 

Even though CFO is deterministic, it is reasonable to speculate that CFO may 
benefit from the inclusion of a pseudo random component. A pseudo random 
variable (prv) is a number known precisely by enumeration or calculation, in 
contrast to a true random variable (rv) whose value is a priori unknowable be-
cause it must be calculated from a probability distribution. With respect to any 
D/O problem, the prv is “random” in the sense that it is uncorrelated with the 
problem’s topology (“landscape”). Additionally, the prv’s themselves must be 
uniformly distributed and uncorrelated. Pseudo randomness is included here 
using π-fractions generated by the Bailey-Borwein-Plouffe (BBP) algorithm. A 
detailed discussion of π-fractions and their use in a sample GSO algorithm, 
πGASR (Genetic Algorithm with Sibling Rivalry), appears in [40]. 

2.2. CFO Run Setup 

A detailed description of the basic CFO algorithm is in the Appendix Part 2. 
Run parameters and the decision space boundaries for the basic CFO imple-
mentation used in this paper appear in Table 1 and Table 2 and are discussed in 
detail in the Appendix. For this particular problem the Yagi element radius was 
fixed at 0.00635 m (1/2 inch diameter to facilitate easier fabrication). This sim-
plification results in eleven geometric variables instead of seventeen. The twelfth 
variable to be determined by CFO is Z0, the Yagi’s feedpoint impedance. Varia-
ble Z0 (VZ0) is a patented “product-by-process” technology in which the anten-
na’s feedpoint impedance is treated as an optimization variable rather than as a 
fixed parameter as usually is the case. At this time VZ0 is publicly available for 
use by anyone who wishes to use it (U.S. Patent No. 8,776,002). CFO pseudo 
code appears in Figure 2, and the source code used to generate the data pre-
sented here is available on request to the author (rf2@ieee.org). 

 
Table 1. CFO run parameters. 

CFO Parameter Value 

Nd (# dimensions) 12 

Np (# probes) 20 

Nt (# steps) 550 

G (grav. const.) +2 

α (CFO exponent) 2 

β (CFO exponent) 2 

Δt (“time” increment) 1 

Frep (repos. factor) 0.5 init. 

ΔFrep (Frep increment) 0.05 

Pneg (target G < 0) 0 init. 
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Table 2. Decision space boundaries. 

Array Design Variable Allowable Range 

Element Spacing 0.1 ≤ S ≤ 1 meters 

Element Length 0.1 ≤ L ≤ 1 meters 

Element Radius (fixed @ 1/2” diam) 0.00635 meter 

Feed Point Impedance 30 ≤ Z0 ≤ 150 ohms 

 

 
Figure 2. CFO pseudo code [41].  

2.3. Exploration vs. Exploitation in CFO 

Positive gravity causes CFO’s probes always to move toward greater fitnesses, 
never away, and consequently to some degree perhaps to impede CFO’s explora-
tion. CFO often converges very quickly [42], which is a favorable attribute, but 
not if it is at the expense of under-sampling DS, which may be the case. This pa-
per speculates that adding some negative gravity causing probes to fly away from 
each other may improve CFO’s exploration because probes that otherwise would 
coalesce will explore further by flying into DS regions that have been un-
der-sampled or perhaps not sampled at all. The effect of negative gravity is well 
illustrated in the discussion and figures in Section 6 of [43], and parameter val-
ues that insure CFO’s convergence on maxima are discussed in [44]. 

With respect to G’s sign, + or ‒, the specific question is, Does making it nega-
tive benefit CFO’s performance, and if so, why? Or does it impede it, and if so, 
why? To quote: 

“‘Exploration and exploitation are the two cornerstones of problem solving by 
search.’ For more than a decade, Eiben and Schippers’ advocacy for balancing 
between these two antagonistic cornerstones still greatly influences the research 
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directions of evolutionary algorithms (EAs)...” [45], emphasis added. This issue 
also is discussed in [46] [47] [48]. Like all GSO algorithms CFO is subject to the 
inescapable tension between exploration (adequately sampling DS) and exploita-
tion (quickly converging on global maxima). The test case reported here shows 
that a small amount of negative gravity indeed does benefit CFO’s performance, 
ostensibly because it enhances CFO’s exploration while retaining the algorithm’s 
ability to exploit already located maxima. 

