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Abstract 
Game theory between two no co-operation players is an important topic during 
these years. For each player, he has his own thoughts and for each time, may-
be there is more than one idea in his brain which is a disturbance. It is really 
similar as the Schrödinger equation solution: for fixed time, the solution has 
different states in probability. In the paper, we connect these two things to-
gether and find the related topics between equilibrium and solution property. 
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1. Introduction 

A physical or a socioeconomical system (described through quantum mechanics 
or game theory) is composed by n members (particles, subsystems, players, states, 
etc.). Each member is described by a state or a strategy which has assigned a de-
termined probability ijρ . In evolutionary game theory, the system is defined 
through a relative frequencies vector x whose elements can represent the fre-
quency of players playing a determined strategy. The evolution of the density 
operator is described by the von Neumann equation which is a generalization of 
the Schrödinger equation. It is a basic equation and a basic assumption of quan-
tum mechanics proposed by Schrödinger, an Austrian physicist. So people started 
to use quantum language (entropy function) to study game theory (Orrell, 2019). 

Firstly, Shubik (1999) finds there are three basic sources of uncertainty in an 
economy: exogenous, strategic, and quantum. The first involves the acts of na-
ture, weather, earthquakes, and other natural disasters or favorable events over 
which we have no control. Strategic uncertainty is endogenous and involves our 
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inability to predict the actions of competitors.  
Later in their paper (Haven et al., 2018), they say in quantum mechanics, a 

state is formalized with a wave function, which is complex valued. That state will 
now form part of a Hilbert space. Position and momentum in quantum physics 
are real-valued, and one needs to find so called operators in the Hilbert space 
which can represent those real quantities. In Drabik (2011), the author intro-
duces the basic concepts of quantum mechanics to the process of economic phe-
nomena modelling. Quantum mechanics is a theory describing the behaviour of 
microscopic objects and is grounded on the principle of wave-particle duality. It 
is assumed that quantum-scale objects at the same time exhibit both wave-like 
and particle-like properties, but he just lists all the physics information, not ex-
actly gives a connection with game theory. 

These work (Hubbard, 2017; Hidalgo, 2007a, 2007b) focus on entropy (mostly 
is minmax question) to analysis the iteration of the game. But we want to analyze 
the game strategy based on Schrödinger equation solution (which also represents 
the state). We use the distance of two states to represent “good” or “bad” for two 
players and the “jump” between two different states is exactly the player’s strat-
egy for the next game around (Samuelson, 1997). 

Our paper concludes four sections, in the second section, we will give the model 
of Schrödinger equation and game theory separately. In third section, we give 
some basic theorems, examples and proof. In the last section, we have our con-
clusions and discussions. 

2. Model 
2.1. Schrödinger Equation 

At the beginning of the twentieth century, experimental evidence suggested that 
atomic particles were also wave-like in nature. For example, electrons were 
found to give diffraction patterns when passed through a double slit in a similar 
way to light waves. Therefore, it was reasonable to assume that a wave equation 
could explain the behaviour of atomic particles. Schrödinger was the first person 
to write down such a wave equation. The eigenvalues of the wave equation were 
shown to be equal to the energy levels of the quantum mechanical system, and 
the best test of the equation was when it was used to solve for the energy levels of 
the Hydrogen atom, and the energy levels were found to be in accord with Ryd-
berg’s Law. 

In this part, we will give the exact Schrödinger equation, for simplifity, the 
system is closed which means two players can not be affteced by outside factors. 
So the potential can only change with people’s different thoughts. Also, each one 
can do optimal choices instead of information loss during their decision. The 
details will be discussed in the next sections. 

Assumption 1. For a fixed time 0t t= , for each player, they each only have 
two states, i.e., for player A, he has states Ai  and Aj , similarliy, for player B, he 
has states Bi  and Bj . And the states represents different solutions of the equa-
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tion.  
Assumption 2. For each player, they have their own same equation with dif-

ferent initial values. There is no entanglement between these two quantum phe-
nomenon.  

Schrödinger developed a differential equation for the time development of a 
wave function. Since the Energy operator has a time derivative, the kinetic ener-
gy operator has space derivatives, and we expect the solutions to be traveling 
waves, it is natural to try an energy equation. The Schrödinger equation is the 
operator statement that the kinetic energy plus the potential energy is equal to 
the total energy.  