At each step negative gravity was pseudo randomly injected into CFO using 
π-fractions whose values are input from an external file containing the BBP- 
computed fractions πk, 1 ≤ k ≤ 215829 (k is the π-fraction index). In order to 
avoid correlations between the π-fractions (see [40]), k is incremented by 5 at 
each step. If k exceeds 215829 it is reset to max(k-215827,3). The parameter 0 ≤ 
Pneg ≤ 100 specifies the target amount of negative gravity in percent, for example, 
Pneg = 6.5 sets the target at 6.5%. At each step the then current value of πk is 
tested against Pneg to determine whether or not gravity is negative at that step. 
Specifically, if πk ≤ Pneg/100 then G G= −  (negative gravity), otherwise G G=  
(positive gravity). Because prv’s are used, the nature of gravity at each step is a 
priori known precisely and is uncorrelated with the outcome at any other step. 
Also because prv’s are used, the desired (target) level of negative gravity and the 
actual level will not be precisely equal. As the CFO run includes more and more 
steps the difference between actual and target levels of G ≤ 0 grows smaller with 
a limiting value of zero because the π-fraction prv’s are uniformly distributed. 
For this Yagi D/O problem runs were made with non-uniformly spaced values of 
Pneg in [0, 20%]. The actual vs. target levels of G ≤ 0 is plotted in Figure 3 and 
shows good agreement. 

Every CFO run comprised 550 steps, a large enough number to meet several  
 

 
Figure 3. Actual vs Target Neg. Gravity with 550 Steps. 
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objectives: 1) allow fitness evolution essentially to saturate (more steps resulting 
only in incremental improvement); 2) create actual an actual degree of G ≤ 0 
close to the target value; and 3) reasonable runtimes (~8 min on Win7/HP 64-bit 
SP1; Intel Core i7 4700MQ 2.4 GHZ). Because there is no accurate analytical 
model of the six-element Yagi-Uda array, the performance of each candidate de-
sign evolved by CFO was modeled using the NEC-4 Method of Moments code 
[49] whose accuracy is well established. Another version of NEC was used in the 
program 4nec2 (below) to compute and visualize performance data for the two 
CFO-optimized arrays at 0% and 6% G < 0 over a very wide frequency range 
(data in Appendix Part 1). 

2.4. Fitness Function 

The performance of every candidate antenna design was measured by the fol-
lowing simple fitness function (of course, the choice of fitness function is entire-
ly up to the algorithm designer): 

1 L 3 M 5 U 2 L 4 M 6 Uc c c c c c= ⋅ + ⋅ + ⋅ − ⋅ − ⋅ − ⋅F g g g S S S          (1) 

where subscripts L, M, and U denote lower, mid and upper frequencies at which 
the Yagi’s power gain, g, and feedpoint voltage standing wave ratio, S (not to be 
confused with spacing), are computed. The weights 1 2 5 6 1c c c c= = = =  and  

3 4 3c c= =  were chosen for simplicity while intentionally favoring midband per-
formance, slightly, with L = 294.8 MHz, M = 299.8 MHz, U = 304.8 MHz. 
VSWR (Voltage Standing Wave Ratio) is computed relative to the feed point 
impedance Z0 and denoted VSWR//Z0. While Z0 usually is a fixed, user-supplied 
parameter, typically the industry standard value of 50 Ω, VZ0 treats it the same 
as any other decision space variable. This approach embraces array current dis-
tributions that otherwise would be excluded because they fail to adequately 
match a predetermined value of Z0. Whether or not the CFO-returned value is 
feasible and desirable is an engineering and economic judgment, and more often 
than not it is worth impedance-matching the “non-standard” Z0 because the an-
tenna’s performance is better, often much better [50]. At each of the three fre-
quencies L, M, U, NEC-4 returned the Yagi’s maximum gain and feedpoint im-
pedance. Appendix Part 1 contains additional performance data computed with 
the freely available program 4nec2 that facilitates visualization of its computed 
data [51]. 