Traditionally, the Schrödinger equation is used to express the evolution of a 
quantum particle on the surface by its wave function ( ),x tφ :  

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2
2

0

,
, , , , , 0, ,

2
,0

x t
i x t v x t x t t x R

t m
x x

φ
φ φ

φ φ

∂
= − ∇ + ∈ ∞ ×

∂
=





     (1) 

where ∇  is the gradient operator at x, 2∇  is the Laplacian, m is the mass,   
is the reduced Planck constant, ( ),v x t  is the real time-dependent potential, 
and ( )0 xφ  is the initial wavefuntion. 

But here we use this equation to express player’s choice moving and simplify 
the model as 1m = = , the potential v is time-independent. Then the modified 
equation for player A changes to:  

 ( ) ( ) ( ) ( ) ( ) ( )0
1

, 1 , , ,0
2

A
A A A

x t
i x t v x x t x x

t
φ

φ φ φ φ
∂

= − ∆ + =
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       (2) 

Similarly, for player B, his equation is:  

 ( ) ( ) ( ) ( ) ( ) ( )1
2

, 1 , , ,0
2

B
B B B

x t
i x t v x x t x x

t
φ

φ φ φ φ
∂

= − ∆ + =
∂

      (3) 

Since the Schrodinger equation is like the “heat equation” (only difference is 
time t changes to it, so from the fundamental solution of heat equation, we know 
that there is also “fundamental solutions” for Schrödinger. After the comparsion, 
for the Schrödinger equation, we need the calculation of i , which in one di-
mension situation. Actually the sqaure root of i has two roots which is suitable 
for our player’s two states in a time. 

2.2. Game Theory 

Game theory is a set of techniques to study the interaction of “rational” agents in 
“strategic” settings. Here “rational” measn the standard thing in economic: max-
imizeing the obejectives functions subject to conditions; “strategic” means the 
player care not only their own actions, but also about the actions taken by other 
player. 

Modern game theory becomes a field of research from the work of John von 
Neumann. In 1928, he wrote an important paper about two-person zero-sum 
games. In 1944, he and Oscar Morgenstern published their classic book (Von 
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Neumann & Morgenstern, 1947), Theory of Games and Strategic Behavior, theta 
extended the work on zero-sum games, and alsp started cooperative game theory. 
In the early 1950’s, John Nash made his contributions to non-zero-sum games 
(Nash Jr., 1950) and started bargaining theory. After that, there was an explosion 
of theoerical and applied work in game theory and the methodology was well 
along its way to its current status as a tool (Shubik, 1999; Samuelson, 1997; Sel-
ten, 1975; Samuelson, 2016). 

And in our paper we will focus on noncooperative game theory, which means 
the former takes each player’s individual actions as primitives, whereas the latter 
takes joint actions as primitives. And we have the following assumptions about 
the players: 

Assumption 3. The number of players is 2, player A and player B.  
Assumption 4. There is no outside factors affecting their strategies.  
Assumption 5. Each one is smart enough to have the optimal choice and no 

information loss when they have the decision. From the Schrödinger equation, 
The conservation law is true.  

Definition 1. Players has no information loss during any time they make the 
decision is the 2L  norm integration of their “equation” solution from −∞  to 
∞  is always constant 1.  

( ) 2
, d 1, ,j x t x j A Bφ

∞

−∞
= =∫  

Since this integral must be finite (unity), we must have the solution ( ), 0x tφ →  
as x →∞  in order for the integral to have any hope of converging to a finite 
value. The importance of this with regard to solving the time dependent Schrö- 
dinger equation is that we must check whether or not a solution ( )xφ  satisfies 
the normalization condition. 

Definition 2. (Distance Between Different States). Distance between two state 
i and j is defined as:  

( ) 2,Dis i j i j= −  

Definition 3. (Information of Strategy Sets). A collection of information set, I 
is a set of linear combination of two solutions for a fixed time 0t t= , e.g. player 
A at time 0t t= , his information set is:  

( ) ( ){ }0 0, ,Ai AjI a x t b x tφ φ= × + ×  

Here ( ) ( )0 0, , ,Ai Ajx t x tφ φ  are the basic solutions of the equation. It is a mixed 
strategy for player A since he has two pure strategy distributions. ,a b  satisfy-
ing 2 2 1a b+ = . Just like the famous Schrödinger’s cat paradox which stated by 
Schrödinger in 1935. He presented a case of cat in a box which has fifty percent 
of survive and fifty percent it may die. So if we open the box, we can find the cat 
is alive or dead, but when we close the bos, there are infinity states it can be. Ac-
cording to this, we can explain the startegy: when we do the choice, we only have 
A and B these two choices. But when we are thinking, no one knows what we are 
thinking and actually we have infinity thoughts in our own brain.  
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Definition 4. (States Evolution as Strategy Change). When player A starts to 
change his strategy according to his guess of player B’s behavior, state change 
means the evolution for the Schrödinger solution. If his initial state is i, and the 
state changes to j after time t, the relation between i and j is  

eiHtj i= . 