3. Results 
3.1. Fitness Evolution 

The reference Yagi design for this study is, of course, the one that CFO generates 
with zero negative gravity, the usual CFO implementation. Figure 4(a) and Fig-
ure 4(b) plot CFO’s fitness evolution as a function of Step Number with zero 
and 6 percent negative gravity, respectively. The maximum fitnesses are 47.8932 
(0% G < 0) and 49.1892 (6% G < 0). Not only does injecting a small amount of 
negative gravity result in a slightly better fitness, but the fitness evolves quite 
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differently with the 6% curve rising far more quickly than the 0% curve and with 
saturation taking place faster. This CFO implementation does not employ elit-
ism (always including the best global fitness), so that here the best fitness at each 
step is a function only of the then current probe distribution. 

How the fitness varies with the amount of negative gravity is plotted in Figure 
5. For values below about 6% the fitness drops appreciably from its 0% value, but 
then it quickly recovers reaching a value higher than at 0% G ≤ 0 and settling 
into a plateau-like region up to about 10% G ≤ 0. Thereafter the fitness decreases 
monotonically through the test range of about 20%. The fitness plateau between 
approximately 6% and 10% is marked the “~region of optimality” on the plot 
because in that range the fitness is more or less flat. Fitness varies from the 
maximum value of 49.1892 at 6% G < 0 to a minimum of 47.392 at 6.36% G < 0. 
All other values are in this range, and consequently very similar one to the next 
and also to the 0% G < 0 value. 

 

 
Figure 4. (a). Fitness Evolution with Zero Neg. Gravity; (b) Fitness Evolution with 6% Neg. Gravity. 
 

 
Figure 5. Fitness vs amount of injected negative gravity. 
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Returning to the fundamental question addressed in this paper, Has pseudo 
randomly adding a small amount of negative gravity improved CFO’s explora-
tion of the six-element Yagi’s decision space? The fitness data clearly show that 
the answer is “yes.” However, adding too much G < 0 prevents CFO from ex-
ploiting the solutions it has found. How much negative gravity is appropriate no 
doubt is problem-specific, but this array design example strongly suggests that 
every CFO implementation should experiment with some measure of G < 0. 

3.2. Average Probe Distance 

Step-by-step the normalized average distance from the probe with the best fit-
ness to all other probes, denoted Davg, is a good measure of CFO’s convergence 
(see Appendix Part 2 for details). In many cases it approaches zero meaning that 
all probes have very tightly coalesced around the probe with the best fitness 
(maximum value). In other cases, such as here, the probe distribution more or 
less stabilizes but on average at some distance from the best probe. 

Figure 6 plots Davg for the cases of zero negative gravity, (a), and for 6% G < 0, 
(b). Both cases initially show an extreme oscillation that diminishes with in-
creasing Step #. This oscillatory behavior in CFO’s Davg appears to be correlated 
with local trapping and is not entirely unexpected in view of CFO’s metaphor of 
gravitational kinematics. In fact, in the real Universe similar oscillatory behavior 
is seen in the trajectories of Near Earth Objects (NEO’s) that become gravita-
tionally trapped by the Earth’s gravity and eventually break loose without any 
energy loss [52] [53] [54]. 

In order to investigate Davg’s behavior in very long runs, two were made, both 
with Nt = 10,000 steps, zero negative gravity and at a target value of G < 0 of 5%. 
As discussed in Section 2.3 the actual and target levels of negative gravity are not 
equal except in the limit of an infinite number of steps. While both the 550-step  

 

 
Figure 6. (a) Average distance to best probe, zero neg. gravity; (b) Average distance to best probe, 6% neg. gravity. 
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and 10,000-step runs targeted G < 0 at 5%, in the first case the actual value was 
6% and in the second a much closer 5.22%. The Davg results, which are quite in-
teresting, are plotted in Figure 7. In both cases, zero and 5.22% G < 0, Davg set-
tles down to what appears to be a stable, uniform magnitude oscillation with 
much smaller amplitude in the 5.22% case. In fact, at 5.22% G < 0 Davg does not 
oscillate at all, and from steps #676-10,000 it is equal to 0.2352928. CFO’s probe 
distribution is stable and no longer changes step-to-step. In contrast, for the zero 
gravity case Davg oscillates in an erratic but repetitive pattern as seen in the ex-
panded plot for steps 9900 - 10,000, Figure 8. It is reasonable to expect that these 
behaviors for cases zero and 5.22% G < 0 will continue indefinitely with an in-
creasing number of steps. It is evident from these data that pseudo randomly in-
jecting a small measure of negative gravity indeed does improve CFO’s explora-
tion and apparently eliminates the probe trapping seen in Figure 8 as well. 

3.3. Maximum Yagi Gain 

The variation of maximum Yagi gain with degree of negative gravity is plotted in 
Figure 9. The antenna’s maximum gain occurs along the direction of its boom 
(the +X-axis) at NEC angles θ = 90˚, φ = 0˚ in its right-handed spherical coor-
dinate system (see [49]). With zero negative gravity the gain is 11.37 dBi, but at 
6% G < 0 it increases to 11.92 dBi, which is a significant improvement. The max 
gain curve mirrors the Figure 8 structure of the fitness curve in Figure 5. Their 
shapes are very similar, and the array’s maximum gain is highly correlated with 
the array’s fitness as measured by Equation (1). Figure 10 plots the relative fre-
quency of maximum gain as the percentage deviation from the midband refer-
ence frequency of 299.8 MHz. Its shape is quite irregular showing no correlation 
with either the fitness or maximum gain curves. The frequency of maximum 
gain is close to 299.8 MHz only for actual G < 0 of ~1.3% and in two narrow 
bands near 6% and ~11.2%. Otherwise the deviations from midband show con-
siderable variability, ranging as high as nearly +3% and as low as about −2.4%. 

 

 
Figure 7. (a) Average Distance to Best Probe, Zero Neg. Gravity; (b) Average Distance to Best Probe, 5.22% Neg. Gravity. 
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Figure 8. Probe average distance oscillation, steps 9900-10000. 

 

 
Figure 9. Max gain vs injected negative gravity. 

 

 
Figure 10. Max gain frequency relative to band center. 
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The array’s relative gain bandwidth is plotted in Figure 11. Bandwidth (BW) 
is defined as the frequency range for which the gain falls to 3 dB below the 
maximum gain expressed as a percentage of the midband reference frequency of 
299.8 MHz and plotted as a function of negative gravity level. Minimum BW 
coincides with maximum gain at about 6% G < 0, and it increases quickly and 
more or less monotonically to about 13% G < 0 after which it decreases mono-
tonically and somewhat more slowly. With gain BW greater than ~0.1Fc, BW is 
fairly large throughout the negative gravity range, as many Yagi arrays exhibit 
much lower bandwidths. 

3.4. Voltage Standing Wave Ratio (VSWR) 

The antenna’s impedance bandwidth is measured by the frequency range over 
which a maximum or lower VSWR is maintained, typically VSWR ≤ 2:1 relative 
to the antenna’s feedpoint impedance. As discussed above the usual target input 
impedance is 50 + j0 Ω ( 1j = − ), that is, a purely resistive 50 Ω that is the in-
dustry standard. By contrast, Variable Z0 technology, which was used here, treats 
Z0 as just another optimization variable whose value is determined by the GSO 
algorithm. For example, the Yagi optimized with 6% G < 0 has a feedpoint im-
pedance of Z0 = 59.8 ohms with VSWR//59.8 ranging from 1.49 to 2.01 over the 
optimization frequency range 294.8 to 304.8 MHz. Once an optimized design 
was developed, the array’s performance over a much wider frequency range was 
investigated using the NEC-2 based program 4nec2 [51]. Those data appear in 
the Appendix Part 1. 