Of course the time is a continuous parameter we obvious have  

0
lim
t

j i
→

=  

Definition 5. (Strictly Dominant Strategy) Similiarly as the definition in tradi-
tional game theory, a startegy state iA  is a strictly dominant strategy for player 
A is for all i iA A≠ , and all states jB  for player B, ( ) ( ), ,i j i jDis A B Dis A B< . 

Definition 6. A state i and j for A and B is a Nash Equilibrium if and only if their 
distance is the least, i.e., for any other states i′  and j′ , ( ) ( ), ,Dis i j Dis i j′ ′≤ . 
It also has another name: Stable Equilibrium.  

Remark 1. This idea is from the model of the electron. The internal power 
between two electron is related to their distance, more closeness more power. If 
they are far away, exact little power between them, we do not care about these 
two electron. The two players are the “opponents” and “partner”, player A is 
affteced by B and player B is affected by A. So there should be more “power” 
between them.  

Definition 7. (Uncertainty principle for player) Any player of two can not 
exactly guess what his opponent’s strategy in the next step for what probability.  

Remark 2. The uncertainty principle is one of the most famous ideas in phys-
ics. It tells us there is a fuzziness about the behavior of quantum particles and we 
can not determine particle’s position x and momentum p at the same time. 
There is a famous inequality derived by Werner Heisenberg:  

.
2x pσ σ ≥
  

where   is the reduced Planck constant: ( )2π . In two-players game, x re- 
present their opponent’s behavior set (which is also the information set), p re-
presets the related probability to take such decision. This phenomenon can not 
happen: player B continues his strategy always whatever A’s strategy is, then  

0x p∆ = ∆ = , a contradiction with the uncertainly principle. In next section, we 
will give the example and proof about this.  

3. Basic Theorem 

Theorem 3.1. A player can have at most one strictly dominant strategy.  
Proof. If we assume player A has two strictly domiant strategy and each one is 

state 1i  and 2i , then for any state 1Ai i≠  and states j for player B, we have the 
inequality:  

( ) ( )1, , .ADis i j Dis i j<  

Same idea for state 2i , we still have the inequality:  
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( ) ( )2 , , .ADis i j Dis i j<  

We pick 2Ai i=  in the first inequality and pick 1Ai i=  for the second one, which 
is a contradiction.                                                   

Remark 3. There can be no strategy state i for player A such that for all i  of 
A and j of B, ( ) ( ), ,Dis i j Dis i j< . B is the same.  

Theorem 3.2. The game system is closed under the time-evolution, which 
means 2L  norm of the state (solution) is always 1.  

Proof. It is obvious from the property that 
2

e 1iHt = .                    
Theorem 3.3. The time evolution operator is only related to its end time: inti-

al time 0t  and ending time 1t , it has no relation with the middle states from 

0t  to 1t . From the strategy idea, two players will have the decision in a fixed 
time and the opponent does not care about your thinking process.  

Proof. Assume we have the inital state ( )0i t  and start to evolve to time 1t , 
there are two possibilities: 1) First one is directly “jump” from 0t  to 1t ; 2) Second 
part we have many “stopping thinking time” 2 3, , , nt t t , until 1t . Compare these 
two states:  

( )1 0
0

eiH t t
ti

−  

( ) ( ) ( ) ( )1 1 2 0 1 0
0 0

e e e en n niH t t iH t t iH t t iH t t
t ti i−− − − −=  

We find they have the same result and finish the proof.                     
Theorem 3.4. Two players will get Ne (Nash Equilibrium) in a period time.  
Proof. If we consider two players evolve separately, which means player A is 

from state j to state 0eiHt j , and player B is from state i to state 1eiHt i , then cal-
culate their distance:  

 ( )( ) ( )1 0 1 00 01
2 22

e e e e e .iH t t iH t tiHt iHtiHtj i j i j i− −− = − = −        (4) 

So we can only consider the state i evolution! Assume we evolve after time t, 
then the distance between these two is:  

 

( )
( )

( )

2

2 2

, e e

2 e

2 2 e

iHt iHt

iHt

iHt

Dis j i j i

j i Re j i

Re j i

= −

= + −

= −

               (5) 

which is function of t and we want to minimize the Dis , so need to make sure 

( )eiHtRe j i  as big as enough. Now we write the state in the linear combination of 
energy eigenstate pE :  