 

 
Figure 11. −3 dB Gain bandwidth relative to band center. 
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Figure 12 shows the 2:1 VSWR bandwidth in MHz. In the approximate re-
gion of optimality it ranges from about 14.5 MHz to just over 20 MHz with 
much higher values on either side. The tradeoff for increasing impedance band-
width is maximum gain. The overall best performing arrays discovered by CFO 
lie in the region of optimality. Figure 13 shows the 2:1 VSWR as a percentage of 
the midband reference frequency of 299.8 MHz. In the region of optimality it 
ranges from about 5% to just under 7%, so it is not particularly sensitive to the 
level of injected negative gravity. Outside this region it does reach higher values, 
but, again, the tradeoff is with maximum array gain. 

 

 
Figure 12. 2:1 VSWR bandwidth vs neg. gravity. 

 

 
Figure 13. 2:1 VSWR fractional bandwidth. 
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Figure 14. 3:1 VSWR Fractional Bandwidth. 
 

As a final measure of the optimized antennas’ performance Figure 14 plots 
the fractional 3:1 VSWR BW as a function of percentage G < 0. As expected, the 
3:1 impedance bandwidth is much greater than its 2:1 counterpart, quite large in 
fact over much of the region of optimality But as a practical matter not many 
communication systems tolerate VSWR’s in the 3:1 range well, and it is a level 
generally to be avoided if at all possible. 

4. Conclusion 

This paper reports the results of the D/O of a six-element Yagi-Uda array using 
Central Force Optimization with pseudo randomly injected negative gravity. Add-
ing 6% G < 0 results in an array that out performs its 0% G < 0 counterpart and 
also discovers a range of designs with similar fitnesses. Negative gravity was in-
serted using π-fraction pseudo random variables thereby preserving CFO’s de-
terminism, which is an important consideration in real-world problems that re-
quire the formulation of a suitable fitness function. G < 0 has the effect of 
spreading apart CFO’s probes because negative gravity is repulsive in nature in-
stead of attractive. This wider dispersal improves CFO’s exploration of the deci-
sion space without sacrificing the algorithm’s demonstrated high level of exploi-
tation. Injecting some level of negative gravity likely will improve CFO’s explo-
ration across the board, not only in the Yagi array D/O problem but in other ap-
plications as well. This particular problem is only one example of the benefit 
provided by injecting some small measure of negative gravity, and it does not 
(necessarily) provide specific guidance as to how much G < 0 should be used in 
any other particular case. The effect of negative gravity in CFO is a research area 
that should be pursued because the work reported here strongly suggests that 
there may be considerable benefit in doing so. 
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Appendix Part 1: Additional Yagi Performance Data 

CFO’s best fitness NEC input files at zero and 6% G < 0 fully define the array 
geometry and Z0. NEC input files appear immediately below, 0% G < 0 first, fol-
lowed by 6% G < 0. Dimensions are in meters, and since the wavelength, λ, at 
299.8 MHz is 1 m the array dimensions also are in λ. The array can be scaled to 
any other frequency by scaling its dimensions by the wavelength ratio. Also in 
this Appendix are screenshots of the 4nec2 (ver. 5.8.17) output: 1) 3D radiation 
patterns @ 299.8 MHz; 2) power gain, VSWR//Z0, and feedpoint impedance for 
250 - 350 MHz and for 294.8 - 304.8 MHz, and 3) NEC Average Gain Test at 
299.8/250/350 MHz. 
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In the following screenshots 0% G < 0 is on the left, 6% G < 0 on the right. 
 