1
p p

p
j Eα

=

= ∑  

1
p p

p
i Eβ

=

= ∑  

And each constane pα , pβ  can be expressed as the norm times the exponen-
tial function of phase:  
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1

e pi
p p

ωα α=  

2

e pi
p p

ωβ β=  

Then  

 1 2

1 1

1 1

e e

e e ep p

iHt iHt
p p p p

p p

i iiHt
p p p p

p p

j i E E

E Eω ω

α β

α β

= =

= =

=

=

∑ ∑

∑ ∑
                (6) 

For fixed p, 1p =  situation:  

 ( )

( ) ( )( )

1 2 1 2
1 1 1 1

1 2
1 1

1 2
1 1

1 1 1 1 1 1 1 1

1 1

1 1

1 2 1 2
1 1 1 1 1 1

e e e e e e

e e e

e

cos sin

j

j

i i i iiHt iHt

iE ti i

i E t

j j

E E E E

E t i E t

ω ω ω ω

ω ω

ω ω

α β α β

α β

α β

α β ω ω ω ω

−

+ −

=

=

=

= + − + + −

 (7) 

Return back to Equation (6), we have the final formula:  

( ) ( )1 2 1 2
1 1 1 1

1 1
e cos sin .iHt

p p j p p j
p p

j i E t i E tα β ω ω α β ω ω
= =

= + − + + −∑ ∑  

To maximize the Equation (5) is equal to:  

( )1 2
1 1

1 1
max e max cosiHt

p p j p p
p

Rej i E tα β ω ω α β
=

= + − =∑ ∑  

Since cos 1θ ≤  for any θ . Here we will use the following lemma to make sure 
we can take the equality for special t. 

Lemma 3.5. There exists infinite [ )0,t∈ ∞  such that ( )1 2cos 1p p pE t ω ω+ − =  
for each p and the period time is related to 1E  and 2E .  

Proof. We focus on 2p = , ( )2p >  is the same extension. 
Assume there exists two numbers 1k  and 2k  such that the following equali-

ties satisfy:  
1 2

1 1 1 12E t w w k+ − = π  
1 2

2 2 2 22E t w w k+ − = π  

If we rewrite these equations with t, we have the following equality:  

( ) ( )2 1 2 1
1 1 1 2 2 2 2 12 2k E k Eω ω ω ωπ+ − = π+ −  

( ) ( )2 1 2 1
1 2 1 1 2 2 1 2 2 12 2k E E k E Eω ω ω ωπ+ − = π+ −  

( ) ( )2 1 2 1
2 2 1 1 1 2

1 2 2 1 2

E E
k E k E

ω ω ω ω− − −
− =

π
 

2 1 2 1
2 2 1 1 1

1 2
22 2

Ek k
E

ω ω ω ω − −
= + − π π 

 

Obviously we can choose suitable 1 2 1 2
1 1 2 2, , ,ω ω ω ω  such that their difference is  

some integer q times 2π , according from the famous Bohr formula: 1
2n

EE
n

= , 
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so 1

2

E
E

 is the rational expression 
2
1
2
2

n
n

, pick suitable 2k  such that 1k  is also an  

integer. Then go back to the t equation to get t. Simliarly, for 2p > , we can still 
find their least common multiple.                                      

Example 1. (For Definition 7) The prison’s dilemma is a standard example of 
a game analyzed in game theory and we will use it first as an example for the 
uncertainty. 
 

 
 

1) If A and B each betray the other, each of them serves two years in prison; 
2) If A betrays B but B remains silent, A will be set free and B will serve three 

years in prison (vice versa). 
3) If A and B both remain silent, both of them will serve only one year in 

prison. 
So actually each player is in the dilemmas and no one knows his/her oppo-

nent’s strategy for the next step. It is a classical application of the “Uncertainty 
Principle”. 

Example 2. (This example is from the lecture notes (Ferguson, 2005) (Odd 
and Even) Player A and B simultaneously call out one of the numbers one or two. 
Player A’s name is Odd; he wins if the sum of the numbers is odd. Player B’s 
name is Even; she wins if the sum of the numbers is even. The amount paid to 
the winner by the loser is always the sum of the numbers in dollars. We choose 

{ } { }1,2 , 1,2X Y= =  and the table is following:  
 

 
 

Let us analysis the game from Player A’s point of view. Suppose he calls “one” 
3/5ths of the time and “two” 2/5ths of the time at random. In this case, 

1) If B calls “one”, A loses 2 dollars 3/5ths of the time and wins 3 dollars 
2/5ths of the time; on average, he wins 0. It is a even game in the long run. 