3D Radiation Patterns (299.8 MHz) 

 
 

4nec2 Summary Data, 299.8 MHz (with Average Gain Test, AGT, results) 
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Total Gain (dBi), 294.8 - 304.8 MHz (note: 4nec2 does not compute F/B if Gain is selected) 

 
 

VSWR//Z0, 294.8 - 304.8 MHz (Z0 = 65.56Ω @ 0% G < 0; 59.8Ω @ 6% G < 0) 
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Feedpoint Impedance, 294.8 - 304.8 MHz 

 
 

Total Gain (dBi), 250 - 350 MHz (note: 4nec2 does not compute F/B if Gain is selected) 
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VSWR//Z0, 250 - 350 MHz (Z0 = 65.56Ω @ 0% G < 0; 59.8Ω @ 6% G < 0) 

 
 

Feedpoint Impedance, 250 - 350 MHz 
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4nec2 Summary Data, 0% G < 0, 250 & 350 MHz (including AGT results) 

 
 

4nec2 Summary Data, 6% G < 0, 250 & 350 MHz (including AGT results) 
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Appendix Part 2: Basic Central Force Optimization 
A2.1. The CFO Metaphor 

Central Force Optimization (CFO) analogizes gravitational kinematics, the mo-
tions of real bodies in the real Universe under the influence of gravity. The fun-
damental law of physics is Newton’s Universal Law of Gravitation, according to 
which the magnitude of the force between the two masses 1m  and 2m  is given 
by [55] 

1 2
2

m mF
r

γ=                         (A1) 

where r is the distance between them and γ  the “gravitational constant.” This 
force always is attractive, never repulsive, and mass in the real Universe always is 
positive, never negative. The force of gravity is a central force because it acts on-
ly along the line connecting the mass centers. Mass 1m  experiences a vector ac-
celeration due to mass 2m  that is given by 

2
1 2

ˆm ra
r

γ= −
�                         (A2) 

where r̂  is a unit vector that points toward 1m  along the line joining the 
masses. 

A2.2. Problem Statement 

The CFO metaheuristic solves the following problem: In a decision space (DS) 
defined by min max , 1, ,i i i dx x x i N≤ ≤ = �  where the ix  are decision variables, 
locate the global maxima of an objective function ( )1 2, , ,

dNf x x x�  possibly 
subject to a set of constraints Ω  among the decision variables. The value of 

( )1 2, , ,
dNf x x x�  is called the “fitness.” CFO explores DS by flying metaphori-

cal “probes” whose trajectories are governed by equations of motion drawn from 
gravitational kinematics. 

A2.3. Constant Acceleration 

The vector location of a mass under constant acceleration is given by the posi-
tion vector [56] 

( ) 2
0 0

1
2

R t t R V t a t+ ∆ = + ∆ + ∆
� � � �                  (A3) 

where ( )R t t+ ∆
�

 is the position at time t t+ ∆ . 0R
�

 and 0V
�

, respectively, are 
the position and velocity vectors at time t, and the acceleration a�  is constant 
during the interval t∆ . In standard three dimensional Cartesian coordinates 

ˆˆ ˆR xi yj zk= + +
�

, where ˆˆ ˆ, ,i j k  are the unit vectors along the , ,x y z  axes, re-
spectively. The CFO metaphor analogizes Equations (A1)-(A3) by generalizing 
them to a decision space of dN  dimensions. 

A2.4. Probe Trajectory 

CFO’s probes in a typical three-dimensional DS are shown schematically in Fig-
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ure A1. The location of each probe at each time step is specified by its position 
vector p

jR
�

, in which p and j are the probe number and time step index, respectively.  

In an dN -dimensional DS the position vector is ,

1
ˆ

dN
p p j
j k k

k
R x e

=

= ∑
�

, where the ,p j
kx  

are probe p’s coordinates at time step j, and following standard notation ˆke  is 
the unit vector along the kx  axis. 

Consider a typical probe, p. It moves from position 1
p
jR −

�
 at time step 1j −  

to position p
jR
�

 at time step j under the influence of the metaphorical “gravita-
tional” forces that act on it. Those forces are created by the fitness at each of the 
other probes’ locations at time step 1j − . The “time” interval between steps 

1j −  and j is t∆ . 
At time step 1j −  at probe p’s location the fitness is  

( ), 1 , 1 , 1
1 1 2, , ,

d

p p j p j p j
j NM f x x x− − −
− = � . Each of the other probes also has associated 

with it a fitness of 1, 1, , 1, 1, ,k
j pM k p p N− = − +� � , pN  being the total num-

ber of probes. In this illustration, the value of the fitness is represented by the 
size of the blackened circle at the tip of the position vector. In keeping with the 
gravity metaphor, the blackened circles may be thought of as “planets,” say, in 
our Solar System. Larger circles correspond to greater fitness values, that is, big-
ger planets with correspondingly greater gravitational attraction. In Figure A1 
the fitnesses ordered from greatest to least occur at 1

s
jR −

�
, p

jR
�

, 1
n
jR −

�
, and 1

p
jR −

�
, 

respectively, as shown by the relative size of the circles. 
Probe p’s trajectory in moving from location 1

p
jR −

�
 to p

jR
�

 is determined by 
its initial position and by the total acceleration produced by the “masses” that 
are created by the fitnesses (or some function defined on them) at each of the 
other probes’ locations. In the CFO implementation used in this paper the “ac-
celeration,” analogous to Equation (A2), experienced by probe p due to the sin-
gle probe n is given by 

 

 
Figure A1. Typical 3-D CFO decision space. 

https://doi.org/10.4236/wet.2021.123003


R. A. Formato 
 

 

DOI: 10.4236/wet.2021.123003 49 Wireless Engineering and Technology 
 

( ) ( ) ( )1 1 1 1 1 1

1 1

n p n p n p
j j j j j j

n p
j j

G U M M M M R R

R R

α

β

− − − − − −

− −

⋅ − ⋅ − ⋅ −

−

� �

� �          (A4) 

where G is CFO’s “gravitational constant” corresponding to γ  in Equation 
(A1). Note that in the real Universe 0G > , always. In CFO space, however, G 
can be positive (attractive force of gravity) or negative (repulsive force of gravi-
ty). Returning to the forces acting on probe p, in a similar fashion to probe n’s 
effect, the acceleration of probe p due to a different probe s is given by 

( ) ( ) ( )1 1 1 1 1 1

1 1

s p s p s p
j j j j j j

s p
j j

G U M M M M R R

R R

α

β

− − − − − −

− −

⋅ − ⋅ − ⋅ −

−

� �

� �          (A5) 

Note that the minus sign in Equation (A2) has been included in the order in 
which the differences are taken in these acceleration expressions. “Mass” in Eq-
uation (A2) corresponds to the terms in the numerator involving the fitnesses. 
Importantly, it does not correspond to the fitness itself. In these equations ( )U ⋅   

is the unit step function ( )
1, 0
0, otherwise

z
U z

≥
= 


. And following standard nota-

tion the vertical bars denote vector magnitude, 

1
2

2

1

dN

i
i

X x
=

 
=  
 
∑

�
, where ix  are 

the scalar components of X
�

. 
There are no parameters in Equation (A2) corresponding to the “CFO expo-

nents” 0α >  and 0β > , nor to the unit step ( )U ⋅ . In real physical space α  
and β  would take on values of 1 and 3, respectively. Note, too, that the nume-
rators in Equations (A4) and (A5) do not contain a unit vector like Equation 
(A2). The exponents are included to give the algorithm designer a measure of 
flexibility by assigning, if desired, a different variation of gravitational accelera-
tion with mass and with distance. 

A2.5. Mass in CFO Space 

Two other important differences between real gravity and CFO’s version are: 1) 
the definition of “mass,” which above is the difference of fitnesses, for example, 

1 1
s p
j jM M− −− , not the fitness value itself; and 2) inclusion of the unit step  

( )
1, 0
0, otherwise

z
U z

≥
= 


. The difference of fitnesses is used to avoid excessive  

gravitational “pull” by other close by probes that presumably will have fitnesses 
with similar values. The unit step is included to avoid the possibility of “nega-
tive” mass. In the physical Universe, mass is positive, always, but in CFO-space 
the mass could be positive or negative depending on which fitness is greater. The 
unit step forces CFO to allow only positive masses, that is, attractive masses. If 
negative fitness differences were allowed, then some accelerations would be re-
pulsive instead of attractive, thus forcing probes away from large fitness values 
instead of towards them. The algorithm designer is free to consider other defini-
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tions of mass as well. One possibility, for example, might be a ratio of fitnesses 
similar to the “reduced mass” concept in gravitational kinematics. 