2) If B calls “two”, A wins 3 dollars 3/5ths of the time and loses 4 dollars 
2/5ths of the time and average he wins 1/5. 

Clearly if A mixed his choices in this given way, the game has two ending: 
even or A wins 0.2 dollar on the average every time.  

1) If we think about after a long time “even”, A and B have no change, without 
loss of generality, the schedule for A is 1,1,1,2,2. Then B starts to think if he can 
do some change and earn money. So when A is “asleep”, she chooses 2 when A is 
1 and she chooses 1 when A is 2. Then each time she can earn 3 dollars, A is los-
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ing! So based on such situation happen, A should be clear each step and do some 
changes which is hard for B to guess A’s strategy. 

2) Similarly, for second situation. B calls “two” and A wins 0.2 dollar average 
time. A is happy since he can earn money without doing any change, but B want 
to “save” money unless each game she will lose 0.2 average. So she will call “one” 
without any dilemma, at that situation, A get nothing (since the average payoff is 
0), so he will try to make some changes. In that case, each one will behave ran-
domly without fixed strategy. 

It satisfies the uncertainty principle. 
However, player A can not player know B’s strategy, can he guess her proba-

bility for the next step? Of course he can, this is the following theorem from the 
quantum mechanics. 

Theorem 3.6. For player A, he can guess the probability of player B’s from 
state 1j  to 2j  at time t:  

( ) ( )
1 2

2
2j jP t C t→ =  

Here ( )2C t  is definded as:  

( ) ( ) ( )2 21 00
exp d

t
C t i H t i t tω′ ′ ′ ′= − ∫  

0H  is the initial Hamiltoian operator: 1
1
2

v− ∆ + . The player A has a time de-

pendent perturbation ( )H t′ , and 12 1 2H j H j′ ′= , ( )*21 12H H′ ′= ,  

2 1
0 2 1

E E E Eω
−

= = −


. We write ( )0H H H t′= + .  

The proof is similar from the reference book (Griffiths, 2007). 
Proof. To begin with, let us suppose that thare are just two states 1 2,j j , then 

the solution function ( )tφ  can be expressed by the combinations of these two:  

( ) ( ) ( )1 2
1 1 2 2e e .iE t iE tt C t C tφ φ φ− −= +  

And now since we have the perturbation, the new Schrödinger equation is:  

H i
t
φφ ∂

=
∂

 

Then combine these two together and cancel the term, hence  

[ ] [ ]1 2
1 1 2 2e eiE t iE tC H C H iKφ φ− −′ ′+ =  

1 2
1 1 2 2e eiE t iE tK C Cφ φ− −= +   

To isolate 1C , we use the trick: Take the inner product with 1φ , and exploit the 
orthogonality of 1φ  and 2φ , conclude that:  

( )2 1
1 1 11 2 12e i E E tC i C H C H − − ′ ′= − + 
  

( )2 1
2 2 22 1 21e

i E E tC i C H C H − − ′ ′= − + 
  

Then after simplifying the equation:  
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0
1 12 2e i tC iH Cω−′= −  

0
2 21 1ei tC iH Cω′= −  

Since our H ′  is “small”, we can solve the equation in a process of successive 
approximations. Suppose the particle starts out in the lower state:  

( ) ( )1 20 1, 0 0.C C= =  

After the comparsion of zero order and first order, we can have our final conclu-
sion (skip the detail here):  

( ) ( ) ( )2 21 00
exp d

t
C t i H t i t tω′ ′ ′ ′= − ∫  

which means the player B can guess player A’s moving probability in a sense. 
Vice versa, player A can guess player B’s.                                

4. Conclusion and Discussions 

In our article, we firstly combine the two-players strategy game and Schrödinger 
equation together, have a connection, successfully explain the game evolution 
using solution state. It transfers the economics problem to the physical question. 
Also, we determine the “good” or “bad” based on the distance of two states which 
is clear and easy to compare and apply the famous quantum mechanics results 
into the game theory, however we still cannot exactly transfer the game “language” 
into the initial potentials 1 2,v v  or the equation directly, which is an limitation. 
And we hope to get the game strategy based on the equation solution (states) to-
tally. 

However, the distance we defined in the previous section is in the eigenstate 
basis, but when we perform an measurement of the whole system, we need a 
transformation for the computational basis, also we will get a probability of get-
ting to the exact state, which helps us approximate the opponent’s strategy. It is 
an ongoing project. 
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