A2.6. Total Acceleration and Position Vector for a Single Probe 

Taking into account the accelerations produced by each of the other probes on 
probe p, the total acceleration experienced by p as it “flies” from position 1

p
jR −

�
 

to p
jR
�

 is given by the sum of the gravitational effects over all other probes, that 
is, 

( ) ( ) ( )1 1
1 1 1 1 1

1
1 1

p
k pN
j jp k p k p

j j j j j
k pk
j jk p

R R
a G U M M M M

R R

α

β

− −
− − − − −

=
− −≠

−
= − ⋅ − ×

−
∑

� �
�

� �      (A6) 

Probe p’s new position vector at time step j is therefore given by 

2
1 1 1

1 , 1
2

p p p p
j j j jR R V a t j− − −= + + ∆ ≥
� � � �                (A7) 

which is the analog to Equation (A3), 1
p

jV −

�
 being the probe’s “velocity” at the 

end of time step 1j − . In Equation (A7) the coefficient 1/2, the velocity term, 
and the time increment t∆  have been retained primarily as a formalism to 
highlight the analogy to gravitational kinematics, but they are not required. For 
the CFO implementation used here, as a matter of convenience, 1

p
jV −

�
 and t∆  

were arbitrarily set to zero and unity, respectively. Of course, if desired, a con-
stant value of t∆  and the factor 1/2 can be absorbed into the gravitational con-
stant G. 

A2.7. Errant Probes 

An important concern is how to handle an “errant” probe, that is, one that flies 
outside DS, because it is possible that the total acceleration experienced by a 
probe will fly it into regions of unfeasible solutions that are beyond the DS 
boundaries. There are many ways to deal with this contingency, and a simple 
one was implemented in the basic version of CFO used here, the use of a “repo-
sitioning factor,” 0 1repF≤ ≤ . This factor is used to reposition an errant probe 
according to the formulas 

( ), min , min , 1 minIf p j p j p j
i i i i rep i ix x x x F x x−< ∴ = + ⋅ −           (A8) 

( ), max , max max , 1If p j p j p j
i i i i rep i ix x x x F x x −> ∴ = − ⋅ −          (A9) 

repF  is assigned an initial value and incremented at each step by a fixed 
amount repF∆ , and if it exceeds unity is reset to the initial value. This simple 
approach guarantees that all probes will remain inside the decision space. Note 
that this procedure is pseudo random in nature, but numerical experiments have 
shown that it is not as effective as pseudo randomly injecting a small amount of 
negative gravity. 

A2.8. Davg Convergence Metric 

Perhaps the best measure of CFO’s convergence is the “Average Distance”  

https://doi.org/10.4236/wet.2021.123003


R. A. Formato 
 

 

DOI: 10.4236/wet.2021.123003 51 Wireless Engineering and Technology 
 

metric computed as 
( ) ( )* 2

, ,

1 1

1
1

p dN N
p j p j

avg i i
p idiag p

D x x
L N = =

= −
⋅ −

∑ ∑ , where *p  is 

the number of the probe with the best fitness; the superscripts p and j denote, 

respectively, the probe and step numbers as above; and ( )2max min

1

dN

diag i i
i

L x x
=

= −∑   

is the length of the decision space principal diagonal. If every one of CFO’s 
probes has coalesced onto a single point, then 0avgD = . How closely this metric 
approaches zero is a good indicator of how CFO’s probe distribution has evolved 
around a maxima. avgD  also is useful in identifying potential local trapping be-
cause oscillatory behavior in a avgD  plot appears to signal trapping at a local 
maxima. 
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